Definitions for graphs
- Breadth First Search and Depth First Search
- Topological Sort.

Expressive power
A graph can be used to represent a communication network, a hierarchy of classes, the topology of a maze, relationships between people, a subway map, a finite-state automaton, the web . . .

Each application motivates a series of computational problems.

We will see efficient solutions to the most basic ones:
- Connectivity and Shortest Paths.
- Cuts, Flows, Matching.

Comparison
- An adjacency list representation uses $O(n + m)$ space: we have an array of n pointers and the sum of the number of elements in all the lists is m.

Deciding whether $(u, v) \in E$ takes $O(n)$ time in the worst case.

Graphs
A graph G is given by a set of vertices V and a set of edges E.

Normally we call $n = |V|$ and $m = |E|$.

- In a directed graph, an edge is an ordered pairs of vertices (u, v). The edge goes from u to v and is represented using an arrow.
- In an undirected graph, an edge is a set (unordered pair) of two vertices $\{u, v\}$.

Representation
There are two simple ways of representing a directed graph $G = (V, E)$. Assume $V = \{1, \ldots, n\}$.

- **Adjacency List.** For every node u we maintain a list of all the nodes v such that $(u, v) \in E$.
- **Adjacency Matrix.** A $n \times n$ Boolean matrix $M[\cdot, \cdot]$ is maintained, where

$$M[u, v] = \begin{cases} 1 & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

- An adjacency matrix uses $O(n^2)$ space.

Deciding whether $(u, v) \in E$ takes $O(1)$ time in the worst case.

Assuming names of vertices and pointers use 2 bytes each, adjacency list requires $2n + 4m$ bytes of space ($2n + 8m$ for undirected graphs), adjacency matrix $n^2/8$.
Terminology — Undirected Graph

- Two vertices s and t are connected if there is a path $s = v_1, v_2, \ldots, v_k = t$.
- The equivalence relation “being connected to” among vertices partitions the set of vertices into connected components.
- A graph is connected if any two vertices are connected. (I.e. the whole graph is a single connected component.)

It is possible to test whether a graph is connected in optimal $O(n + m)$ time.

Terminology — Directed Graph

- Two vertices s and t are strongly connected if there is a directed path from s to t and a directed path from t to s.
- The relation “being strongly connected to” partitions the set of vertices into strongly connected components. A graph is strongly connected if all its vertices are in the same strongly connected component.

It is possible to test whether a graph is strongly connected in optimal $O(n + m)$ time. (No proof)

Search

Several graph algorithms use a procedure that “searches” the graph “visiting” all edges.

The two main methods to search a graph are

- Breadth-first search
- Depth-first search

Breadth First Search

Start from a vertex, then visit all vertices at distance one, then visit all vertices at distance two, \ldots

Implementation

We use a queue Q and a vector of n “colors”, one for each vertex.

```plaintext
BFS (s, G = (V, E))
begin
 Initialize Q;
 for all $u \in V$ do Initialize col(u) := white
 col(s) := gray; enqueue (s, Q)
 while Q is not empty
   u := dequeue (Q); col(u) := black
   for all $v$ such that $(u, v) \in E$ and col(v) = white do
     col(v) := gray
     enqueue(v, Q)
 end
end
```
Analysis

- Using adjacency list, running time is $O(n + m)$.
- We do $O(1)$ operations on every vertex, and $O(1)$ operations on every edge.
- At the end, the black vertices are precisely those in the connected component of s (for undirected graphs).

Rationale

Whenever a new (white) vertex is found, it is reached through a shortest path from s.

Will prove later.

We maintain a vector of distances $d[\cdot]$, where $d[u]$ is the distance from s to u.

Distance

Say that the distance between s and t is the smallest k such that there is a path of length k connecting s to t. (Distance is undefined, or ∞, is s and t are not connected.)

BFS can be modified to find the shortest path between s and every other vertex.

Initially, $d[s] = 0$ and $d[u] = \infty$ for $u \neq s$.

Inductively, it will always be true that all vertices in the queue have the right entry in the $d[\cdot]$ vector.

When we are looking at the neighbours of u, the white ones will be at distance $d[u] + 1$ from s.

Modified BFS

```plaintext
BFS (s, G = (V, E))
- Initialize Q;
- for all u ∈ V do Initialize col(u) := white
- for all u ∈ V do Initialize d[u] := ∞
- col(s) := gray; d[s] := 0
- enqueue (s, Q)
- while Q is not empty
  - u := dequeue (Q)
  - col(u) := black
  - for all v such that (u, v) ∈ E and col(v) = white do
    - col(v) := gray;
    - d[v] := d[u] + 1
    - enqueue(v, Q)
```

Depth First Search

We follow a direction, as far as possible, and then we backtrack.

Optimal strategy to get out of a maze (BFS is also optimal, but DFS is more natural).
Recursive Implementation — Simple Version

Basic idea (works for undirected connected graphs):

\[
\text{DFS} \ (s, G = (V,E)) \\
\text{ for all } u \in V \ \text{do} \ \text{Initialize} \ col(u) := \text{white} \\\n\text{DFS-R} \ (s,G)
\]

\[
\text{DFS-R} \ (s, G = (V, E)) \\
\text{col}(s) := \text{black}; \\
\text{for all } v \text{ such that } (u,v) \in E \ \text{and} \ \text{col}(v) = \text{white} \ \text{do} \\
\text{DFS} \ (v, G)
\]

Recursive Implementation — General Version

time is a global variable.

\[
\text{DFS} \ (G = (V,E)) \\
\text{ for all } u \in V \ \text{do} \ \text{Initialize} \ col(u) := \text{white} \\
\text{time} := 0 \\
\text{for all } u \in V \ \text{do} \ \text{if} \ col(u) = \text{white} \ \text{then} \ \text{DFS-R} \ (u,G)
\]

\[
\text{DFS-R} \ (s, G) \\
\text{time} := \text{time} + 1; \ \text{d}(s) := \text{time}; \ \text{col}(s) := \text{gray} \\
\text{for all } v \text{ such that } (s,v) \in E \ \text{if} \ \text{col}(v) = \text{white} \ \text{then} \\
\text{DFS} \ (v, G) \\
\text{col}(s) := \text{black} \\
\text{time} := \text{time} + 1; \ \text{f}(s) = \text{time}
\]

Non-recursive Implementation

Non-recursive implementation is similar to BFS but uses a stack instead of a queue.

Discovery Time and Finish Time

The algorithm assigns to every vertex \(u \) a discovery time \(d(u) \) and a finish time \(f(u) \).

A “clock” is maintained during the execution of the algorithm in the variable \(\text{time} \). Each vertex is “time-stamped” the first time that it is seen, and the last time that it is dealt with.

Building a DFS Tree

By a further modification of the procedures DFS and DFS-R, we can also build a tree (or rather a forest).

The roots of the forest are the nodes on which we call DFS-R from within DFS.

The edges in the forest are the edges of the form \((s,v)\) where \(s \) is the parameter in a call of DFS\((s,G)\) and \(v \) is white, and DFS\((v,G)\) is the resulting procedure call.

The forest represents the way the recursive calls “unfold” during the computation.

Edges in the DFS Tree

An edge \((u,v)\) is a

- Tree edge if it is part of the forest.
- Back edge if \(v \) is an ancestor of \(u \) in the tree.
- Forward edge if \(v \) is a descendant of \(u \) in the tree.
- Cross edge otherwise.

In a the DFS forest of an undirected graph, there is no difference between forward and back edges, and there are no cross edges.
Acyclic Graphs

An **acyclic** graph is a directed graph without cycles. Acyclic graphs represent hierarchical structures, e.g. precedence constraints (as in the make command, or in course prerequisites).

Topological Sort

Suppose V is a set of **actions** that we have to perform, and $(u, v) \in E$ iff action u has to be done **before** action v.

We want to find a schedule v_1, \ldots, v_n of the actions such that if $(v_i, v_j) \in E$ then $i < j$.

If the graph contains a cycle we are not going to be able to do that.

If the graph is acyclic we can always find a feasible schedule, and we can do so efficiently.

One Algorithm for “Topological Sort”

1. Find a node v with out-degree zero; make v be the last element of the schedule.
2. Delete v and its incident edges from the graph. Schedule recursively the remaining vertices.

Time: $O(n(n+m))$ with careless implementation.
Correctness: exercise.

The Optimal and Surprising Algorithm

Algorithm:

- Do DFS; schedule the vertices by decreasing values of $f()$. (Latest finish first)

Claim: if the graph is acyclic, the nodes in the list are ordered in the right way.

Analysis

- **Running time:** $O(m + n)$. We can modify DFS-R so that every time we are finished with a vertex we put it on top of an initially empty linked list.
- **Correctness:** by the following two results:
 - G is acyclic \Leftrightarrow there are no back edges in the DFS forest.
 - We only need \Rightarrow
 - Cross edges and forward edges always go from nodes with higher finish time to nodes with lower finish time.

First Step

Lemma 1. If G is acyclic then the DFS forest of G has no back edge.

PROOF: If there is a back edge then there is a cycle.
The analysis works

Theorem 2. If G is acyclic, the order of discovery in DFS is a good topological sort.

PROOF: We want to show that if there is an edge (u, v) then $f(u) > f(v)$. When (u, v) is considered:

- v is not gray, otherwise u would be a descendent of v and (u, v) be a back edge.
- If v is white, v becomes a child of u, and $f(u) > f(v)$.
- If v is black, then $f(v) < f(u)$ too.

A Converse to Lemma 1

Lemma 3. If the DFS forest of G has no back edge then G is acyclic.

PROOF: If there is a cycle, let v be the first discovered vertex of the cycle, and let u be the predecessor of v in the cycle. v is discovered before u, and there is a path (made by all white vertices) from v to u. It follows that u is a descendent of v in the DFS tree (this is quite obvious, but we better prove it later).

Then (u, v) is a back edge.

To complete the argument

Theorem 4. For any two vertices u and v, exactly one of the following cases hold:

1. The intervals $[d(u), f(u)]$ and $[d(v), f(v)]$ are disjoint.
2. $[d(u), f(u)]$ contains $[d(v), f(v)]$ and v is a descendent of u in the same DFS tree.
3. $[d(v), f(v)]$ contains $[d(u), f(u)]$ and u is a descendent of v in the same DFS tree.

Theorem 5. [White Path Theorem] If at time $d(u)$ there is a path of white vertices going from u to v (v included) then v will become a descendent of u in the DFS forest.

PROOF: Suppose not. Then assume that all the other vertices in the $u \rightarrow v$ path become a descendant of u, except v. (Otherwise repeat the argument using instead of v the closest element to u in the path that does not become a descendant.) Then let w be the predecessor of v, then

$$d(u) \leq d(v) \leq f(w) \leq f(v)$$

Then the interval $[d(v), f(v)]$ is contained in $[d(u), f(u)]$ and so v is a descendant of u.