Problem Set 2

This problem set is due on Thursday, October 18, by 2:15pm. You can either hand it in class or email a pdf to Joongyeub.

1. [30/100] We proved that every unitary operation can be realized by a quantum circuit that uses only U_{CNOT} gates and 1-qubit gates. Show that it is not true that every bijective boolean function can be computed by a classical circuit that uses only CNOT gates and NOT gates.

[Hint: use linear algebra over the field \mathbb{F}_2]

2. [40/100] Let us say that an efficient experiment on a quantum state is a polynomial time quantum computation, followed by a measurement, followed by a polynomial time classical computation on the outcome of the measurement.

For a binary string $x = (x_1, \ldots, x_n)$ let $\text{mod}_3(x)$ be 0 if $\sum_i x_i \equiv 0 \pmod{3}$ and let $\text{mod}_3(x)$ be 1 otherwise. Show that there is an efficient experiment that distinguishes with high probability the quantum state $q_{\text{uniform}} := \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x\rangle$ from the quantum state $q_{\text{mod}_3} := \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} (-1)^{\text{mod}_3(x)} |x\rangle$. That is, there is an efficient experiment that outputs YES with higher probability (by an additive constant term) than when executed on q_{uniform}.

3. Consider a quantum circuit that, on an n-qubit input, first applies an Hadamard gate to each input bit, and applies the quantum Fourier transform over \mathbb{Z}_{2^n}. If we give the state $|0 \cdots 00\rangle$ as an input to the circuit, what is the output state?