Lecture 13

In which we prove a lower bound for quantum search algorithms via the polynomial method.

We want to show that a quantum algorithm that, given a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$, finds a solution x such that $f(x) = 1$ if one exists, must have running time at least $\Omega(\sqrt{2^n})$, provided that access to the function $f()$ is only given to the algorithm via a unitary transformation U_f over $n + 1$ qubits such that $U_f |x, b\rangle = |x\rangle |b \oplus f(x)\rangle$. In the last lecture we considered the case in which f is “given” via a unitary transformation U_f such that $U_f |x\rangle = (-1)^{f(x)} |x\rangle$. The result that we prove today is only stronger, because from a unitary transformation U_f like the one we consider today we can derive a unitary transformation like the one considered in the last lecture as

$$U_f \cdot \left(I_n \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\right) U_f$$

Theorem 1 (Main) Let A be a quantum algorithm that given in input $|0 \cdots 0\rangle$, performs unitary operations independent of f and applies U_f to its first $n + 1$ qubits a total of at most T times, and, at the end, outputs 1 with probability $\geq 90\%$ if there is an x such that $f(x) = 1$ and outputs 0 with probability $\geq 90\%$ if for all x we have $f(x) = 0$.

Then $T \geq \Omega(\sqrt{2^n})$.

Again, this is somewhat stronger than we proved in the last lecture, in which we required the algorithm to output an x such that $f(x) = 1$ with probability $\geq 90\%$ if such an x exists. Indeed, such an algorithm can be easily converted to an algorithm that satisfies the assumptions of the theorem.

The main theorem is proved in the following way.

Lemma 2 Suppose that we have a quantum algorithm as in the assumption of the Main Theorem.

Then there is an N-variate real polynomial $p(x_1, \ldots, x_N)$, $N = 2^n$, of degree $2T$ such that $0 \leq p(0, \cdots, 0) \leq .1$ and for all $(b_1, \ldots, b_N) \in \{0, 1\}^N - \{(0, \cdots, 0)\}$ we have $.9 \leq p(b_1, \ldots, b_N) \leq 1.$
Lemma 3 Let \(p(x_1, \ldots, x_N) \) be a real polynomial such that \(0 \leq p(0, \cdots, 0) \leq .1 \) and for all \((b_1, \ldots, b_N) \in \{0, 1\}^N - \{(0, \cdots, 0)\} \) we have \(.9 \leq p(b_1, \ldots, b_N) \leq 1 \). Then the degree of \(p \) is \(\geq \Omega(\sqrt{N}) \).

1 Proof of Lemma 2

We first prove the following fact.

Lemma 4 If a quantum algorithm starts in the state \(|0 \cdots 0\rangle\) and alternates applications of unitary transformations independent of \(f \) and applications of \(U_f \), then, after \(t \) applications of \(f \), each amplitude of the state of the algorithm is a polynomial of degree \(t \) in the values \(f(x) \).

This is proved by induction on \(t \). When \(t = 0 \), the amplitudes are constant independent of \(f \), that is, polynomials of degree 0 in the values of \(f() \). For the inductive step, if \(|a\rangle \) is a quantum state

\[
|a\rangle = \sum_{x,b,w} a_{x,b,w} |x, b, w\rangle
\]

and each amplitude \(a_{x,b,w} \) is a polynomial of degree \(t \) in the values of \(f() \), then the amplitude of \(x, b, w \) in \(U_f |a\rangle \) is

\[
(1 - f(x)) \cdot a_{x,b,w} + f(x) \cdot a_{x,1-b,w}
\]

which is a polynomial of degree \(t + 1 \) in the values of \(f \).

Now, let \(S \) be the set of final accepting states of the algorithm, and let \(a_z \) be the amplitude of each possible final state \(z \). Then each \(a_z \) is a polynomial of degree at most \(T \) in the values \(f(x) \), and the probability that the algorithm accepts is

\[
p(f(x_1), \ldots, (x_{2^n})) = \left| \sum_{z \in S} a_z \right|^2
\]

where \(p() \) is a polynomial of degree at most \(2T \), and \(x_1, \ldots, x_{2^n} \) is an enumeration of the elements of \(\{0, 1\}^n \). Note that, for every real-valued input, \(p \) has a real value, so \(p \) is a polynomial with real coefficients, and that \(p \) satisfies all the properties of the conclusion of Lemma 2.
2 Proof of Lemma 3

First we prove the following fact.

Lemma 5 Let p be a polynomial of degree d as in the assumptions of Lemma 3. Then there is a univariate polynomial q of degree at most d such that $0 \leq q(0) \leq .1$ and for each $i \in \{1, \ldots, N\}$ we have $.9 \leq q(i) \leq 1$.

Proof: First of all, we can assume without loss of generality that p is a multilinear polynomial, that is, every variable appears with degree at most one in each monomial. This is because the properties that we assume about p are about inputs in $\{0,1\}^n$, and if we replace every occurrence of x_i^k with $k \geq 2$ by x_i, we do not change the value of p on such inputs. Define now the symmetrization of p as

$$
\overline{p}(x_1, \ldots, x_N) = \frac{1}{N!} \sum_{\pi} p(x_{\pi(1)}, \ldots, x_{\pi(N)})
$$

This is still a multilinear polynomial of degree at most d, and we have that $0 \leq \overline{p}(0, \ldots, 0) \leq .1$ and for all $(b_1, \ldots, b_N) \in \{0,1\}^N - \{(0, \ldots, 0)\}$, $.9 \leq \overline{p}(b_1, \ldots, b_N) \leq 1$.

Furthermore, \overline{p} is a constant plus a linear combination of symmetric polynomials of degree at most d, where the symmetric polynomial of degree $k \geq 1$ is

$$
s_k(x_1, \ldots, x_N) := \sum_{S \subseteq \{1, \ldots, N\}, |S| = k} \prod_{i \in S} x_i
$$

the sum of all degree k multilinear monomial. (Notice that each monomial of degree k of p becomes a multiple of s_k in \overline{p}.)

The next observation is that

Claim 6 For each $k \geq 1$, there is a univariate polynomial q_k of degree k such that for all boolean inputs $(b_1, \ldots, b_N) \in \{0,1\}^n$ we have $s_k(b_1, \ldots, b_N) = q_k(b_1 + \cdots + b_n)$.

This can be proved by induction on k: the base case $k = 1$ is trivial. Assuming we have the statement up to $k - 1$, consider the expansion of $(x_1 + \cdots + x_n)^k$ and then repeatedly apply the equation $x^2 = x$ to the expansion: we get a polynomial that is equal to s_k plus a linear combination of the symmetric polynomials s_1, \ldots, s_{k-1}. Each of the latter polynomials can be written (for inputs in $\{0,1\}^n$) as a polynomial of degree $\leq k - 1$ in $(\sum_i x_i)$, and so overall we have written s_k as a polynomial of degree $\leq k$ in $(\sum_i x_i)$.

This means that we can find a univariate polynomial q of degree d such that for every $(b_1, \ldots, b_N) \in \{0,1\}^N$ we have

$$
q \left(\sum_i b_i \right) = \overline{p}(b_1, \ldots, b_N)
$$
and \(q \) satisfies the conclusions of the lemma. \(\square \)

We then derive Lemma 3 by applying the following fact to the univariate polynomial \(q \) of the previous lemma.

Lemma 7 Let \(q \) be a univariate real polynomial of degree \(d \) such that for every integer \(i \in \{0, \ldots, N\} \) we have \(b_1 \leq q(i) \leq b_2 \), and let \(c := \sup_{x \in [0,N]} |q'(x)| \), where \(q' \) is the derivative of \(q \). Then

\[
d \geq \sqrt{\frac{Nc}{b_2 - b_1 + c}}
\]

Because the polynomial \(q \) of Lemma 5 is such that \(0 \leq q(i) \leq 1 \) for all \(i \in \{0, \ldots, N\} \), and since \(q(0) \leq .1 \) and \(q(1) \geq .9 \) it must be that \(q'(x) \geq .8 \) for some \(x \in [0,1] \), and so \(d \geq \Omega(\sqrt{N}) \).

It remains to prove Lemma 7

3 Proof of Lemma 7

We use the following result of Markov, that we state without proof.

Theorem 8 Let \(q \) be a univariate polynomial of degree \(d \) such that \(\forall x \in [a_1, a_2] \) we have \(b_1 \leq q(x) \leq b_2 \). Then, for all \(x \in [a_1, a_2] \),

\[
|q'(x)| \leq d^2 \cdot \frac{b_2 - b_1}{a_2 - a_1}
\]

Now let us consider a univariate polynomial \(q \) as in the assumptions of Lemma 7. Then for each \(x \in [0, N] \) we have

\[
b_1 - \frac{c}{2} \leq q(x) \leq b_2 + \frac{c}{2}
\]

Because the value of \(q \) at a point \(z \) in the interval \([i, i + 1/2] \) for \(i = 0, \ldots, N - 1 \) is

\[
q(z) = q(i) + \int_{i}^{i + \frac{1}{2}} q'(x)dx \geq q(i) - c \cdot (x - i) \geq b_1 - \frac{c}{2}
\]

\[
q(z) = q(i) + \int_{i}^{i + \frac{1}{2}} q'(x)dx \leq q(i) + c \cdot (x - i) \leq b_2 + \frac{c}{2}
\]

and applying Markov’s theorem we have

\[
c \leq d^2 \cdot \frac{b_2 - b_1 + c}{N}
\]