Problem Set 1

1. Let \(G : \{0,1\}^k \rightarrow \{0,1\}^m \) be a \((t,\epsilon)\)-secure pseudorandom generator.

 Prove that

 \[
 \frac{t}{\epsilon} \leq 2^k \cdot O(m)
 \]

2. Let \(F : \{0,1\}^k \times \{0,1\}^m \rightarrow \{0,1\}^m \) be a \((t,\epsilon)\)-secure pseudorandom function with \(k = m \).

 Prove that

 \[
 \frac{t}{\epsilon} \leq 2^k \cdot O(m)
 \]

3. Problem 3.7 in Katz-Lindell: assuming the existence of a CPA-secure cryptosystem \((Enc, Dec) \), show that there is a cryptosystem \((Enc', Dec') \) that satisfies plain security for multiple encryptions but that is not CPA secure.

 [Hint: insert a kind of “backdoor” in \((Enc', Dec') \) which can be exploited in a CPA attack but that is exponentially unlikely to be exploitable in the plain multiple encryption model.]

4. Suppose that \(F \) is a pseudorandom permutation. Consider the following encryption scheme:

 - \(Enc(K,M) \): pick a random string \(r \), output \((F_K(r), r \oplus M) \)
 - \(Dec(K,C_0,C_1) := I_K(C_0) \oplus C_1 \)

 Is it CPA secure?