Notes for Lecture 13

Scribed by Siu-On Chan, posted March 12, 2009

Summary

Today we complete the proof that it is possible to construct a pseudorandom generator from a one-way permutation.

1 Pseudorandom Generators from One-Way Permutations

Last time we proved the Goldreich-Levin theorem.

Theorem 1 (Goldreich and Levin) Let $f : \{0,1\}^n \rightarrow \{0,1\}^n$ be a (t,ϵ)-one way permutation computable in time $r \leq t$. Then the predicate $x, r \mapsto \langle x, r \rangle$ is $(\Omega(t \cdot \epsilon^2 \cdot n^{-O(1)}), 3\epsilon)$ hard core for the permutation $x, r \mapsto f(x), r$.

A way to look at this result is the following: suppose f is $(2^{\Omega(n)}, 2^{-\Omega(n)})$ one way and computable in $n^{O(1)}$ time. Then $\langle x, r \rangle$ is a $(2^{\Omega(n)}, 2^{-\Omega(n)})$ hard-core predicate for the permutation $x, r \mapsto f(x), r$.

From now on, we shall assume that we have a one-way permutation $f : \{0,1\}^n \rightarrow \{0,1\}^n$ and a predicate $P : \{0,1\}^n \rightarrow \{0,1\}$ that is (t, ϵ) hard core for f.

This already gives us a pseudorandom generator with one-bit expansion.

Theorem 2 (Yao) Let $f : \{0,1\}^n \rightarrow \{0,1\}^n$ be a permutation, and suppose $P : \{0,1\}^n \rightarrow \{0,1\}$ is (t, ϵ)-hard core for f. Then the mapping

$$x \mapsto P(x), f(x)$$

is $(t - O(1), \epsilon)$-pseudorandom generator mapping n bits into $n + 1$ bits.

Note that f is required to be a permutation rather than just a function. If f is merely a function, it may always begin with 0 and the overall mapping would not be pseudorandom.
For the special case where the predicate P is given by Goldreich-Levin, the mapping would be

$$x \mapsto (x, r, f(x), r)$$

Proof: Suppose the mapping is not $(t - 2, \epsilon)$-pseudorandom. There is an algorithm D of complexity $\leq t - 2$ such that

$$\left| \Pr_{x \sim \{0,1\}^n} [D(P(x)f(x)) = 1] - \Pr_{b \sim \{0,1\}, \ x \sim \{0,1\}^n} [D(bf(x)) = 1] \right| > \epsilon$$

(1)

where we have used the fact that since f is permutation, $f(x)$ would be a uniformly random element in $\{0,1\}^n$ when x is such.

We will first remove the absolute sign in (1). The new inequality holds for either D or $1 - D$ (i.e. the complement of D), and they both have complexity at most $t - 1$.

Now define an algorithm A as follows.

On input $y = f(x)$, pick a random bit $r \sim \{0,1\}$. If $D(r, y) = 1$, then output r, otherwise output $1 - r$.

Algorithm A has complexity at most t. We claim that

$$\Pr_{x \sim \{0,1\}^n} [A(f(x)) = P(x)] > \frac{1}{2} + \epsilon$$

so $P(\cdot)$ is not (t, ϵ)-hard core.

To make explicit the dependence of A on r, we will denote by $A_r(f(x))$ the fact that A picks r as its random bit.

To prove the claim, we expand

$$\Pr_{x, r} [A_r(f(x)) = P(x)] = \Pr_{x, r} [A_r(f(x)) = P(x) | r = P(x)] \Pr[r = P(x)] + \Pr_{x, r} [A_r(f(x)) = P(x) | r \neq P(x)] \Pr[r \neq P(x)]$$
Note that \(\Pr[r = P(x)] = \Pr[r \neq P(x)] = 1/2 \) no matter what \(P(x) \) is. The above probability thus becomes

\[
\frac{1}{2} \Pr_{x,r}[D(rf(x)) = 1 | r = P(x)] + \frac{1}{2} \Pr_{x,r}[D(rf(x)) = 0 | r \neq P(x)]
\]

(2)

The second term is just \(\frac{1}{2} - \frac{1}{2} \Pr_{x,r}[D(rf(x)) = 1 | r \neq P(x)] \). Now we add to and subtract from (2) the quantity \(\frac{1}{2} \Pr_{x,r}[D(rf(x)) = 1 | r = P(x)] \), getting

\[
\frac{1}{2} + \Pr_{x,r}[D(rf(x)) = 1 | r = P(x)] -
\left(\frac{1}{2} \Pr[D(rf(x)) = 1 | r = P(x)] + \right.
\]

\[
\left. \frac{1}{2} \Pr[D(rf(x)) = 1 | r \neq P(x)] \right)
\]

The expression in the bracket is \(\Pr[D(rf(x)) = 1] \), and by our assumption on \(D \), the whole expression is more than \(\frac{1}{2} + \epsilon \), as claimed.

\[\square\]

The main idea of the proof is to convert something that distinguishes (i.e. \(D \)) to something that outputs (i.e. \(A \)). \(D \) helps us distinguish good answers and bad answers.

We will amplify the expansion of the generator by the following idea: from an \(n \)-bit input, we run the generator to obtain \(n + 1 \) pseudorandom bits. We output one of those \(n + 1 \) bits and feed the other \(n \) back into the generator, and so on. Specialized to the above construction, and repeated \(k \) times the mapping becomes

\[
G_k(x) := P(x), P(f(x)), P(f(f(x))), \ldots, P(f^{(k-1)}(x)), f^{(k)}(x)
\]

(3)

This corresponds to the following diagram where all output bits lie at the bottom.

\[\text{Theorem 3 (Blum-Micali)} \ Let f : \{0,1\}^n \rightarrow \{0,1\}^n \ be a permutation, and suppose P : \{0,1\}^n \rightarrow \{0,1\} \ is (t, \epsilon)-hard core for f and that f, P are computable with complexity r.\]
Then $G_k : \{0, 1\}^n \to \{0, 1\}^{n+k}$ as defined in (3) is $(t - O(rk), \epsilon k)$-pseudorandom.

Proof: Suppose G_k is not $(t - O(rk), \epsilon k)$-pseudorandom. Then there is an algorithm D of complexity at most $t - O(rk)$ such that

$$\left| \Pr_{x \sim \{0,1\}^n} [D(G_k(x)) = 1] - \Pr_{z \sim \{0,1\}^{n+k}} [D(z) = 1] \right| > \epsilon k$$

We will then use the hybrid argument. We will define a sequence of distributions H_0, \ldots, H_k, the first is G_k’s output, the last is uniformly random bits, and every two adjacent ones differ only in one invocation of G.

More specifically, define H_i to be the distribution where we intercept the output of the first i copies of G’s, replace them with random bits, and run the rest of G_k as usual (see the above figure in which blue lines represent intercepted outputs). Then H_0 is just the distribution of the output of G_k, and H_k is the uniform distribution, as desired. Now

$$\epsilon k < \left| \Pr_{z \sim H_0} [D(z) = 1] - \Pr_{z \sim H_k} [D(z) = 1] \right| = \sum_{i=0}^{k-1} \left(\Pr_{z \sim H_i} [D(z) = 1] - \Pr_{z \sim H_{i+1}} [D(z) = 1] \right)$$

So there is an i such that

$$\left| \Pr_{z \sim H_i} [D(z) = 1] - \Pr_{z \sim H_{i+1}} [D(z) = 1] \right| > \epsilon$$

In both H_i and H_{i+1}, the first i bits r_1, \ldots, r_i are random.

We now define a new algorithm D' that takes as input b, y and has output distribution H_i or H_{i+1} in two special cases: if b, y are drawn from $P(x), f(x)$, then D' has output distribution H_i; if b, y are drawn from (random bit), $f(x)$, then D' has output distribution H_{i+1}. In other words, if b, y are $P(x), f(x)$, D' should output

$$r_1, \ldots, r_i, P(x), P(f(x)), \ldots, P(f^{(k-i-1)}(x)), f^{(k-i)}(x)$$
If b, y are (random bit), $f(x)$, D' should output

$$r_1, \ldots, r_i, P(f(x)), \ldots, P(f^{(k-i-1)}(x)), f^{(k-i)}(x)$$

This suggests that D' on input b, y should pick random bits r_1, \ldots, r_i and output $r_1, \ldots, r_i, b, P(y), \ldots, P(f^{(k-i-2)}(y)), f^{(k-i-1)}(y)$.

We have

$$\left| \Pr_{x \sim \{0,1\}^n} [D'(P(x)f(x)) = 1] - \Pr_{z \sim \{0,1\}^{n+1}} [D'(z) = 1] \right|$$

$$\leq \left| \Pr_{x \sim H_i} [D'(x) = 1] - \Pr_{x \sim H_{i+1}} [D'(x) = 1] \right|$$

$$> \epsilon$$

and $P(\cdot)$ is not (t, ϵ)-hard core. □

Thinking about the following problem is a good preparation for the proof the main result of the next lecture.

Exercise 1 (Tree Composition of Generators) Let $G : \{0,1\}^n \rightarrow \{0,1\}^{2n}$ be a (t, ϵ) pseudorandom generator computable in time r, let $G_0(x)$ be the first n bits of the output of $G(x)$, and let $G_1(x)$ be the last n bits of the output of $G(x)$.

Define $G' : \{0,1\}^n \rightarrow \{0,1\}^{4n}$ as

$$G'(x) = G(G_0(x)), G(G_1(x))$$

Prove that G' is a $(t - O(r), 3\epsilon)$ pseudorandom generator.