Problem 1

\[\text{nfa} \leftarrow \text{regex :: Regex} \rightarrow \text{NFA} \quad \text{// from class} \]
\[\text{dfa} \leftarrow \text{nfa :: NFA} \rightarrow \text{DFA} \quad \text{// from class} \]
\[\text{complement :: DFA} \rightarrow \text{DFA} \quad \text{// flips the final states} \]
\[\text{intersect :: DFA} \rightarrow \text{DFA} \rightarrow \text{DFA} \quad \text{// from class, accepts iff both DFAs accept} \]

\[
\text{def algo(R :: Regex, S :: Regex)}
\]
\[
\text{dfa}_R = \text{dfa} \leftarrow \text{nfa} \leftarrow \text{regex R}
\]
\[
\text{dfa}_S = \text{dfa} \leftarrow \text{nfa} \leftarrow \text{regex S}
\]
\[
\text{dfa}_\text{ans} = \text{dfa}_R \text{ intersect} (\text{complement dfa}_S)
\]
\[
\text{return dfa}_\text{ans}
\]

For correctness, note that \(L(\text{dfa}_\text{ans}) = \emptyset \iff L(R) \cap \overline{L(S)} = \emptyset \iff L(R) \subseteq L(S) \).

For termination, we note that (1) our function does not have loops / recursions and (2) all functions our function calls terminate.

Problem 2

(a) Let \(\text{RA} \) be a recognizer for \(A \).

We will contruct a recognizer \(\text{R_CATM} \) for (complement \(A_{TM} \)) as follows:

\[
\text{def R_CATM}(M, x):
\]
\[
\text{def m1(z)}:
\]
\[
\text{if } (M(x) == \text{accept}) \text{ then accept}
\]
\[
\text{else reject}
\]
\[
\text{def m2(z)}:
\]
\[
\text{reject}
\]
\[
\text{return RA(m1, m2)}
\]

Proof (not required for full credit)

\[
\text{case } (M, x) \text{ is in (complement } A_{TM} \text{):}
\]
\[
(M, x) \text{ not in } A_{TM}
\]
\[
M(x) \text{ does not accept}
\]
\[
L(m1) = \text{empty set}
\]
\[
L(m2) = \text{empty set}
\]
\[
(m1, m2) \text{ is in } A
\]
\[
\text{RA(m1, m2) halts + accepts}
\]
\[
\text{Yay!}
\]

\[
\text{case } (M, x) \text{ is NOT in (complement } A_{TM} \text{):}
\]
\[
(M, x) \text{ is in } A_{TM}
\]
\[
M(x) \text{ accepts}
\]
\[
L(m1) = \text{all strings}
\]
\[
L(m2) = \text{empty set}
\]
\[
(m1, m2) \text{ is NOT in } A
\]
\[
\text{RA(m1, m2) does not accept}
\]
\[
\text{Yay!}
\]
(b) Let RCA be a recognizer for (complement A).
We will construct a recognizer R_CATM for (complement A_TM) as follows:

```python
def R_CATM (M, x):
    def m1(z):
        accept
    def m2(z):
        if (M(x) == accept)
            then accept
        else reject
    return RCA(m1, m2)
```

Proof (not required for full credit)

- case (M, x) is in (complement A_TM):
 - (M, x) not in A_TM
 - M(x) does not accept
 - L(m1) = all strings
 - L(m2) = emptyset
 - (m1, m2) is NOT in A
 - RCA(m1, m2) halts + accepts
 - Yay!

- case (M, x) is NOT in (complement A_TM):
 - (M, x) is in A_TM
 - M(x) accepts
 - L(m1) = all strings
 - L(m2) = all strings
 - (m1, m2) is in A
 - RCA(m1, m2) does not accept
 - Yay!

Problem 3

(a) worker(M, s):
 run M(s) for $|s|^2$ steps
 if halted, reject
 if still running, accept

R(M):
 for s in lexicographical order
 fork worker(M, s);
 if (any existing worker accepts), accept;

(b) Let RL be a recognizer for L.
We will now construct a recognizer RC_HTM for (complement H_TM):

```python
def RC_HTM(M, x):
```
def m1(z):
 run M(x) for $|z|^2$ steps
 if M(x) is still running, halt
 if M(x) halted, inf loop
 return RL(m1)

Proof (not required for full credit):

If (M,x) is in \((\mathrm{complement \ H_TM})\):
 M(x) does not halt
 m1(z), for all z, halts after $|z|^2 + 2$ steps
 m1 in L \implies RL(m1) halts + accepts

If (M,x) is NOT in \((\mathrm{complement \ H_TM})\):
 M(x) halts after k steps
 consider some z s.t. $|z|^2 > k$
 m1(z):
 sim M(x) for $|z|^2 > k$ steps
 M(x) halts \implies inf loops
 thus m1 not in L \implies RL(m1) does not accept

Grading Rubric
- There’s 5 separate sections: P1 (30), P2a (15), P2b (15), P3a (10), P3b (30).
- For each section:
 - Decide if solution is “basically correct” or “way off” (incorrect reduction; reducing in wrong
direction; etc ...)
 - “Way off” solutions = 0 points
 - “Basically correct solutions” = start from full credit, deduct points as necessary for minor technical
mistakes
 - When taking off points, provide a short (1-2 sentence) explanation for why points are being
deducted.
- For P3: we allow students the following variations (instead of $|x|^2$ time steps):
 - $|x|^2 + 100$
 - $9999 \times |x|^2 + 9999$
 - $|x|^2$ requirement for all $|x| > k$