Solutions to Practice Midterm 1

1. State whether each of the following statements is true. In addition, give a short proof (2-3 lines are sufficient) if the statement is true, and give a counterexample otherwise.

(a) If $L_1, L_2, \ldots, L_{172}$ are all regular languages, then the language $\bigcap_{i=1}^{172} L_i$ is regular.

(b) If L_1, L_2, L_3, \ldots is an infinite sequence of regular languages, then the language $\bigcap_{i=1}^{\infty} L_i$ is regular.

Solution Outline:

(a) True. We know that the intersection of any 2 regular languages is regular. It follows by induction that the intersection of any finite collection of regular languages is regular.

(b) False. Let w_1, w_2, \ldots be the strings in the complement of some irregular language L over \{0, 1\}, and let $L_i = \{0, 1\}^* \setminus \{w_i\}$. By de Morgan’s law, $\bigcap_{i=1}^{\infty} L_i = L$, which is not regular.

Alternatively, we could take $L_i = \{0^k 1^k \mid 1 \leq k \leq i\} \cup \{0^{k+1}\}^*$ where $\Sigma = \{0, 1\}$. Then, $\bigcap_{i=1}^{\infty} L_i = \{0^n 1^n \mid n \geq 1\}$ is not regular.

2. Let $L = \{(\langle D \rangle, w) \mid D \text{ is a DFA over the binary alphabet } \{0, 1\} \text{ that accepts } w\}$

(Assume that the encoding of DFAs also uses the binary alphabet.)

(a) Show that L is not regular.

(b) Show that L is decidable.

Solution Outline:

(a) Method I: Let $D_i, i \geq 1$ be the DFA that recognizes the language $\{1^i\}$. Then, $\{(\langle D_i \rangle, \epsilon)\}_{i \geq 1}$ constitutes an infinite collection of distinguishable strings.

Method II: Suppose on the contrary that L is regular. Then, let M be a DFA that recognizes L and k be the number of states in M. Let N be a DFA for some language $L(N)$ that requires a DFA with at least $k+1$ states (such a DFA exists because there are infinitely many distinct regular languages). Let q be the state of M that M ends up in upon reading input $\langle \langle N \rangle, \epsilon \rangle$. Modify M to obtain a DFA M' whose start state is q. Then, it is easy to check that M' is a DFA for $L(N)$ with k states, a contradiction.

Method III: Assume that the encoding of a DFA D starts with a string of k 1’s, where k is the number of states in D, followed by a 0, and then some prefix-free encoding of binary representation of k, followed by two 0’s, followed by some appropriate encoding of D. Now, assume on the contrary that L is decidable, and let p be the pumping length. Let N be a DFA for some language $L(N)$ that requires a DFA with at least $p+1$ states and w be some string in N. Then, $\langle \langle N \rangle, w \rangle \in L$. If we applying the pumping lemma $\langle \langle N \rangle, w \rangle$ and either pump up or pump down, we obtain an input that does not have a valid encoding of a DFA, a contradiction.
(b) We can construct a decider for \(L \) as follows. First, reject if the input is not correctly encoded; otherwise, parse the input as \((\langle D \rangle, w \rangle \) where \(D \) is a DFA and \(w \in \{0,1\}^* \). Then, simulate \(D \) on input \(w \), and accept if \(D \) accepts \(w \), and reject otherwise.

3. Consider the language

\[
INT_{TM} = \{ \langle M_1, M_2 \rangle : L(M_1) \cap L(M_2) \neq \emptyset \}.
\]

(Thus, \(INT_{TM} \) is the language associated with the problem of deciding whether, for two given Turing machines \(M_1 \) and \(M_2 \), there is some string that is accepted by both machines.)

(a) Show that \(INT_{TM} \) is Turing recognizable.

(b) Show that \(INT_{TM} \) is not decidable.

Solution Outline:

(a) We construct a Turing machine that recognizes \(INT_{TM} \) as in the construction of an enumerator for a Turing-recognizable language. On input \(\langle M_1, M_2 \rangle \), for \(i = 1, 2, \ldots \), for each string \(s \) of length at most \(i \), simulate each \(M_1 \) and \(M_2 \) on input \(s \) for \(i \) steps, and accept if both \(M_1 \) and \(M_2 \) accept \(s \).

(b) We shall present a mapping reduction from \(A_{TM} \) to \(INT_{TM} \), and since \(A_{TM} \) is undecidable, it would follow that \(INT_{TM} \) is undecidable. The reduction is as follows: on input \(\langle M, w \rangle \), first construct a machine \(M_w \) that on input \(x \), check if \(x = \langle M \rangle \). If so, it simulates \(M \) on \(w \) and otherwise, reject. In addition, construct a machine \(M_{all} \) that accepts all inputs. Output \(\langle M_w, M_{all} \rangle \). It is easy to see that \(M \) accepts \(w \) iff \(\langle M_w, M_{all} \rangle \in INT_{TM} \).

4. Let \(S = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \{ \langle M \rangle \} \} \). Show that neither \(S \) nor \(\overline{S} \) is Turing-recognizable.

Solution Outline: For this problem, we assume that a TM can recognize its own code\(^1\). We then show that \(A_{TM} \leq_m S \) and \(A_{TM} \leq_m \overline{S} \), which also imply \(\overline{A_{TM}} \leq_m \overline{S} \) and \(\overline{A_{TM}} \leq_m S \) respectively.

We first give the reduction from \(A_{TM} \) to \(S \). Given an instance \(\langle M, w \rangle \) of \(A_{TM} \), we construct a machine \(M' \) which given an input \(x \), rejects if \(x \neq \langle M' \rangle \) and simulates \(M \) on \(w \) if \(x = \langle M' \rangle \). Thus, \(L(M') = \{ \langle M' \rangle \} \) if \(M \) accepts \(w \) and \(\emptyset \) otherwise. Similarly, for the reduction from \(A_{TM} \) to \(\overline{S} \), we make \(M' \) accept if \(x = \langle M' \rangle \) and simulate \(M \) on \(x \) otherwise. In this case, it gives \(L(M') = \Sigma^* \) if \(M \) accepts \(w \) and \(\{ \langle M' \rangle \} \) otherwise.

\(^1\)This assumption will be justified later in the class - apologies for using this here.