Practice Midterm 1

1. State whether each of the following statements is true. In addition, give a short proof (2-3 lines are sufficient) if the statement is true, and give a counterexample otherwise.

 (a) If \(L_1, L_2, \ldots, L_{172} \) are all regular languages, then the language \(\bigcap_{i=1}^{172} L_i \) is regular.

 (b) If \(L_1, L_2, L_3, \ldots \) is an infinite sequence of regular languages, then the language \(\bigcap_{i=1}^{\infty} L_i \) is regular.

2. Let
 \[
 L = \{((D), w) \mid D \text{ is a DFA over the binary alphabet } \{0, 1\} \text{ that accepts } w\}
 \]
 (Assume that the encoding of DFAs also uses the binary alphabet.)

 (a) Show that \(L \) is not regular.

 (b) Show that \(L \) is decidable.

3. Consider the language
 \[
 INT_\text{TM} = \{\langle M_1, M_2 \rangle : L(M_1) \cap L(M_2) \neq \emptyset\}.
 \]
 (Thus, \(INT_\text{TM} \) is the language associated with the problem of deciding whether, for two given Turing machines \(M_1 \) and \(M_2 \), there is some string that is accepted by both machines.)

 (a) Show that \(INT_\text{TM} \) is Turing recognizable.

 (b) Show that \(INT_\text{TM} \) is not decidable.

4. Let \(S = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \{\langle M \rangle\}\}. \) Show that neither \(S \) nor \(\overline{S} \) is Turing-recognizable.