1. Simpleton machines: DFAs
 Design DFAs to recognize the following languages:
 (a) \(\{ w \mid w \text{ is any string not in } a^*b^* \} \) with \(\Sigma = \{a, b\} \).
 (b) \(\{ w \mid w \text{ has length at least 3 and its third symbol is 0} \} \) with \(\Sigma = \{0, 1\} \).
 (c) \(\{ w \mid w \text{ contains an even number of } a\text{'s and an odd number of } b\text{'s and does not contain the substring } ab \} \), \(\Sigma = \{a, b\} \).
 (d) \(B_n = \{ a^k \mid n \text{ divides } k \} \) for \(\Sigma = \{a\} \).

2. Getting Moody: NFAs
 Design NFAs to recognize the following languages:
 (a) The set of all binary strings (of length at least 10) such that at least one of the last 10 characters is a 1.
 (b) The set of all decimal numbers such that the final digit has not appeared before.

3. Once a regular language, always a regular language
 In the lecture you saw certain operations like union, intersection, star etc., which when applied to a regular language (or two languages), still give a regular language. Here we define some more operations on a single language. Prove that if \(A \) is a regular language, then \(Op(A) \) is also a regular language, for each of the operations defined below.
 (a) Complement: \(A^c = \{ w \in \Sigma^* \mid w \notin A \} \).
 (b) NOPREFIX: \(NOPREFIX(A) = \{ w \in A \mid \text{No proper prefix of } w \text{ is in } A \} \).
 (c) DROP-OUT: \(DROP - OUT(A) = \{ xz \mid x, z \in \Sigma^* \text{ and } \exists y \in \Sigma \text{ such that } xyz \in A \} \).

4. Laconic NFAs
 Show that every NFA can be converted to another NFA which accepts exactly the same language, but has just one accepting state.