Solutions of homework 9

1. Show that NL is closed under star.

Solution Outline: (25 points)

Consider any language $L \in NL$ and the corresponding nondeterministic log-space machine M that decides L. Now, consider the following nondeterministic log-space machine that decides L^*: on input $w = w_1 \ldots w_n$ of length n, set $i = 1$ and nondeterministically choose $j \in \{1, 2, \ldots, n\}$. If $j < i$, reject. Write both i and j on the work tape. Simulate M on $w_i \ldots w_j$ (while making nondeterministic guesses for the simulation). If $j < n$, replace i on the work tape with $j + 1$ and repeat with a new value of j, etc. Accept if there are nondeterministic choices for the values of j and for the nondeterministic choices of M such that each invocation of M accepts.

2. Sipser problem 8.8. Prove that the Acceptance problem for NFA is NL-complete. In addition, prove that the Acceptance problem for DFA is in L.

Solution Outline: (30 points)

To see that $A_{DFA} \in L$, observe that in the simulation of the DFA on the input, we only have to store the current state of the DFA on the work tape. To see that $A_{NFA} \in NL$, we still merely simulate the NFA on the input, having only to store the current state of the NFA on the work tape, and using the nondeterminism of the log-space machine to make nondeterministic choices for the NFA.

To prove that A_{NFA} is NL-complete, it suffices to prove $PATH \leq_L A_{NFA}$. Given an instance (G, s, t) for $PATH$, the reduction produces the instance (N, ε) for A_{NFA}, where N is an NFA defined as follows: start space are the vertices of G, start state is s, accept state is $\{t\}$ and alphabet is $\{0\}$. For each directed edge (u, v) in G, there is an ε-transition from u to v in N. It is easy to see that this reduction can be computed using no more than a logarithmic amount of space.

(7 points for $A_{DFA} \in L$, 8 points for $A_{NFA} \in NL$, 15 points for A_{NFA} being NL-hard.)

3. (a) Show that MAX-CLIQUE \in PSPACE.

(b) Explain why the following argument fails to show that MAX-CLIQUE \in coNP: To show that $(G, k) \notin$ MAX-CLIQUE, it suffices to demonstrate the existence of a larger clique in G of size greater than k, so the NP algorithm for MAX-CLIQUE just guesses the larger clique.

Solution Outline: (15,5 points)

(a) In polynomial space, we can enumerate over all subsets of vertices of the graph and check whether it forms a clique. This allows us to figure out the size of the largest clique.

(b) The clause “it suffices to demonstrate the existence of a larger clique in G of size greater than k” is incorrect. It could be that $(G, k) \notin$ MAX-CLIQUE because the largest clique in G has size $k - 1$, say.
4. **Sipser problem 8.18 (DFACHAIN ∈ PSPACE).**

Solution Outline: (25 points)

It suffices to show that $DFACHAIN \in \text{NPSPACE}$. The idea is as follows: given (M, s, t), reject if $|s| \neq |t|$. Otherwise, consider a graph G of exponential size whose vertices are indexed by strings in $\Sigma^{|s|}$, and there is a directed edge from w_1 to w_2 iff w_1 and w_2 differ in exactly one character, and $w_1, w_2 \in L(M)$. Then, $(M, s, t) \in DFACHAIN$ iff there is a path from s to t in G. This we can check in NPSPACE by guessing the path (akin to the NL algorithm for $PATH$), and at each step, storing only the name of current vertex (which is a string in $\Sigma^{|s|}$). To guess the path, at vertex w_1, we will nondeterministic select a new vertex w_2 that differs from w_1 in exactly one character, and verify that M accepts w_2. (We can ensure that the machine always halts by keeping a counter and incrementing it with each guess, and rejecting when the counter hits $|\Sigma^{|s|}$. This is because if there exists a chain from s to t, then there exists one of length at most $|\Sigma^{|s|}$ by removing loops.)