Solutions of homework 7

 Solution Outline: (25 points)
 Here’s an algorithm for computing $K(x)$. On input x,
 1. Go through all binary strings s in lexicographic order, and for each such s, parse s as $\langle M, w \rangle$ for some TM M and input w. If s fails to parse, move to the next such s.
 2. Modify the machine M so that all transitions to the reject state go to the accept state. Call the modified machine M'. Now, M halts on w if and only if M' accepts w.
 3. Next, query A_{TM} on input $\langle M', w \rangle$. If A_{TM} accepts $\langle M', w \rangle$, simulate M on w (this will halt), and check whether M on input w halts with x on its tape. Output $|s|$.
 Since we are going through the strings in lexicographic order, we will output the length of the shortest description (and the lexicographically first one if there is a tie).

 Solution Outline: (25 points)
 Suppose on the contrary that the set C of incompressible strings contains an infinite Turing recognizable subset. Let E be an enumerator for that subset. Now, let M denote the Turing machine that on input n a positive integer in binary representation, outputs the first string printed by E that has length at least n. Then, for every positive integer n, $\langle M, n \rangle$ is a description of an incompressible string s_n of length at least n, and the description has length $O(1) + \log n$, so we have $n \leq K(s_n) \leq O(1) + \log n$, a contradiction for sufficiently large n.

 Solution Outline: (25 points)
 Fix $A \in P$. To see that $A^* \in P$, we simply use a dynamic programming approach. On input $y = y_1 \ldots y_n$, we build a table indicating for each $i = 1, 2, \ldots, n$, whether $y_1 \ldots y_i \in A^*$. For $i = 1$, it is straight-forward. For $i > 1$, $y_1 \ldots y_i \in A^*$ if $y_1 \ldots y_i \in A^*$, or for some $j, 1 \leq j \leq i - 1, y_1 \ldots y_j \in A^*$ and $y_{j+1} \ldots y_i \in A$; we can check this by enumerating over all possible j’s. When we reach $i = n$, we are done.

 Solution Outline: (25 points)
 Fix $L \in NP$. To see that $L^* \in NP$, simply non-deterministically select a partition of the input x into substrings (that requires just $|x| - 1$ guesses), and non-deterministically guess a witness (for the relation defined by L, which has sized bounded by $poly(|x|)$) for each of the substrings. Alternatively, consider the verifier V^* for L^* that on input $\langle x, \langle x_1, \ldots, x_t, w \rangle \rangle$, checks that $x = x_1x_2 \ldots x_t$ and that the verifier for L accepts (x, w). If both tests accept, V^* accepts; otherwise, reject.