Solutions of homework 5

Solution Outline: (20 points)

Here’s an algorithm for the language S: on input $<M>$, reject if $<M>$ is not a valid encoding of a DFA. Otherwise, write $L = L(M)$ for ease of notation. First, construct a DFA M^R for L^R by converting the NFA for L^R (from problem set 1) into a DFA. Next, construct a DFA A for $L \triangle L^R$ by running M and M^R in parallel and accepting iff exactly one of the two DFAs accepts.\(^1\) Now, using the decider for E_{DFA}, accept if $A \in E_{DFA}$ and reject otherwise.

To show correctness, observe that $A \in E_{DFA}$ iff for all $w \in \Sigma^*$, either $w \in L$ and $w \in L^R$, or $w \notin L$ and $w \notin L^R$. The latter is equivalent to M accepting w^R whenever it accepts w.

Solution Outline: (20 points)

We may formalize the problem as the following language: $B = \{<M, w> | M$ is a TM that on input w ever attempts to move its head left when its head is on the left-most tape cell.$\}$. To see that B is undecidable, assume on the contrary that there exists some TM R that decides B, and we use R to construct a TM S that decides A_{TM}:

$S = \text{“On input } <M, w>: \$

1. Construct TM M' on input w, copies w onto the tape one position right, and writes a special symbol \Box on the first position. Then, M' simulates M on input w starting from the second tape position, with two changes. First, if the head reads the symbol \Box, it moves right, and stays in the same state. Second, if M enters an accept state, M' enters a special state where the head just keeps moving to the left (past the left-most tape cell).

2. Run R on input $<M', w>$.

3. Accept if R accepts, and reject if R rejects.”

3. (a) Prove that E_{TM} is Turing-recognizable.

(b) Prove that A_{TM} is not mapping reducible to E_{TM}.

Solution Outline: (15,10 points)

(a) We construct a Turing machine that recognizes E_{TM} as in the construction of an enumerator for a Turing-recognizable language. On input $<M>$, for $i = 1, 2, \ldots$, simulate M on all strings of length at most i for i steps, and accept if M accepts any of these strings. Note that it follows from (a) and E_{TM} being undecidable that E_{TM} is not Turing-recognizable.

\(^1\)In particular, $Q_A = Q_M \times Q_{M^R}$, $\delta_A((q_1, q_2), \sigma) = (\delta_M(q_1, \sigma), \delta_{M^R}(q_2, \sigma))$ and $F_A = F_M \times F_{M^R} \cup F_{M^R} \times F_{M^R}$.
(b) Suppose on the contrary that A_{TM} is mapping reducible to E_{TM}. Then, the same reduction shows that $\overline{A_{TM}}$ is mapping reducible to $\overline{E_{TM}}$. Since $\overline{E_{TM}}$ is Turing-recognizable, this means that $\overline{A_{TM}}$ is also Turing-recognizable (using Theorem 5.2 in the text), a contradiction (to Corollary 4.17).

Alternatively, we could use Corollary 5.23 to derive a contradiction to (a).

4. For each of the following languages, give a proof that it is undecidable or describe an algorithm to decide it.

(a) $L_1 = \{ \langle M \rangle \mid M \text{ is a Turing machine that rejects all inputs of even length} \}$.
(b) $L_2 = \{ \langle M \rangle \mid M \text{ is a Turing machine that halts on an empty input} \}$.
(c) $L_3 = \{ \langle M \rangle \mid \text{there is some input } x \in \{0,1\}^* \text{ such that } M \text{ accepts } x \text{ in less than 100 steps} \}$.

Solution Outline: (10,10,15 points)

(a) L_1 is undecidable. To see this, assume on the contrary that there exists some TM R_1 that decides L_1, and we use R_1 to construct a TM S_1 that decides A_{TM}:

$S_1 =$ “On input $\langle M, w \rangle$:

1. Construct TM M_1 that on input x, accept if $|x|$ is odd. If $|x|$ is even, it simulates M on input w. If M accepts w, M_1 enters the reject state. If M rejects w, M_1 enters the accept state. If M loops, M_1 also loops.
2. Run R_1 on input $\langle M_1 \rangle$.
3. Accept if R_1 accepts, and reject if R_1 rejects.”

Observe that if M accepts w, then M_1 is a Turing machine that rejects all inputs of even length. If M rejects or loops on input w, then M_1 is a Turing machine that for each input of even length, either loops or accepts.

(b) L_2 is undecidable. To see this, assume on the contrary that there exists some TM R_2 that decides L_2, and we use R_2 to construct a TM S_2 that decides A_{TM}:

$S_2 =$ “On input $\langle M, w \rangle$:

1. Construct TM M_2 that ignores its input and simulates M on input w and accept (and halt) if M does. If M rejects w, M_2 keeps moving right upon reading any input (thereby looping).
2. Run R_2 on input $\langle M_2 \rangle$.
3. Accept if R_2 accepts, and reject if R_2 rejects.”

Observe that if M accepts w, then M_2 is a Turing machine that halts on an empty input. If M rejects or loops on input w, then M_2 is a Turing machine that loops on an empty input.

(c) L_3 is decidable. First, observe that if $\langle M \rangle \in L_3$, then there exists some string x of length at most 100 such that M accepts x in less than 100 steps. This is because M cannot read beyond the 100th position of its input in less than 100 steps. Therefore, to check whether an input $\langle M \rangle$ is in L_3, it suffices to simulate M over all strings of length at most 100 for at most 99 steps, and accept if M accepts one of these strings, and reject otherwise.