1. Define the language

\[\text{ShortestPath} = \{(G, k, s, t) \mid \text{the shortest path from } s \text{ to } t \text{ in } G \text{ has length } k\} \]

(a) Prove that \(\text{ShortestPath} \) is in \(\text{NL} \). (15 points)

(b) Prove that \(\text{ShortestPath} \) is in \(\text{L} \) if and only if \(\text{L} = \text{NL} \). (15 points)

(a) Solution 1: We construct a \(\text{NL} \)-machine for \(\text{ShortestPath} \) as follows: on input \(\langle G, k, s, t \rangle \), first compute \(r_{k-1} \) (the number of vertices reachable from \(s \) in at most \(k - 1 \) steps). Then, on input \(\langle G = (V, E), k, s, t \rangle \) and \(r_{k-1} \) on the work tape,

\[
\begin{align*}
 d &\leftarrow 0 \\
 \text{flag} &\leftarrow \text{FALSE} \\
 \text{for all } w &\in V \text{ do} \\
 &\quad p \leftarrow s \\
 &\quad \text{for } i \leftarrow 1 \text{ to } k - 1 \text{ do} \\
 &\quad \quad \text{non-deterministically pick a neighbor } q \text{ of } p \\
 &\quad \quad \text{if } p = w \text{ then} \\
 &\quad \quad \quad d \leftarrow d + 1 \\
 &\quad \quad \quad \text{if } w = t \text{ reject} \\
 &\quad \quad \quad \text{if } w \text{ is a neighbor of } t \text{ then} \\
 &\quad \quad \quad \quad \text{flag} \leftarrow \text{TRUE} \\
 &\quad \quad \text{if } d < r_{k-1} \text{ reject} \\
 &\quad \text{if flag then accept else reject}
\end{align*}
\]

(b) Solution 2: Observe that \(\text{NL} \) is closed under intersection, and that \(\text{ShortestPath} = L_1 \cap L_2 \) where \(L_1 = \{ \langle G, k, s, t \rangle \mid \text{there is a path from } s \text{ to } t \text{ of length at most } k \} \) and \(L_1 = \{ \langle G, k, s, t \rangle \mid \text{there is no path from } s \text{ to } t \text{ of length at most } k - 1 \} \). On the other hand, it is clear that \(L_1 \in \text{NL} \) and that \(L_2 \in \text{coNL} = \text{NL} \).

(b) Solution 1: It suffices to prove that \(\text{PATH} \leq_L \text{ShortestPath} \), since \(\text{NL} = \text{coNL} \) and \(\text{PATH} \) is \(\text{coNL} \)-complete. Given an instance \(\langle G, s, t \rangle \) of \(\text{PATH} \), the log-space transducer for this reduction outputs \(\langle G', n + 1, s, t \rangle \) where \(n \) is the number of vertices in \(G \), and \(G' \) is constructed from \(G \) by adding \(n \) new vertices and a path from \(s \) to \(t \) of length \(n + 1 \) that goes through these new vertices.

Solution 2: If \(\text{ShortestPath} \in \text{L} \), then we can solve \(\text{PATH} \) in logarithmic space by invoking the logarithmic space machine for \(\text{ShortestPath} \) for \(k \) from 0 to the number of vertices in the graph.

2. Define the language

\[\#\text{SAT} = \{ \langle \varphi, k \rangle \mid \varphi \text{ is a 3CNF that has precisely } k \text{ satisfying assignments} \} \]

Prove that if \(\#\text{SAT} \in \text{NP} \) then \(\text{NP} = \text{coNP} \). (20 points)
First, it is clear that $\overline{3\text{SAT}} \in \text{coNP}$. In addition, observe that if $L \in \text{coNP}$, then $\overline{L} \in \text{NP}$ and thus $\overline{L} \leq_P 3\text{SAT}$ (since 3SAT is NP-complete). It follows that $L \leq_P \overline{3\text{SAT}}$, and therefore $\overline{3\text{SAT}}$ is coNP-complete. Now, if $\#\text{SAT} \in \text{NP}$, then $\overline{3\text{SAT}} \in \text{NP}$ via the reduction to $\#\text{SAT}$, namely $\varphi \mapsto (\varphi, 0)$. Moreover, since 3SAT is coNP-complete, we have coNP \subseteq NP. Complementation yields NP \subseteq coNP, and hence NP = coNP.

3. Prove that E_{DFA} is NL-complete. (25 POINTS)

Since NL = coNL, it suffices to show that E_{DFA} is coNL-complete, or equivalently, $\overline{E_{DFA}}$ is NL-complete.

To show that $\overline{E_{DFA}} \in \text{NL}$, we give a nondeterministic TM that decides $\overline{E_{DFA}}$ in logarithmic space that is similar to that one for PATH: on input a DFA D, the machine starts from D’s start state and nondeterministically guesses an alphabet at each step and follows a sequence of states in D until it hits an accept state, in which case it accepts, or until the number of states that it has visited exceeds the number of states in D, in which case it rejects. The machine only needs to keep track of the current state and a counter on its work tape, which takes up only logarithmic space.

To show that $\overline{E_{DFA}}$ is NL-hard, we prove that PATH $\leq_L \overline{E_{DFA}}$. Given an instance (G, s, t) of PATH, the log-space transducer for this reduction constructs a DFA D as follows: the nodes of G are the states of D, s is the start state, t is the unique accept state, and $\{1, 2, \ldots, d\}$ is the alphabet, where d is the maximum out-degree of G (a common mistake is to assume that the out-degree of each node in G is 1 and use an alphabet of size 1). Finally, the transitions are given by the edges of G (each edge leaving a given node is labeled by a different alphabet character; if a state has fewer than d outgoing edges, on all remaining symbols, D loops back to the same state). Clearly, $L(D)$ is non-empty if there is a path from s to t in G. Moreover, this reduction can be computed using logarithmic space.

4. Define $EQ_{NFA} = \{(N_1, N_2) \mid N_1, N_2$ are NFAs and $L(N_1) = L(N_2)\}$. Prove that $EQ_{NFA} \in \text{PSPACE}$. (25 POINTS)

First, we show that if N_1, N_2 are NFAs each with at most n states where $L(N_1) \neq L(N_2)$, then there exists a string s of length at most 2^{2n} in $L(N_1) \triangle L(N_2)$. This is because we can construct DFAs with at most 2^n states for the languages $L(N_1)$ and $L(N_2)$ and thus a DFA with at most 2^n states for the language $L(N_1) \triangle L(N_2)$. In particular, if the language $L(N_1) \triangle L(N_2)$ is non-empty, then it contains a string s of length at most 2^{2n}

Now, we give a non-deterministic linear space machine M which decides $\overline{EQ_{NFA}}$. This implies $EQ_{NFA} \in \text{coNPSPACE} = \text{PSPACE}$. The machine incrementally guesses a string of length at most 2^{2n} that causes exactly one of N_1 and N_2 to accept. M works as follows: on input (N_1, N_2),

for $i \leftarrow 1$ to 2^{2n} do

- Nondeterministically guess an input symbol.
- Update the set of states each NFA could be in.
- Accept if one of N_1, N_2 accepts and the other does not accept.
- Reject.

Note that M uses only linear space to store i, and the set of states each NFA N_1, N_2 could be in.