Solutions of homework 1

1. Prove that the following languages are regular, either by exhibiting a regular expression representing the language, or a DFA/NFA that recognizes the language:

(a) the set of all words in the Oxford English dictionary, for $\Sigma = \{a, b, \ldots, z\}$
(b) all strings that do not contain the substring aba, for $\Sigma = \{a, b\}$ (for instance, aabaa contains the substring aba, whereas abba does not)
(c) all strings that do not contain 3 consecutive occurrences of the same letter, for $\Sigma = \{a, b\}$

Solution Outline: (5, 10, 10 points each)

(a) There are only finitely many such words. Either write down a regular expression that is the union of each of these words, or a NFA that non-deterministically (via ϵ-transitions) accepts each of these words.
(b) Take $Q = \{q_0, qa, qab, qaba\}$, with q_0 the start state, and $F = \{q_0, qa, qab\}$. $\delta(q_0, a) = qa$, $\delta(q_0, b) = qab$, $\delta(qa, a) = qaba$, $\delta(qaba, b) = qaba$, $\delta(qaba, b) = q_0$, $\delta(qa, a) = qa$, $\delta(qab, b) = q_0$.
(c) Take $Q = \{q_0, qa, qaa, qaaa, qb, qbb, qbbb\}$, with q_0 the start state, and $F = \{q_0, qa, qaa, qb, qbb\}$. We have $\delta(q_0, a) = qa$, $\delta(q_0, a) = qaa$, $\delta(qaa, a) = qaaa$, and similarly, $\delta(q_0, b) = qb$, $\delta(qb, b) = qbb$, $\delta(qbb, b) = qbbb$. Add a b-transition from each of $qa, qaa, qaaa$ to q_0, and an a-transition from each of $qb, qbb, qbbb$ to q_0. Finally, $\delta(qaaa, a) = qaaa$, $\delta(qaaa, b) = qaaa$ and $\delta(qbbb, a) = qbbb$, $\delta(qbbb, b) = qbbb$.

2. (Sipser, problem 1.24) For any strong $w = w_1 w_2 \cdots w_n$, the reverse of w, written as w^R is the string w in reverse order, $w_n w_{n-1} \cdots w_2 w_1$. For any language A, let $A^R = \{w^R \mid w \in A\}$. Show that if A is regular, so is A^R.

Solution Outline: (20 points)

One solution is recursively (or inductively) define a reversing operation on regular expressions, and apply that operation on the regular expression for A. In particular, given a regular expression R, reverse(R) is:

- a for some $a \in \Sigma$
- ϵ if $R = \epsilon$
- \emptyset if $R = \emptyset$
- reverse($R_1 \cup R_2$), if $R = R_1 \cup R_2$
- reverse($R_2 \circ R_1$) if $R = R_1 \circ R_2$, or
- $\text{reverse}(R_1)^*$, if $R = (R_1^*)$.
Another solution is to start with a DFA M for A, and build a NFA M' for A^R as follows: reverse all the arrows of M, and designate the start state for M as the only accept state q'_{acc} for M'. Add a new start state q'_0 for M', and from q'_0, add ϵ-transitions to each state of M' corresponding to accept states of M.

It is easy to verify that for any $w \in \Sigma^*$, there is a path following w from the state start to an accept state in M iff there is a path following w^R from q'_0 to q'_{acc} in M'. It follows that $w \in A$ iff $w^R \in A^R$.

(7 points for saying reversing the arrows; 3 points for explaining the new accept state, and 5 points for explaining the new start state and the ϵ-transitions. 5 points for explaining, or at least making the final observation about the paths/connectivity.)

3. For any language A with alphabet Σ, let

$$A^{sub} = \{ w \in \Sigma^* \mid w \text{ is a substring of } x, \text{ for some } x \in A \}$$

Show that if A is regular, so is A^{sub}.

Solution Outline: (20 points)

Again, we start with a DFA M for A, and build a NFA M' for A^{sub}. Copy the states and transitions of M to M'. The accept states of M' are those corresponding to every state in M that is connected to an accept state in M (via a directed path ending at an accept state). In addition, we add a new start state q'_0 for M', and add ϵ-transitions from q'_0 to every other state in M' corresponding to a state in M that is reachable from the start state q_0 of M (via a directed path starting at q_0). Also designate q'_0 as an accept state.

It is easy to verify that for any $w \in \Sigma^*$, M' accepts w iff there exists $u, v \in \Sigma^*$ such that M accepts uwv. For the “\Rightarrow” statement, the existence of u is guaranteed by the “reachable from start state q_0” condition, and the existence of v is guaranteed by the “connected to an accept state” condition.

(10 points for getting the accept states right, and 10 points for getting the start state and the ϵ-transitions right).

4. Let k be a positive integer. Let $\Sigma = \{0, 1\}$, and L be the language consisting of all strings over $\{0, 1\}$ containing a 1 in the kth position from the end (in particular, all strings of length less than k are not in L).

(a) Construct a DFA with exactly 2^k states that recognizes L.

(b) Construct a NFA with exactly $k + 1$ states that recognizes L.

Solution Outline: (20, 15 points)

(a) The idea is that we just need to keep track of the k last input symbols that we’ve read, and designate a state for each of the 2^k possibilities.

1. The condition “reachable from the start state q_0” is essential. 2 points are taken off otherwise.
2. This is necessary because M might have no accept state, and without doing this, M' would not accept ϵ.

More precisely, consider the DFA M with $Q = \{q_y \mid y \in \{0,1\}^k\}$, $q_0 = q_0^k$, and $F = \{q_y \mid y \text{ starts with a 1}\}$. The transition function is given by:

$$\delta(q_{y'}, b) = q_{y'ob}, \quad \forall y' \in \{0,1\}^{k-1}, \forall b, b' \in \{0,1\}$$

For the proof of correctness, it is easy to see by induction on the length of $x \in \{0,1\}^*$ that M on input x ends up in state q_y, where y is the last k symbols of $0^k \circ x$.

(10 points for specifying the right DFA, 10 points for the idea of keeping track of the last k symbols and some explanation/proof that the DFA works.)

It is also in fact possible to derive a DFA with exactly 2^k states from the NFA for (b) using the transformation provided in the text. A careful accounting of the number of states is needed: the states in the DFA correspond to subsets of states in the NFA. In this specific case, we can eliminate all subsets except those containing q_0, which gives us 2^k instead of 2^{k+1} states in all.

(b) This is a straight-forward generalization of Example 1.14 in Sipser. Consider $Q = \{q_0, q_1, \ldots, q_k\}$. The start state is q_0 and the only accept state is q_k. Transition from q_0 to q_0 on input $0,1$; from q_0 to q_1 on input 1, and from q_i to q_{i+1} on input $0,1$, for $i = 1,2,\ldots,k.$