Midterm 2

Problem 1 (33 points)

Let \(C = \{ \langle M_1, M_2 \rangle \mid L(M_1) = \overline{L(M_2)} \} \), that is \(\langle M_1, M_2 \rangle \in C \) iff for all \(x \in \{0,1\}^* \), exactly one of the two machines accepts \(x \). Show that \(C \) is not Turing-recognizable. You can use any statement proved in class or in the homeworks about any particular language being not Turing recognizable. Also, we will give partial credit for proving that \(C \) is just not decidable.

Solution. We give a reduction from the complement of the Acceptance problem, that we know to be not recognizable.

Given a Turing machine \(M \) and an input \(w \), we define the following two Turing machines \(M_{1,w} \) and \(M_2 \):

- On input \(x \), \(M_{1,w} \) compares \(x \) with \(w \). If \(x \neq w \) then \(M_{1,w} \) rejects, otherwise it simulates \(M \) on input \(w \).
- On input \(x \), \(M_2 \) always accepts.

Now, we have that \(\langle M_{1,w}, M_2 \rangle \in C \) if and only if \(M_{1,w} \) accepts no string, if and only if \(M \) does not accept \(w \).

This is a mapping reduction from the complement of the Acceptance problem to \(C \), and since the Acceptance problem is not Turing-recognizable it follows that \(C \) is not Turing-recognizable.

Remarks.

1. Several students first showed that \(C \) is undecidable by giving a reduction from \(A_{TM} \), and then tried to show that \(\overline{C} \) is Turing-recognizable. The latter is not true. Note that \(A_{TM} \leq_M C \) implies \(\overline{A_{TM}} \leq_M \overline{C} \), and since \(A_{TM} \) is not Turing-recognizable, \(\overline{C} \) is also not Turing-recognizable.

2. Several students gave correct reductions from \(E_{TM} \) to \(C \). We grant full credit if it is also noted that \(E_{TM} \) is not Turing-recognizable (this is because \(E_{TM} \) is not decidable, and \(\overline{E_{TM}} \) is Turing-recognizable).

3. Note that if we take a Turing machine \(M \) and switch its accept and reject states to obtain a new machine \(M' \), it is not necessarily the case that \(L(M') = \overline{L(M)} \). This is because if \(M \) loops on some input \(w \), \(M' \) would also loop on \(w \), and both \(M \) and \(M' \) would reject \(w \).

Problem 2 (33 points)

Let \(L \) be a decidable language such that for all positive integers \(n \), \(|L \cap \{0,1\}^n| \leq 2^{n/2} \). Prove that \(L \) contains finitely many incompressible strings, that is, prove that the set \(\{ x : x \in L \text{ and } K(x) \geq |x| \} \) is finite, where \(|x| \) denotes the length of \(x \).
Solution. Let M be the Turing machine that on input the integers (n, i) finds the i-th string of $L \cap \{0, 1\}^n$ in lexicographic order. Since L is decidable, M is well defined.

Now, every string $x \in L \cap \{0, 1\}^n$ is described by the triple (M, n, i), where $1 \leq i \leq 2^n/2$, so that the Kolmogorov complexity of such an x is at most $n/2 + 2\log n + c$, where c is the constant length of the encoding of M.

If L contained infinitely many incompressible strings, there would be infinitely many n such that for some string x of length n we have $n \leq K(x) \leq n/2 + 2\log n + c$, which is clearly impossible because for sufficiently large n we have $n \geq n/2 + 2\log n + c$.

Remarks. A slightly different variant of the solution is as follows: take the machine M' that on input the integer i, finds the i-th string of L in lexicographic order. Then, every string of $L \cap \{0, 1\}^n$ has a description of length $n/2 + O(1)$, because $\sum_{j=0}^{n} 2^{j/2} = \theta(2^{n/2})$.

Problem 3 (33 points)

Recall the SUBSET-SUM problem concerning integer arithmetic. In that problem, we have a collection of numbers x_1, \ldots, x_k and a target number t, and we want to determine whether the collection contains a subcollection that adds up to t.

Now, consider the language:

$$1/3\text{-PARTITION} = \{(x_1, \ldots, x_n) \mid \text{for some } S \subseteq \{1, \ldots, n\}, \text{ we have } \sum_{i \in S} x_i = \frac{1}{3} \sum_{j=1}^{n} x_j\}$$

Prove that $1/3\text{-PARTITION}$ is NP-complete.

Solution. We give a reduction from PARTITION. Let $I = (a_1, \ldots, a_n)$ be an instance of PARTITION, and let A be the sum of the elements. We define an instance of $1/3\text{-PARTITION}$ $I' = (a_1, \ldots, a_n, a_{n+1}, a_{n+2})$ where $a_{n+1} = 1.5 \cdot A$ and $a_{n+2} = 3.5 \cdot A$. Note that the sum of the integers in I' is $6A$, and so I' is a YES-instance of $1/3\text{-PARTITION}$ if and only if there is a subset of integers that sum to $2A$.

If I is a YES-instance of PARTITION, then $\sum_{i \in S} a_i = A/2$ for some set $S \subseteq \{1, \ldots, n\}$. Define $S' = S \cup \{a_{n+1}\}$, then we have $\sum_{i \in S'} a_i = 2A$ and so I' is a YES-instance of $1/3\text{-PARTITION}$.

If I' is a YES-instance of $1/3\text{-PARTITION}$, then for some set $S' \subseteq \{1, \ldots, n + 2\}$ we have $\sum_{i \in S'} a_i = 2A$. It is clear $a_{n+2} \notin S'$, because otherwise the sum would be bigger than $2A$, and it is also clear that $a_{n+1} \in S'$, because otherwise the sum would be at most A. Define $S = S' - \{a_{n+1}\}$. Then we have $\sum_{i \in S} a_i = 2A - a_{n+1} = A/2$, which proves that I is a YES-instance of PARTITION.

We have proved that PARTITION $\leq_p 1/3\text{-PARTITION}$, and so $1/3\text{-PARTITION}$ is NP-hard.

It follows from the definition that $1/3\text{-PARTITION}$ is in NP. We can define a verifier V that on input $I = (a_1, \ldots, a_n)$ and $S \subseteq \{1, \ldots, n\}$ checks that $\sum_{i \in S} a_i = (1/3) \sum_{i=1}^{n} a_i$, and this computation can clearly be carried out in polynomial time.

$1/3\text{-PARTITION}$ is in NP and it is NP-hard, therefore it is NP-complete.

Remarks. Here is an alternative reduction from SUBSET-SUM: on input $\langle(x_1, \ldots, x_k), t\rangle$, output $(x_1, \ldots, x_k, A, A+3t)$ where $A = x_1 + \cdots + x_k$. On the other hand, the reduction from SUBSET-SUM that on input $\langle(x_1, \ldots, x_k), t\rangle$ outputs $(x_1, \ldots, x_k, 3t - A)$ fails because it can map a NO-instance of SUBSET-SUM to a YES-instance of $1/3\text{-PARTITION}$ (take for instance $\langle(2, 2, 2), 3\rangle$).