Midterm 1

1. State whether each of the following statements is true. In addition, give a short proof (2-3 lines are sufficient) if the statement is true, and give a counterexample otherwise.

 (a) If \(L_1, L_2, \ldots, L_{172} \) are all regular languages, then the language \(\bigcap_{i=1}^{172} L_i \) is regular.

 (b) If \(L_1, L_2, L_3, \ldots \) are an infinite sequence of regular languages, then the language \(\bigcap_{i=1}^{\infty} L_i \) is regular.

Solution Outline:

(a) True. We know that the intersection of any 2 regular languages is regular. It follows by induction that the intersection of any finite collection of regular languages is regular.

(b) False. Let \(w_1, w_2, \ldots \) be the strings in the complement of some irregular language \(L \) over \(\{0, 1\} \), and let \(L_i = \{0, 1\}^* \setminus \{w_i\} \). By de Morgan’s law, \(\bigcap_{i=1}^{\infty} L_i = L \), which is not regular.

Alternatively, we could take \(L_i = \{0^k1^k \mid 1 \leq k \leq i\} \cup \{0^{k+1}\Sigma^*\} \) where \(\Sigma = \{0, 1\} \).

Then, \(\bigcap_{i=1}^{\infty} L_i = \{0^*1^n \mid n \geq 1\} \) is not regular.

Remark: Some students suggested taking \(L_i \) to be the language described by the regular expression \(0^* \Sigma^* \), where \(\Sigma = \{0, 1\} \). This is not a valid counter-example, because \(\bigcap_{i=1}^{\infty} L_i = \emptyset \), which is regular. In particular, if we take any \(w \in \{0, 1\}^*, w \notin L_{|w|+1} \).

2. Fix \(n_1, n_2 \) to be positive integers. Show that there exists a constant \(N = f(n_1, n_2) \) that only depends on \(n_1 \) and \(n_2 \) with the following property: given any two DFAs \(M_1 \) and \(M_2 \) over \(\Sigma \) having \(n_1 \) and \(n_2 \) states respectively and such that \(L(M_1) \neq L(M_2) \), there is some string \(w \) in \(L(M_1) \triangle L(M_2) \) of length at most \(N \).

Solution Outline:

We prove the statement for \(N = f(n_1, n_2) = n_1n_2 \). Consider the DFA \(D \) with \(N \) states that run \(M_1 \) and \(M_2 \) in parallel, and accept if exactly one of \(M_1 \) and \(M_2 \) accepts the input.\(^1\) Now, if \(L(M_1) \neq L(M_2) \), then \(L(D) \neq \emptyset \). By applying the pumping lemma, \(L(D) \) must accept some \(w \) string of length at most \(N \). Then, \(w \in L(M_1) \triangle L(M_2) \).

It is also possible to prove the statement with \(f(n_1, n_2) = n_1 + n_2 \). (How?)

3. Let

\[L = \{(\langle D \rangle, w) \mid D \text{ is a DFA over the binary alphabet } \{0, 1\} \text{ that accepts } w\} \]

(Assume that the encoding of DFAs also uses the binary alphabet.)

(a) Show that \(L \) is not regular.

(b) Show that \(L \) is decidable.

\(^1\)In particular, we can take \(Q_D = Q_1 \times Q_2, \delta_D((q_1, q_2), \sigma) = (\delta(q_1, \sigma), \delta(q_2, \sigma)) \) and \(F_D = F_1 \times F_2 \cup F_1 \times F_2 \).
Solution Outline:

(a) **Method I:** Let $D_i, i \geq 1$ be the DFA that recognizes the language $\{1^i\}$. Then, $\{(\langle D_i \rangle, \varepsilon)\}_{i \geq 1}$ constitutes an infinite collection of distinguishable strings.

Method II: Suppose on the contrary that L is regular. Then, let M be a DFA that recognizes L and k be the number of states in M. Let N be a DFA for some language $L(N)$ that requires a DFA with at least $k + 1$ states (such a DFA exists because there are infinitely many distinct regular languages). Let q be the state of M that M ends up in upon reading input $\langle N \rangle, \varepsilon$. Modify M to obtain a DFA M' whose start state is q. Then, it is easy to check that M' is a DFA for $L(N)$ with k states, a contradiction.

Method III: Assume that the encoding of a DFA D starts with a string of k_1 1’s, where k is the number of states in D, followed by a 0, and then some prefix-free encoding of binary representation of k, followed by two 0’s, followed by some appropriate encoding of D. Now, assume on the contrary that L is decidable, and let p be the pumping length. Let N be a DFA for some language $L(N)$ that requires a DFA with at least $p + 1$ states and w be some string in N. Then, $\langle N, w \rangle \in L$. If we applying the pumping lemma $\langle N, w \rangle$ and either pump up or pump down, we obtain an input that does not have a valid encoding of a DFA, a contradiction.

(b) We can construct a decider for L as follows. First, reject if the input is not correctly encoded; otherwise, parse the input as $\langle D, w \rangle$ where D is a DFA and $w \in \{0, 1\}^*$. Then, simulate D on input w, and accept if D accepts w, and reject otherwise.

4. Show that any infinite, Turing-recognizable (recursively enumerable) language contains an infinite, decidable language.

Solution Outline:

Consider any infinite, Turing-recognizable language L and its enumerator E. Consider the following enumerator E':

i. Run E and output the first string w that E outputs. Set $\ell = |w|$.

ii. Whenever E outputs a string w' of length longer than ℓ, output w' and set $\ell = |w'|$. Such a w' always exists because L is infinite.

iii. Return to ii.

E' outputs an infinite subset of L in lexicographical order, which constitutes an infinite, decidable subset of L.

2