Lecture 4

In which we explore the Stochastic Block Model.

1 The $G_{n,p,q}$ problem

The Stochastic Block Model is a generic model for graphs generated by some parameters. The simplest model and one we will consider today is the $G_{n,p,q}$ problem.

Definition 1 ($G_{n,p,q}$ graph distribution) The $G_{n,p,q}$ distribution is a distribution on graphs of n vertices where V is partitioned into two subsets of equal size: $V = V_1 \sqcup V_2$. Then for each $\{i,j\}$ pair of vertices in the same subset, $\Pr((i,j) \in E) = p$ and otherwise $\Pr((i,j) \in E) = q$.

We will only consider the regime under which $p > q$. If we want to find the partition $V = V_1 \sqcup V_2$, it is intuitive to look at the problem of finding the minimum balanced cut. The cut (V_1, V_2) has expected size $qn^2/4$ and any other cut will have greater expected size.

Our intuition should be that as $p \to q$, the problem only gets harder. And for fixed ratio p/q, as $p, q \to 1$, the problem only gets easier. This can be stated rigorously as follows: If we can solve the problem for p, q then we can also solve it for cp, cq where $c > 1$, by keeping only $1/c$ edges and reducing to the case we can solve.

Recall that for the k-planted clique problem, we found the eigenvector x corresponding to the largest eigenvalue of $A - \frac{1}{2}J$. We then defined S as the vertices i with the k largest values of $|x_i|$ and cleaned up S a little to get our guess for the planted clique.

In the Stochastic Block Model we are going to follow a similar approach, but we are instead going to find the largest eigenvalue of $A - \left(\frac{p+q}{2}\right)J$. Note this is intuitive as the average degree of the graph is $p(n/2 - 1) + q(n/2) \approx \frac{n}{2}(p + q)$. The idea is simple: Solve x the largest eigenvector corresponding to the largest eigenvalue and define

$$V_1 = \{i : x_i > 0\}, \quad V_2 = \{i : x_i \leq 0\}$$

As we proceed to the analysis of this procedure, we fix V_1, V_2. Prior to fixing, the adjacency matrix A was $\left(\frac{p+q}{2}\right)J$.\footnote{The diagonal should be zeroes, but this is close enough.} Upon fixing V_1, V_2, the average adjacency matrix R looks different.
For ease of notation, if we write a bold constant c for a matrix, we mean the matrix cJ. It will be clear from context.

$$R = \begin{pmatrix} p & q \\ q & p \end{pmatrix}$$ \hspace{1cm} (2)

Here we have broken up R into blocks according to the partition V_1, V_2.

Theorem 2 If $p, q > \log n/n$ then with high probability, $\|A - R\| < O(\sqrt{n(p + q)})$.

Proof: Define the graph G_1 as the union of a $G_{n/2, p}$ graph on V_1 and $G_{n/2, p}$ graph on V_2. Define the graph G_2 as a $G_{n,q}$ graph. Note that the graph G is distributed according to picking a G_1 and G_2 graph and adding the partition crossing edges of G_2 to G_1. Let A_1 and A_2 be the respective adjacency matrices and define the follow submatrices:

$$A_1 = \begin{pmatrix} A_1' & A_1'' \\ A_1'' & A_1''' \end{pmatrix}, \quad A_2 = \begin{pmatrix} A_2' & A_2'' \\ A_2'' & A_2''' \end{pmatrix}. \hspace{1cm} (3)$$

Then the adjacency matrix A is defined by

$$A = A_1 + A_2 - \begin{pmatrix} A_2' & A_2'' \\ A_2'' & A_2''' \end{pmatrix} \hspace{1cm} (4)$$

Similarly, we can generate a decomposition for R:

$$R = \begin{pmatrix} p & q \\ q & p \end{pmatrix} + \begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix} - \begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix} \hspace{1cm} (5)$$

Then using triangle inequality we can bound $\|A - R\|$ by bounding the difference in the various terms.

$$\|A - R\| \leq \left\| A_1 - \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix} \right\| + \left\| A_2 - \begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix} \right\| + \left\| \begin{pmatrix} A_2' & A_2'' \\ A_2'' & A_2''' \end{pmatrix} - \begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix} \right\|$$

$$\leq O(\sqrt{np}) + O(\sqrt{nq}) + O(\sqrt{nq}) \hspace{1cm} (6)$$

The last line follows as the submatrices are adjacency matrices of $G_{n,p}$ graphs and we can apply the results we proved in that regime for $p, q > \log n/n$. \quad \square

But the difficulty is that we don’t know R as $R = R(V_1, V_2)$. If we knew R, then we would know the partition. What we can compute is $\|A - \left(\frac{p + q}{2} \right) J\|^2$. We can rewrite R as

$$R = \left(\frac{p + q}{2} \right) J + \frac{p - q}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \hspace{1cm} (7)$$

\[^2\]The rest of this proof actually doesn’t even rely on knowing p or q. We can estimate $p + q$ by calculating the average vertex degree.
Call the matrix on the right \(C \). It is clearly rank-one as it has decomposition \(n \chi \chi^T \) where \(\chi = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \). Therefore

\[
\left\| \left(A - \left(\frac{p+q}{2} \right) J \right) - \left(\frac{p-q}{2} \right) C \right\| = \| A - R \| \leq O \left(\sqrt{n(p+q)} \right).
\] (8)

Then \(A - \left(\frac{p+q}{2} \right) J \) is close (in operator norm) to the rank 1 matrix \(\left(\frac{p-q}{2} \right) C \). Then their largest eigenvalues are close. But since \(\left(\frac{p-q}{2} \right) C \) has only one non-zero eigenvalue \(\chi \), finding the corresponding eigenvector to the largest eigenvalue of \(A - \left(\frac{p+q}{2} \right) J \) will be close to the ideal partition as \(C \) describes the ideal partition. This can be formalized with the Davis-Kahan Theorem.

Theorem 3 (Davis-Kahan) Given matrices \(M, M' \) with \(\| M - M' \| \leq \varepsilon \) where \(M \) has eigenvalues \(\lambda_1 \leq \ldots \leq \lambda_n \) and corresponding eigenvectors \(v_1, \ldots, v_n \) and \(M' \) has eigenvalues \(\lambda'_1 \leq \ldots \leq \lambda'_n \) and corresponding eigenvectors \(v'_1, \ldots, v'_n \), then

\[
\sin \left(\text{angle} \left(\text{span}(v_1), \text{span}(v'_1) \right) \right) \leq \frac{\varepsilon}{|\lambda'_1 - \lambda_2|} \leq \frac{\varepsilon}{|\lambda_1 - \lambda_2 - \varepsilon|}.
\] (9)

Equivalently,

\[
\min \left\{ \| v_1 \pm v'_1 \| \right\} \leq \frac{\sqrt{2\varepsilon}}{\lambda_1 - \lambda_2 - \varepsilon}.
\] (10)

The Davis Kahan Theorem with \(M' = A - \left(\frac{p+q}{2} \right) J, M = \left(\frac{p-q}{2} \right) C \), and \(\varepsilon = O \left(\sqrt{n(p+q)} \right) \) states that

\[
\min \left\{ \| v' \pm \chi \| \right\} \leq O \left(\frac{\sqrt{a+b}}{a-b - O \left(\sqrt{a+b} \right)} \right)
\] (11)

where \(v' \), the eigenvector associated with the largest eigenvalue of \(A - \left(\frac{p+q}{2} \right) J \) and \(a = pm/2, b = qn/2 \), the expected degrees of the two parts of the graph. Choose between \(\pm v' \) for the one closer to \(\chi \). Then

\[
\| v' - \chi \|^2 \leq O \left(\left(\frac{\sqrt{a+b}}{a-b - O \left(\sqrt{a+b} \right)} \right)^2 \right).
\] (12)

Recall that \(\sum_i (v'_i - \chi_i)^2 = \| v' - \chi \|^2 \). If \(v'_i \) and \(\chi_i \) disagree in sign, then this contributes at least \(1/n \) to the value of \(\| v' - \chi \|^2 \). Equivalently, \(n \cdot \| v' - \chi \|^2 \) is at least the number of misclassified vertices. It is simple to see from here that if \(a-b \geq c\varepsilon \sqrt{a+b} \) then we can bound the number of misclassified vertices by \(\varepsilon n \). This completes the proof that the proposed algorithm does well in calculating the partition of the Stochastic Block Model.