CAPACITIVE DISCHARGES DRIVEN BY COMBINED DC/RF SOURCES

Emi Kawamura, M.A. Lieberman, and A.J. Lichtenberg
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

E.A. Hudson
Lam Research Corporation
Fremont, CA 94538

Download this talk:

http://www.eecs.berkeley.edu/~lieber
MOTIVATIONS FOR ADDING DC SOURCE

- “Tune” discharge particle and energy balance
 \(\Rightarrow T_e \downarrow, n_e \uparrow \), radial uniformity)
- “Tune” secondary electron bombardment of substrate
 (etch selectivities, charging damage)

OUTLINE

- Structure of DC/RF sheaths — theory
- Equal area diode discharges — theory and 1D PIC simulations
- Asymmetric diode discharges — theory and 1D PIC simulations
- Secondary electrons — timescales and energy deposition
- Triode discharges — theory and 2D PIC simulations
STRUCTURE OF A DC/RF SHEATH

- DC voltage \(\bar{V} = \bar{V}_0 + \bar{V}_1 \)
- RF voltage \(\tilde{V} = \tilde{V}_0 + \tilde{V}_1 \)

- New result for Child law for collisionless ions:

\[
\tilde{J}_i = \frac{4}{9} \varepsilon_0 \left(\frac{2e}{M} \right)^{1/2} \frac{1}{s^2} \left(\bar{V}^{1/2} - \frac{1}{3} \bar{V}_1^{1/2} \right) \left(\bar{V}^{1/2} + \frac{2}{3} \bar{V}_1^{1/2} \right)^2
\]

- New result for Child law for collisional ion sheath also obtained

LiebermanDublin07
EQUAL AREA DIODE DISCHARGE

- Comparison of theory with 1D particle-in-cell (PIC) simulations

(Symbols: PIC with argon pressure in mTorr; lines: theory; $\beta \propto \lambda_D/\lambda_i = \text{collisionality};
\gamma_i = \text{secondary emission coefficient})

- Excellent agreement of PIC with collisional Child law

LiebermanDublin07
DENSITY AND VOLTAGE AT CONSTANT \(P_{\text{rf}} \)

(60 mTorr, 6 cm gap, 4 MHz, 0.017 W/cm\(^2\), \(V_{\text{dc}} = 350 \text{ V} \))

![Graph showing density and voltage profiles](image)

<table>
<thead>
<tr>
<th>(\gamma_i)</th>
<th>(V_{\text{rf}}) (V)</th>
<th>(\overline{V}_b) (V)</th>
<th>(\epsilon_{\text{eff}}) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rf only</td>
<td>0</td>
<td>1064</td>
<td>436</td>
</tr>
<tr>
<td>Dc+rf</td>
<td>0</td>
<td>1277</td>
<td>398</td>
</tr>
<tr>
<td>Rf only</td>
<td>0.2</td>
<td>805</td>
<td>330</td>
</tr>
<tr>
<td>Dc+rf</td>
<td>0.2</td>
<td>980</td>
<td>283</td>
</tr>
</tbody>
</table>

(\(\overline{V}_b \) = plasma potential; \(\epsilon_{\text{eff}} \) = collisional energy loss/electron-ion pair)

- Plasma potential \(\overline{V}_b \) and sheath width \(s_b \) independent of \(V_{\text{dc}} \)
- Secondary electrons increase discharge efficiency
- \(V_{\text{dc}} \) reduces bulk plasma thickness
ASYMMETRIC DIODE RESULTS

- Excellent agreement between 1D (cylindrical) PIC and collisional CL theory

- Introduce rf voltage asymmetry ratio $\alpha_{ab} = \frac{\tilde{V}_{a1}}{\tilde{V}_{b}}$

![Diagram showing DC/RF sheath and RF sheath with notation V_{dc}, V_{rf}, V_{a0}, V_{a1}, V_{a2}, V_{b}, s_a, s_a0, s_a1, s_b, and α_{ab} values.](image)

- Numbers near each symbol: mTorr (α_{ab})

LiebermanDublin07
SECONDARY ELECTRON LOSS PROCESSES

• Surface losses to substrate and walls:
 — Transit time across gap \(\tau_{fr} = d/v_h \) at low pressures
 — Diffusion time \(\tau_{diff} = d^2/2D_h \) at higher pressures \((D_h = \lambda_h \bar{v}_h/3) \)
 — Trapping time \(\tau_{trap} = \delta/f \) (favorable configuration of rf voltages can trap secondaries for a fraction \(\delta \) of the rf period \(1/f \))

\[
\tau_{lh} = \left(\tau_{fr}^2 + \tau_{diff}^2 + \tau_{trap}^2 \right)^{1/2} = \nu_{lh}^{-1}
\]

• Volume losses: secondary electrons lose energy and join the thermal population

\[
\tau_{izh}^* = \frac{\mathcal{E}_h}{\nu_{izh} \mathcal{E}_{ch}}
\]

(\(\mathcal{E}_h, \nu_{izh} \) are secondary energy and ionization frequency; \(\mathcal{E}_{ch} \approx 20 \text{ V} \) is secondary collisional energy loss/e-i pair created)

• Total loss frequency is \(\nu_h = \nu_{lh} + \nu_{izh}^* \)

 If \(\nu_{izh}^* \gg \nu_{lh} \), secondary electrons efficiently produce e-i pairs
 If \(\nu_{lh} \gg \nu_{izh}^* \), secondary electrons efficiently bombard the substrate
Most interesting regions are where trapped and untrapped electrons behave differently.
TRIODE DC/RF DISCHARGE

- Substrate can have a dielectric layer which cannot draw dc current

A triode configuration is necessary

- A global model incorporating the collisional dc/rf sheath is used to determine the voltages, currents, and sheath widths
• Collisional theory results for triode

- Example (red solid line):
 DC electrode area = ground electrode area = $\frac{1}{2} \times$ RF electrode area
 For $V_{dc} \to 0$, equal area diode and $\tilde{V}_b/V_{rf} = 0.5$
 For $V_{dc} \to \infty$, asymmetric diode and $\tilde{V}_b/V_{rf} = 0.86$.

\[
\begin{align*}
\tilde{V}_b/V_{rf} & \approx 0.86 \\
V_{dc}/V_{rf} & \approx 0.5 \\
\end{align*}
\]
2D PIC SIMULATION BASE CASE

- $p = 30$ mTorr, $P_{\text{rf}} = 2.2$ W, $\gamma_i = 0.2$ at all surfaces
- Secondaries in “trapped deposition, untrapped diffusion” regime
UNIFORMITY IS MODIFIED BY V_{dc}

Plasma density (m^{-3})

- Thinner bulk plasma near midplane ($y = 0.06$ m) for DC/RF case

\Rightarrow center-low plasma density profile

Secondary density (m^{-3})

LiebermanDublin07
• Secondary electrons are ballistic and have high energies for DC/RF case
• Effects of V_{dc} on profile:
 Thinner bulk plasma \Rightarrow center-low profile
 Increased secondary ionization \Rightarrow center-high profile
CONCLUSIONS

• Collisionless and collisional DC/RF Child laws determined
• DC voltage can control the discharge asymmetry
• DC voltage increases secondary electron ionization
• DC voltage reduces bulk plasma thickness
• DC voltage promotes the formation of ballistic electrons
• DC voltage modifies the plasma density profile

Download this talk:

http://www.eecs.berkeley.edu/~lieber