NARROW GAP ELECTRONEGATIVE CAPACITIVE DISCHARGES AND STOCHASTIC HEATING

M.A. Lieberman, E. Kawamura, and A.J. Lichtenberg

Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Motivation: widely used for thin film etch and deposition

Download this talk:

http://www.eecs.berkeley.edu/~lieber
• Narrow gap oxygen discharges
 — PIC simulations
 — Equilibrium discharge model

• Stochastic (collisionless) heating
 — Narrow gap oxygen
 — Two-step density model with argon
 — Ohmic heating issues
 — Single-step with finite slope
- Oxygen at 10–100 mTorr, $V_{rf} = 500–2000$ V
- 1D plane-parallel geometry ($\sim 1–10$ cm gap length L)
- Usual model is stratified discharge with electronegative (EN) core and electropositive (EP) edge

- As L is decreased, the EP edge can disappear and new interesting phenomena are found
PIC SIMULATIONS AND EQUILIBRIUM MODELING
(Vary gap length L at p=50 mTorr, $V_{rf} = 500$ V)
L=4.5 cm (EP EDGE EXISTS)

(a) Particle Density (m$^{-3}$)

(b) Current Density (A/m2)

(c) Temperature (V)

(d) Electron Heating (W/m3)
$L = 2.5$ cm (NO EP EDGE)

(a) Particle Density (m$^{-3}$)

(b) Current Density (A/m2)

(c) Temperature (V)

(d) Electron Heating (W/m3)

LiebermanPSC13
EEDF’S AND DENSITY DETAILS

(a) EEDF (a.u.) for L = 4.5 cm

(b) EEDF (a.u.) for L = 2.5 cm

(EP edge: bi-Maxwellian)

No EP edge: Maxwellian

(a) Densities (m⁻³) for L = 4.5 cm

(b) Densities (m⁻³) for L = 2.5 cm

Sheath begins inside EN core

Sheath edge

Sheath begins at end of EP edge

n⁺ - n⁻

n⁺ - n⁻ = 0

n⁺ - n⁻ = nₑ

Sheath edge

LiebermanPSC13

University of California, Berkeley
TIME-VARYING DENSITY (L=2.5 cm, NO EP EDGE)

Electron density (m$^{-3}$) at T/8 intervals

- Oscillating electron cloud uncovers core
- Core
MODELING CONSIDERATIONS

- EP edge exists (larger gap lengths L)
 - Bi-Maxwellian EEDF
 - About half the ion flux generated in sheath/EP edge
 - Usual Child law rf sheath
 - Usual positive collisionless heating in sheath

- No EP edge (smaller gap lengths L)
 - Maxwellian EEDF
 - Over half the ion flux generated in sheath
 - Attachment in sheath is important
 - Unusual rf sheath containing negative ions
 - Negative collisionless heating in sheath, positive in core

- Models developed:
 - model with some inputs from PIC results
 - self-consistent model
MODEL WITH SOME INPUTS FROM PIC

- Rate coefficients and collisional energy losses using PIC EEDF
- Power deposition in core from PIC results
- Solid lines (2-region model with EP edge); Dashed lines (1-region model without EP edge); circles (PIC results)
- Reasonable agreement between model and PIC results (submitted to Physics of Plasmas, 2013)
STOCHASTIC (COLLISIONLESS) HEATING

(WORK IN PROGRESS)
PIC RESULTS FOR VARIOUS GAPS L (50 mT, 500 V)

- Stochastic heating small at transition where EP edge disappears
- EP edge exists \Rightarrow positive heating in sheath, negative in core
- No EP edge \Rightarrow negative heating in sheath, positive in core
$S_{\text{stoc}}(x)$ FOR VARIOUS GAPS L

- Integrate $p_{\text{stoc}}(x)$ from electrode ($x = 0$) toward discharge midplane $\Rightarrow S_{\text{stoc}}(x)$

- Large $L \Rightarrow n_e(\text{core}) > n_e(\text{sheath})$
 \Rightarrow positive heating in sheath, negative heating in core

- Small $L \Rightarrow n_e(\text{sheath}) > n_e(\text{core})$
 \Rightarrow negative heating in sheath, positive heating in core
TWO-STEP DENSITY MODEL

Use to investigate stochastic heating
FIXED IONS, PIC ELECTRONS (30 mT Ar, 13.56 MHz) (Models EN plasma with EP edge) (Models EN plasma with no EP edge)

Positive Fermi kick?
Positive low density kick?
Negative high density kick?
Negative Fermi kick?

Sheath oscillation

Sheath oscillation

Electron Heating (W/m²)

Lieberman PSC13
ELECTRON HEATING GAS PRESSURE EFFECTS

- Large device
- 2:1 step at 6 cm
- At 2 mT 66% of heating is ohmic; at 30 mT 96% is ohmic
 \Rightarrow error in finding stochastic heating
Ohmic power density \(p_{\text{ohm}} = \frac{1}{2} |J_{\text{rf}}|^2 \text{Re}[1/(\sigma_p + j \omega \epsilon_0)] \), where

\[
\sigma_p = -\frac{4\pi e^2}{3m} \int_0^\infty \frac{v^3 dv}{j \omega + \nu_m(v)} \frac{df_{e0}}{dv}
\]

The usual simple expression (see Margenau, 1946)

\[
\sigma_p = \frac{e^2 n_e}{m(j \omega + \nu_m)}
\]

is not correct unless \(\nu_m = \text{const} \)

Argon is a Ramsauer gas with \(\nu_m \) a function of \(v \)

The momentum transfer frequency \(\nu_m \) must be distinguished from the “total” collision frequency \(\nu_{\text{coll}} \)

Large errors in calculating stochastic heating for ohmic heating \(\gg \) stochastic heating

Can use “pseudo-argon” in PIC simulation \(\Rightarrow \nu_m = \nu_{\text{coll}} = \text{const} \)
VARIOUS COLLISION MODELS (UNIFORM PLASMA)

Fixed Ion Uniform 5 mTorr Argon with \(n_i = 4.8e15 \, \text{m}^{-3} \)
\(V_{rf}=1000 \, \text{V}, f=13.56 \, \text{MHz}, L=0.05 \, \text{m}, \text{Area}=0.01 \, \text{m}^2 \)
STOCHASTIC HEATING (5 CM UNIFORM PLASMA)
(Ramsauer elastic cross section, non-isotropic scattering)

Sstoc(x) (W/m²) for Uniform Profiles
0-30 mTorr Ar, L= 5 cm, Area = 0.01 m², 1000V@13.56MHz

LiebermanPSC13
STOCHASTIC HEATING (2:1 STEP, $d_{\text{edge}} = 6$ CM)
(Ramsauer elastic cross section, non-isotropic scattering)

$S_{\text{stoc}}(x)$ (W/m^2) for $d_{\text{edge}} = 6$ cm, $v_{\text{coll}}(x)$

2-30 mTorr Ar, $L = 30$ cm, Area = 0.01 m2, 0.41A@13.56MHz

[Graph showing the variation of $S_{\text{stoc}}(x)$ with different torr pressures]
STOCHASTIC HEATING (2:1 STEP, $d_{edge} = 6$ CM)
(Constant collision frequency, isotropic scattering)

$S_{stoc}(x)$ (W/m2) for $d_{edge} = 6$ cm, Iso., const K_{el}
0.5-30 mTorr Ar, L= 30 cm, Area = 0.01 m2, 0.41A@13.56MHz
STOCHASTIC HEATING (2:1 STEP, \(d_{\text{edge}} = 1 \text{ CM}\))
(Constant collision frequency, isotropic scattering)

\[S_{\text{stoc}}(x) \ (W/m^2) \text{ for } d_{\text{edge}} = 1 \text{ cm, Iso., const } K_{el}\]

0.5-30 mTorr Ar, \(L=30 \text{ cm, Area = 0.01 m}^2, 0.41A@13.56\text{MHz}\)

\[
\begin{array}{c}
\text{-- 30 mTorr} \\
\text{-- 10 mTorr} \\
\text{-- 5 mTorr} \\
\text{-- 2 mTorr} \\
\text{-- 1 mTorr} \\
\text{-- 0.5 mTorr}
\end{array}
\]
There is a potential drop \(V_s = T_e \ln(n_b/n_s) \) across the step.

There are rf fields \(E_{rf}\text{(bulk)} \) and \(E_{rf}\text{(sheath)} \).

Calculate the phase-averaged energy kick \(\Delta \mathcal{E} \) for transmitted and reflected particles.

There is no contribution to the kick at the oscillating plasma-sheath edge (2 \(\rightarrow \) 3).
SINGLE STEP WITH VARIABLE SLOPE (PIC)

30 mTorr Argon fixed Ion Tanh profile with \(a_1 = 10 \) to \(400 \), \(a_2 = 3 \), \(n_i/n_r = 0.5 \), \(I_{rf} = 0.3 \) A, \(f = 27.12 \) MHz, \(L = 0.1 \) m, Area = 0.01 m\(^2\), \(n_i = 2 \times 10^{15} \) m\(^{-3}\)

(a) \(a_1 = 10 \)

Plasma Density (m\(^{-3}\))

(b) \(a_1 = 20 \)

Plasma Density (m\(^{-3}\))

\[
 n(x) = \frac{n_0}{2} \left[a_2 + \tanh \left(\frac{a_1}{L} \left(x - \frac{L}{2} \right) \right) \right]
\
- Vary slope using \(a_1 \) in tanh function and find stochastic heating
STOCHASTIC HEATING WITH VARIABLE SLOPE

- \(d = \frac{v_e}{\omega} \approx 0.4 \text{ cm} \) = “mixing” length (1 radian phase change) \((v_e = \text{electron thermal velocity}) \)
- \(L \alpha_2 / \alpha_1 \) = scale length of step (0.025–3 cm)
- Saturation for small scale length; adiabatic for large scale length
- Electron oscillation amplitude (\(\approx 0.04 \text{ cm} \)) may be significant
SUMMARY

- A transition from a narrow gap EN discharge with an EP edge, to a narrower gap discharge with no EP edge, was investigated with PIC simulations and modeling.

- The effects of a bi-Maxwellian EEDF, with an EP edge, and sheath attachment and core uncovering, with no EP edge, need to be taken into account in modeling.

- A transition from sheath to internal stochastic heating after the EP edge disappears is observed, and is being studied with fixed ion, two-step and single-step density, PIC simulations.

- At the higher pressures, the ohmic heating has to be carefully calculated in order to determine the true stochastic heating in the PIC simulations.