
A MINI-COURSE ON THE PRINCIPLES OF LOW-PRESSURE DISCHARGES AND MATERIALS PROCESSING

Michael A. Lieberman

Department of Electrical Engineering and Computer Science

University of California, Berkeley, CA 94720

OUTLINE

- Introduction
- Summary of Plasma and Discharge Fundamentals
- Global Model of Discharge Equilibrium

— Break —

- Inductive Discharges
- Reactive Neutral Balance in Discharges
- Adsorption and Desorption Kinetics
- Plasma-Assisted Etch Kinetics

 ${\it LiebermanMinicourse10}$

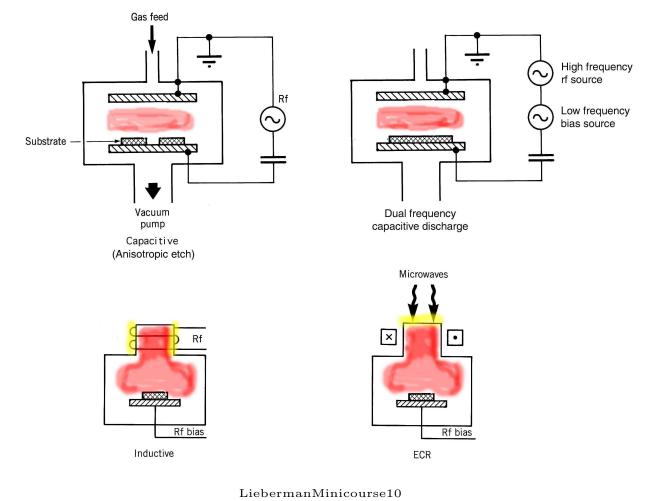
INTRODUCTION TO PLASMA DISCHARGES AND PROCESSING

 ${\it LiebermanMinicourse10}$

University of California, Berkeley -

PLASMA ----

THE NANOELECTRONICS REVOLUTION


- Transistors/chip doubling every $1\frac{1}{2}$ -2 years since 1959
- 1,000,000-fold decrease in cost for the same performance

EQUIVALENT AUTOMOTIVE ADVANCE

- 4 million km/hr
- 1 million km/liter
- Never break down
- Throw away rather than pay parking fees
- 3 cm long \times 1 cm wide
- Crash $3 \times$ a day

 ${\it LiebermanMinicourse10}$

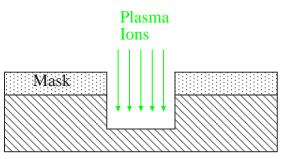
EVOLUTION OF ETCHING DISCHARGES

- PLASMA -

ISOTROPIC PLASMA ETCHING

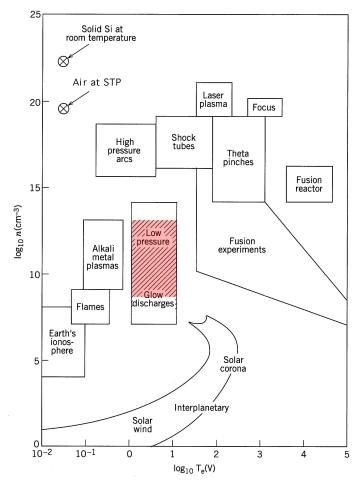
- 1. Start with inert molecular gas CF_4
- 2. Make discharge to create reactive species:

$$CF_4 \longrightarrow CF_3 + F$$


3. Species reacts with material, yielding volatile product:

$$\mathrm{Si} + 4\mathrm{F} \longrightarrow \mathrm{SiF}_4 \uparrow$$

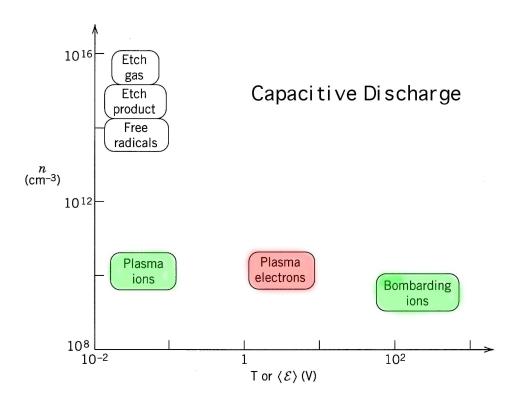
4. Pump away product


ANISOTROPIC PLASMA ETCHING

5. Energetic ions bombard trench bottom, but not sidewalls:(a) Increase etching reaction rate at trench bottom(b) Clear passivating films from trench bottom

 ${\it Lieberman Minicourse 10}$

PLASMA DENSITY VERSUS TEMPERATURE



University of California, Berkeley

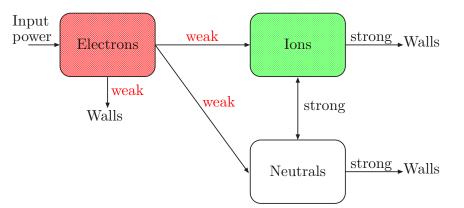
 ${\it LiebermanMinicourse10}$

- PLASMA

RELATIVE DENSITIES AND ENERGIES

Charged particle densities \ll neutral particle densities

 ${\it LiebermanMinicourse10}$


University of California, Berkeley

PLASMA

8

NON-EQUILIBRIUM

• Energy coupling between electrons and heavy particles is weak

• Electrons are *not* in thermal equilibrium with ions or neutrals

 $T_e \gg T_i$ in plasma bulk

Bombarding $\mathcal{E}_i \gg \mathcal{E}_e$ at wafer surface

- "High temperature processing at low temperatures"
 - 1. Wafer can be near room temperature
 - 2. Electrons produce free radicals \implies chemistry
 - 3. Electrons produce electron-ion pairs \implies ion bombardment

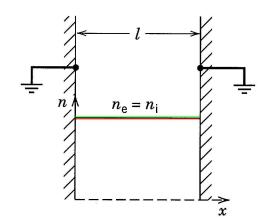
 ${\it LiebermanMinicourse10}$

University of California, Berkeley

ELEMENTARY DISCHARGE BEHAVIOR

- Uniform density of electrons and ions n_e and n_i at time t = 0
- Low mass warm electrons quickly drain to the wall, forming sheaths

Sheaths


Plasma

 V_{p}

x

PLASMA

 Φ

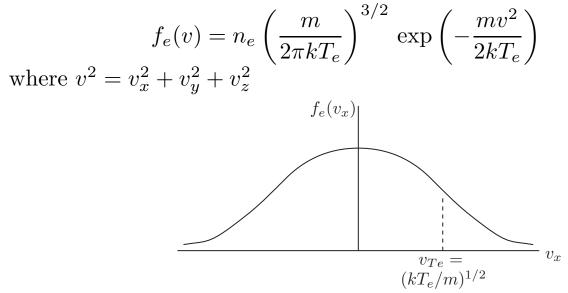
- Ion bombarding energy \mathcal{E}_i = plasma-wall potential V_p
- Separation into bulk plasma and sheaths occurs for ALL discharges

 ${\it Lieberman Minicourse 10}$

University of California, Berkeley

SUMMARY OF PLASMA FUNDAMENTALS

 ${\it LiebermanMinicourse10}$


- University of California, Berkeley -

11

- PLASMA

THERMAL EQUILIBRIUM PROPERTIES

- Electrons generally near thermal equilibrium Ions generally *not* in thermal equilibrium
- Maxwellian distribution of electrons

• Pressure p = nkTFor neutral gas at room temperature (300 K)

$$n_g [\mathrm{cm}^{-3}] \approx 3.3 \times 10^{16} \, p [\mathrm{Torr}]$$

University of California, Berkeley

 ${\it Lieberman Minicourse 10}$

AVERAGES OVER MAXWELLIAN DISTRIBUTION

• Average energy $\langle \frac{1}{2}mv^2\rangle = \frac{1}{n_e}\int d^3v \frac{1}{2}mv^2 f_e(v) = \frac{3}{2}kT_e$ • Average speed

$$\bar{v}_e = \frac{1}{n_e} \int d^3 v \, v f_e(v) = \left| \left(\frac{8kT_e}{\pi m} \right) \right|$$

• Average electron flux lost to a wall

all
$$z$$

 $\Gamma_{e} [m^{-2}s^{-1}]$

1/2

$$\Gamma_e = \int_{-\infty}^{\infty} dv_x \int_{-\infty}^{\infty} dv_y \int_0^{\infty} dv_z v_z f_e(v) = \boxed{\frac{1}{4} n_e \bar{v}_e} \quad [\mathrm{m}^{-2} \mathrm{-s}^{-1}]$$

• Average kinetic energy lost per electron lost to a wall

$$\mathcal{E}_e = 2 \mathrm{T}_e$$

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

13

FORCES ON PARTICLES

• For a unit volume of electrons (or ions)

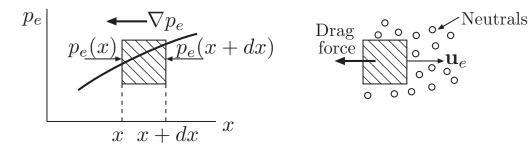
$$mn_e \frac{d\mathbf{u}_e}{dt} = qn_e \mathbf{E} - \nabla p_e - mn_e \nu_m \mathbf{u}_e$$

mass \times acceleration = electric field force +

+ pressure gradient force + friction (gas drag) force

• m =electron mass

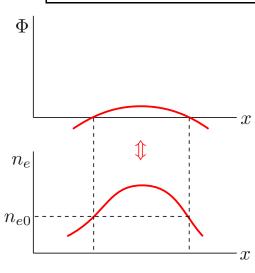
 $n_e = \text{electron density}$


 $\mathbf{u}_e = \text{electron flow velocity}$

$$q = -e$$
 for electrons (+e for ions)

$$\mathbf{E} = \text{electric field}$$

$$p_e = n_e k T_e$$
 = electron pressure


 ν_m = collision frequency of electrons with neutrals

BOLTZMANN FACTOR FOR ELECTRONS

- If electric field and pressure gradient forces almost balance
- Let $\mathbf{E} = -\nabla \Phi$ and $p_e = \frac{0 \approx -en_e \mathbf{E} \nabla p_e}{n_e k T_e}$ $\nabla \Phi = \frac{k T_e}{e} \frac{\nabla n_e}{n_e}$
- Put $kT_e/e = T_e$ (volts) and integrate to obtain

$$n_e(\mathbf{r}) = n_{e0} \,\mathrm{e}^{\Phi(\mathbf{r})/\mathrm{T}_e}$$

LiebermanMinicourse10

PLASMA DIELECTRIC CONSTANT ϵ_{p}

- RF discharges are driven at a frequency ω $E(t) = \operatorname{Re}(\widetilde{E} e^{j\omega t}), \quad \text{etc.}$
- Define ϵ_p from the total current in Maxwell's equations

$$\nabla \times \tilde{H} = \underbrace{\tilde{J}_c + j\omega\epsilon_0 \tilde{E}}_{\text{Total current }\tilde{J}} \equiv j\omega\epsilon_p \tilde{E}$$

• Conduction current is $\tilde{J}_c = -en_e \tilde{u}_e$ Newton's law is $j\omega m \tilde{u}_e = -e\tilde{E} - m\nu_m \tilde{u}_e$ Solve for \tilde{u}_e and evaluate \tilde{J}_c to obtain

$$\epsilon_p \equiv \epsilon_0 \kappa_p = \epsilon_0 \left[1 - \frac{\omega_{pe}^2}{\omega(\omega - j\nu_m)} \right]$$

with $\omega_{pe} = (e^2 n_e / \epsilon_0 m)^{1/2}$ the electron plasma frequency

• For $\omega \gg \nu_m$, ϵ_p is mainly real (nearly lossless dielectric)

PLASMA CONDUCTIVITY $\sigma_{\mathbf{p}}$

- It is useful to introduce rf plasma conductivity $\tilde{J}_c \equiv \sigma_p \tilde{E}$
- Since \tilde{J}_c is a linear function of \tilde{E} [p. 16]

$$\sigma_p = \frac{e^2 n_e}{m(\nu_m + j\omega)}$$

• DC plasma conductivity ($\omega \ll \nu_m$)

$$\sigma_{\rm dc} = \frac{e^2 n_e}{m \nu_m}$$

• RF current flowing through the plasma heats electrons (just like a resistor)

LiebermanMinicourse10

University of California, Berkeley

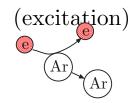
17

SUMMARY OF DISCHARGE FUNDAMENTALS

 ${\it LiebermanMinicourse10}$

University of California, Berkeley -

18


- PLASMA

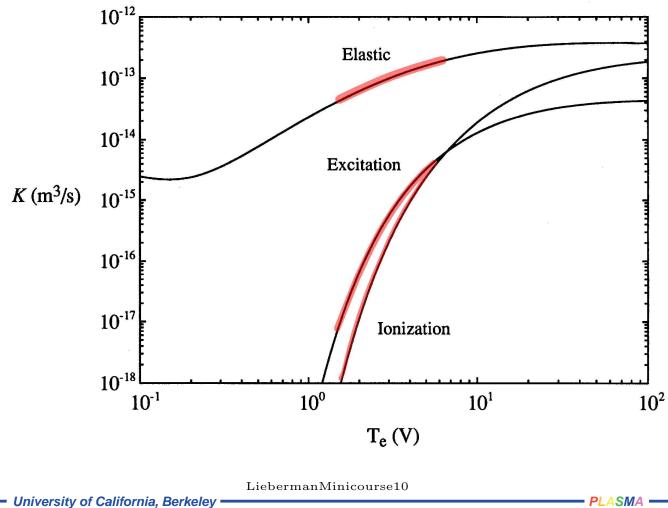
ELECTRON COLLISIONS WITH ARGON

• Maxwellian electrons collide with Ar atoms (density n_g) $\frac{\# \text{ collisions of a particular kind}}{\text{s-m}^3} = \nu n_e = K n_g n_e$

 $\nu =$ collision frequency [s⁻¹], $K(T_e) =$ rate coefficient [m³/s]

• Electron-Ar collision processes $e + Ar \longrightarrow Ar^+ + 2e$ (ionization) $e + Ar \longrightarrow e + Ar^* \longrightarrow e + Ar + photon$ $e + Ar \longrightarrow e + Ar$ (elastic scattering)

• Rate coefficient $K(T_e)$ is average of cross section $\sigma(v_R)$ [m²] over Maxwellian distribution


 $K(T_e) = \langle \sigma v_R \rangle_{\text{Maxwellian}}$

 v_R = relative velocity of colliding particles

LiebermanMinicourse10

University of California, Berkeley

ELECTRON-ARGON RATE COEFFICIENTS

20

ION COLLISIONS WITH ARGON

• Argon ions collide with Ar atoms $Ar^+ + Ar \longrightarrow Ar^+ + Ar$ (elastic scattering) $Ar^+ + Ar \longrightarrow Ar + Ar^+$ (charge transfer)

- Total cross section for room temperature ions $\sigma_i \approx 10^{-14} \text{ cm}^2$
- Ion-neutral mean free path (distance ion travels before colliding)

$$\lambda_i = \frac{1}{n_g \sigma_i}$$

• Practical formula

$$\lambda_i(\text{cm}) = \frac{1}{330 \, p}, \qquad p \text{ in Torr}$$

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

21

THREE ENERGY LOSS PROCESSES

1. Collisional energy \mathcal{E}_c lost per electron-ion pair created

$$K_{\rm iz}\mathcal{E}_c = K_{\rm iz}\mathcal{E}_{\rm iz} + K_{\rm ex}\mathcal{E}_{\rm ex} + K_{\rm el}(2m/M)(3T_e/2)$$

 $\Longrightarrow \mathcal{E}_c(\mathbf{T}_e)$ (voltage units)

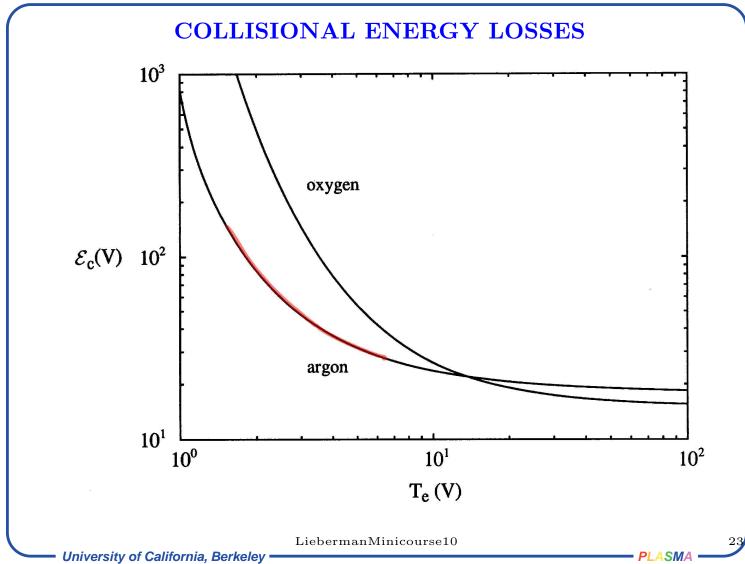
 $\mathcal{E}_{iz}, \mathcal{E}_{ex}, \text{ and } (3m/M)T_e$ are energies lost by an electron due to an ionization, excitation, and elastic scattering collision

2. Electron kinetic energy lost to walls

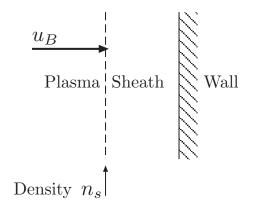
$$\mathcal{E}_e = 2 \,\mathrm{T}_e$$

3. Ion kinetic energy lost to walls is mainly due to the dc potential V_s across the sheath

$$\mathcal{E}_i \approx \bar{V}_s$$


• Total energy lost per electron-ion pair lost to walls

$$\mathcal{E}_T = \mathcal{E}_c + \mathcal{E}_e + \mathcal{E}_i$$


 ${\it LiebermanMinicourse10}$

University of California, Berkeley

SM

BOHM (ION LOSS) VELOCITY u_B

• Due to formation of a "presheath", ions arrive at the plasma-sheath edge with directed energy $kT_e/2$

$$\frac{1}{2}Mu_i^2 = \frac{kT_e}{2}$$

• Electron-ion pairs are lost at the Bohm velocity at the plasma-sheath edge (density n_s)

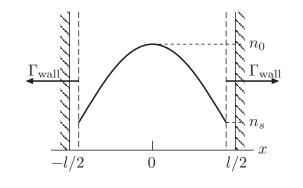
$$u_i = u_B = \left(\frac{kT_e}{M}\right)^{1/2}$$

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

24

STEADY STATE DIFFUSION


• Particle balance: losses to walls = creation in volume

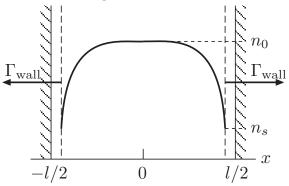
 $\nabla \cdot \Gamma_{e,i} = \nu_{iz} n_e$

• Ambipolar: equal fluxes (and densities) of electrons and ions

 $\Gamma = -D_a \nabla n$ $D_a = kT_e/M\nu_i = \text{ambipolar diffusion coefficient}$

• Boundary condition: $\Gamma_{\text{wall}} = n_s u_B$ at plasma-sheath edge

 $\implies h_l \equiv n_s/n_0 = \text{edge-to-center density ratio}$

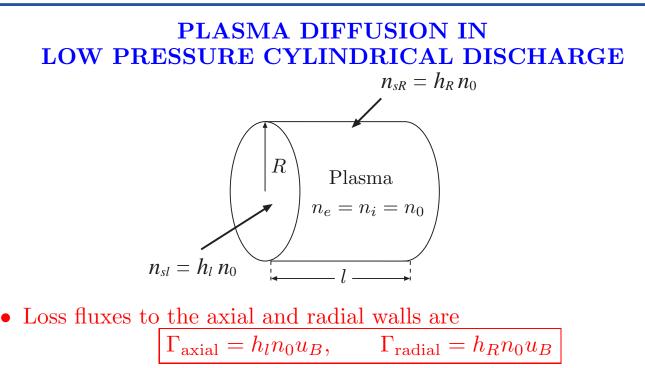

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

SMA

PLASMA DIFFUSION AT LOW PRESSURES

• Plasma density profile is relatively flat in the center and falls sharply near the sheath edge


- Ion and electron loss flux to the wall is $\Gamma_{\text{wall}} = n_s u_B \equiv h_l n_0 u_B$
- The edge-to-center density ratio is

$$h_l \equiv \frac{n_s}{n_0} \approx \frac{0.86}{\left(3 + l/2\lambda_i\right)^{1/2}}$$

where $\lambda_i = \text{ion-neutral mean free path [p. 21]}$

• Applies for pressures < 100 mTorr in argon

University of California, Berkeley

where the edge-to-center density ratios are

$$h_l \approx \frac{0.86}{(3+l/2\lambda_i)^{1/2}}, \qquad h_R \approx \frac{0.8}{(4+R/\lambda_i)^{1/2}}$$

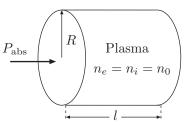
• Applies for pressures < 100 mTorr in argon

 ${\it Lieberman Minicourse 10}$

University of California, Berkeley

GLOBAL MODEL OF DISCHARGE EQUILIBRIUM

 ${\it LiebermanMinicourse10}$


University of California, Berkeley -

28

- PLASMA

PARTICLE BALANCE AND T_e

• Assume uniform cylindrical plasma absorbing power $P_{\rm abs}$

• Particle balance

Production due to ionization = loss to the walls

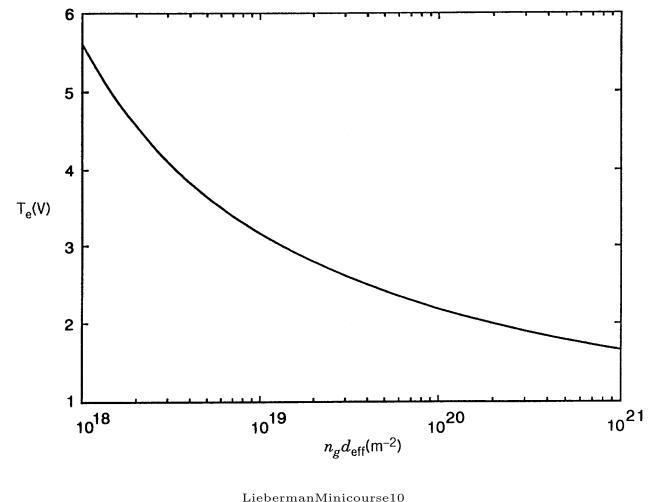
$$K_{\rm iz} n_g \eta_0' \pi R^2 l = (2\pi R^2 h_l \eta_0' + 2\pi R l h_R \eta_0') u_B$$

• Solve to obtain

$$\frac{K_{\rm iz}(T_e)}{u_B(T_e)} = \frac{1}{n_g d_{\rm eff}}$$

where

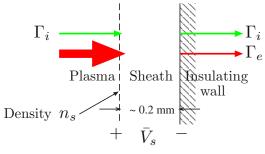
$$d_{\rm eff} = \frac{1}{2} \frac{Rl}{Rh_l + lh_R}$$


is an effective plasma size

- Given n_q and $d_{\text{eff}} \Longrightarrow$ electron temperature T_e
- T_e varies over a narrow range of 2–5 volts

 ${\it LiebermanMinicourse10}$

University of California, Berkeley -


University of California, Berkeley

- PLASMA

30

ION ENERGY FOR LOW VOLTAGE SHEATHS

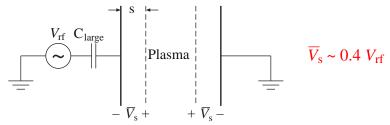
- \mathcal{E}_i = energy entering sheath + energy gained traversing sheath
- Ion energy entering sheath = $T_e/2$ (voltage units)
- Sheath voltage determined from particle conservation

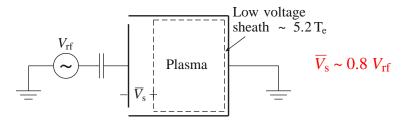
$$\Gamma_i = n_s u_B, \qquad \Gamma_e = \underbrace{\frac{1}{4} n_s \bar{v}_e}_{\mathbf{I}_s} e^{-\overline{V}_s/T_e}$$

with $\bar{v}_e = (8eT_e/\pi m)^{1/2}$

Random flux at sheath edge

• The ion and electron fluxes at the wall must balance


$$\overline{V}_s = \frac{\mathrm{T}_e}{2} \, \ln\left(\frac{M}{2\pi m}\right)$$


or $V_s \approx 4.7 \,\mathrm{T}_e$ for argon • Accounting for the initial ion energy, $\mathcal{E}_i \approx 5.2 \,\mathrm{T}_e$ LiebermanMinicourse10

University of California, Berkeley

ION ENERGY FOR HIGH VOLTAGE SHEATHS

• Large ion bombarding energies can be gained near rf-driven electrodes

• The sheath thickness s is given by the Child law

$$\bar{J}_i = en_s u_B = \frac{4}{9} \epsilon_0 \left(\frac{2e}{M}\right)^{1/2} \frac{\bar{V}_s^{3/2}}{s^2}$$

• Estimating ion energy is not simple as it depends on the type of discharge and the application of rf or dc bias voltages

 ${\it Lieberman Minicourse 10}$

University of California, Berkeley

POWER BALANCE AND n₀

- Assume low voltage sheaths at all surfaces $\mathcal{E}_T(\mathbf{T}_e) = \underbrace{\mathcal{E}_c(\mathbf{T}_e)}_{\text{Collisional Electron}} + \underbrace{2 \mathbf{T}_e}_{\text{Ion}} + \underbrace{5.2 \mathbf{T}_e}_{\text{Ion}}$
- Power balance

Power in = power out

$$P_{\rm abs} = \left(h_l n_0 2\pi R^2 + h_R n_0 2\pi R l\right) u_B \, e\mathcal{E}_T$$

• Solve to obtain

$$n_0 = \frac{P_{\rm abs}}{A_{\rm eff} u_B e \mathcal{E}_T}$$

where

$$A_{\rm eff} = 2\pi R^2 h_l + 2\pi R l h_R$$

is an effective area for particle loss

- Density n_0 is proportional to the absorbed power P_{abs}
- Density n_0 depends on pressure p through h_l , h_R , and T_e

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

33

SM

PARTICLE AND POWER BALANCE

• Particle balance \implies electron temperature T_e (independent of plasma density)

• Power balance \implies plasma density n_0 (once electron temperature T_e is known)

LiebermanMinicourse10

University of California, Berkeley

EXAMPLE 1

- Let R = 0.15 m, l = 0.3 m, $n_g = 3.3 \times 10^{19}$ m⁻³ (p = 1 mTorr at 300 K), and $P_{abs} = 800$ W
- Assume low voltage sheaths at all surfaces
- Find $\lambda_i = 0.03$ m. Then $h_l \approx h_R \approx 0.3$ and $d_{\text{eff}} \approx 0.17$ m [pp. 21, 27, 29]
- From the T_e versus $n_g d_{\text{eff}}$ figure, T_e ≈ 3.5 V [p. 30]
- From the \mathcal{E}_c versus T_e figure, $\mathcal{E}_c \approx 42$ V [p. 23]. Adding $\mathcal{E}_e = 2T_e \approx 7$ V and $\mathcal{E}_i \approx 5.2T_e \approx 18$ V yields $\mathcal{E}_T = 67$ V [p. 22]
- Find $u_B \approx 2.9 \times 10^3$ m/s and find $A_{\text{eff}} \approx 0.13$ m² [pp. 24, 33]
- Power balance yields $n_0 \approx 2.0 \times 10^{17} \text{ m}^{-3}$ [p. 33]
- Ion current density $J_{il} = eh_l n_0 u_B \approx 2.9 \text{ mA/cm}^2$
- Ion bombarding energy $\mathcal{E}_i \approx 18$ V [p. 31]

EXAMPLE 2

- Apply a strong dc magnetic field along the cylinder axis \implies particle loss to radial wall is inhibited
- Assume no radial losses, then $d_{\rm eff} = l/2h_l \approx 0.5$ m
- From the T_e versus $n_g d_{\text{eff}}$ figure, T_e ≈ 3.3 V (was 3.5 V)
- From the \mathcal{E}_c versus T_e figure, $\mathcal{E}_c \approx 46$ V. Adding $\mathcal{E}_e = 2T_e \approx 6.6$ V and $\mathcal{E}_i \approx 5.2T_e \approx 17$ V yields $\mathcal{E}_T = 70$ V
- Find $u_B \approx 2.8 \times 10^3$ m/s and find $A_{\text{eff}} = 2\pi R^2 h_l \approx 0.043$ m²
- Power balance yields $n_0 \approx 5.8 \times 10^{17} \text{ m}^{-3} \text{ (was } 2 \times 10^{17} \text{ m}^{-3} \text{)}$
- Ion current density $J_{il} = eh_l n_0 u_B \approx 7.8 \text{ mA/cm}^2$
- Ion bombarding energy $\mathcal{E}_i \approx 17 \text{ V}$
 - \implies Slight decrease in electron temperature T_e
 - \implies Significant increase in plasma density n_0

EXPLAIN WHY!

• What happens to T_e and n_0 if there is a sheath voltage $V_s = 500$ V at each end plate?

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

36

ELECTRON HEATING MECHANISMS

- Discharges can be distinguished by electron heating mechanisms
 - (a) Ohmic (collisional) heating (capacitive, inductive discharges)
 - (b) Stochastic (collisionless) heating (capacitive, inductive discharges)
 - (c) Resonant wave-particle interaction heating (Electron cyclotron resonance and helicon discharges)
- Although the heated electrons provide the ionization required to sustain the discharge, the electrons tend to short out the applied heating fields within the bulk plasma
- Achieving adequate electron heating is a key issue

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

37

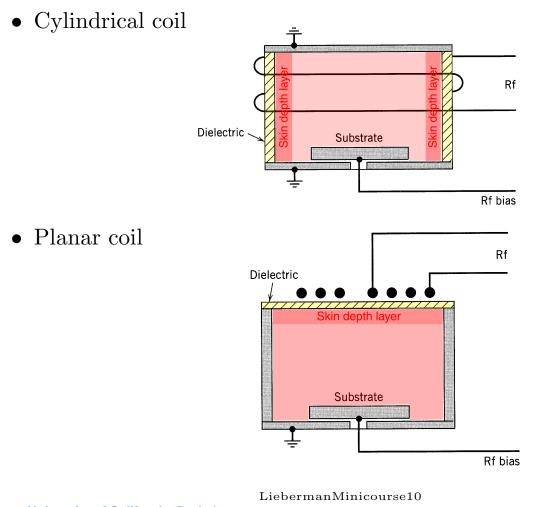
INDUCTIVE DISCHARGES

DESCRIPTION AND MODEL

 ${\it LiebermanMinicourse10}$

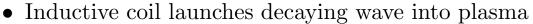
University of California, Berkeley -

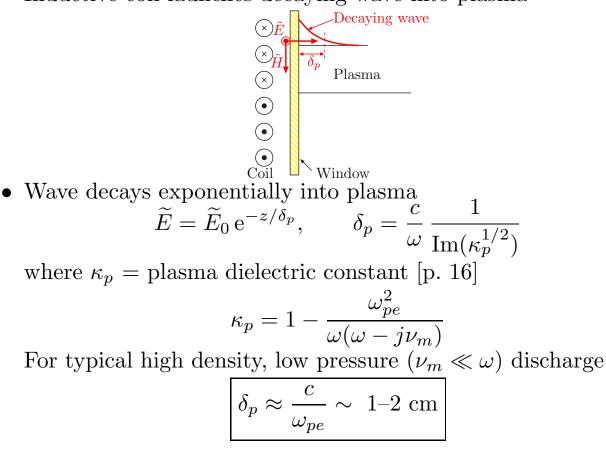
38


- PLASMA

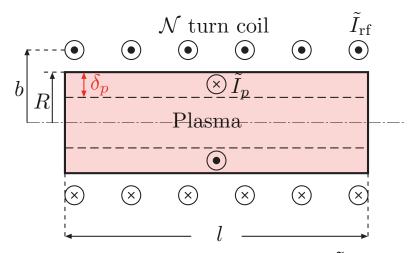
MOTIVATION

- High density (compared to capacitive discharge)
- Independent control of plasma density and ion energy
- Simplicity of concept
- RF rather than microwave powered
- No source magnetic fields


 ${\it Lieberman Minicourse 10}$


CYLINDRICAL AND PLANAR CONFIGURATIONS

40


LiebermanMinicourse10

University of California, Berkeley

41

TRANSFORMER MODEL

• For simplicity consider a long cylindrical discharge

• Current $\tilde{I}_{\rm rf}$ in \mathcal{N} turn coil induces current \tilde{I}_p in 1-turn plasma skin

 \Rightarrow A transformer

LiebermanMinicourse10

University of California, Berkeley

PLASMA RESISTANCE AND INDUCTANCE

• Plasma resistance R_p

 $R_p = \frac{1}{\sigma_{\rm dc}} \frac{\text{circumference of plasma loop}}{\text{average cross sectional area of loop}}$ where [p. 17]

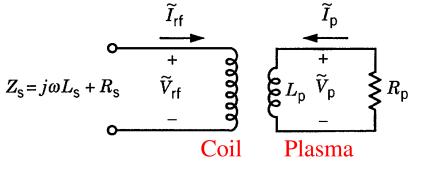
 $\sigma_{\rm dc} = \frac{e^2 n_{es}}{m \nu_m}$ with n_{es} = density at plasma-sheath edge

$$\implies R_p = \frac{\pi R}{\sigma_{\rm dc} l \delta_p}$$

• Plasma inductance L_p

 $L_p = \frac{\text{magnetic flux produced by plasma current}}{\underset{\sim}{\text{plasma current}}}$

• Using magnetic flux = $\pi R^2 \mu_0 \tilde{I}_p / l$


$$\implies L_p = \frac{\mu_0 \pi R^2}{l}$$

 ${\it LiebermanMinicourse10}$

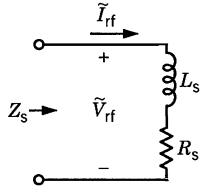
University of California, Berkeley

COUPLING OF COIL TO PLASMA

• Model the source as a transformer

$$\begin{split} \widetilde{V}_{\rm rf} &= j\omega L_{11}\widetilde{I}_{\rm rf} + j\omega L_{12}\widetilde{I}_p \\ \widetilde{V}_p &= j\omega L_{21}\widetilde{I}_{\rm rf} + j\omega L_{22}\widetilde{I}_p \end{split}$$

• Transformer inductances $L_{11} = \frac{\text{magnetic flux linking coil}}{\text{coil current}} = \frac{\mu_0 \pi b^2 \mathcal{N}^2}{l}$ $L_{12} = L_{21} = \frac{\text{magnetic flux linking plasma}}{\text{coil current}} = \frac{\mu_0 \pi R^2 \mathcal{N}}{l}$ $L_{22} = L_p = \frac{\mu_0 \pi R^2}{l}$ LiebermanMinicourse10


SOURCE CURRENT AND VOLTAGE

• Put $\widetilde{V}_p = -\widetilde{I}_p R_p$ in transformer equations and solve for the impedance $Z_s = \widetilde{V}_{\rm rf}/\widetilde{I}_{\rm rf}$ seen at coil terminals

$$Z_s = j\omega L_{11} + \frac{\omega^2 L_{12}^2}{R_p + j\omega L_p} \equiv R_s + j\omega L_s$$

• Equivalent circuit at coil terminals

$$R_s = \mathcal{N}^2 \frac{\pi R}{\sigma_{\rm dc} l \delta_p}$$
$$L_s = \frac{\mu_0 \pi R^2 \mathcal{N}^2}{l} \left(\frac{b^2}{R^2} - 1\right)$$

• Power balance $\Longrightarrow I_{\rm rf}$

$$P_{\rm abs} = \frac{1}{2} \tilde{I}_{\rm rf}^2 R_s$$

• From source impedance $\Longrightarrow V_{\rm rf}$

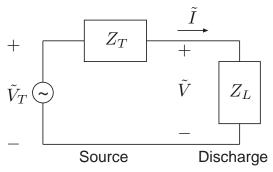
$$\widetilde{V}_{\rm rf} = \widetilde{I}_{\rm rf} Z_s$$

University of California, Berkeley

LiebermanMinicourse10

EXAMPLE

- Assume plasma radius R = 10 cm, coil radius b = 15 cm, length l = 20 cm, $\mathcal{N} = 3$ turns, gas density $n_g = 6.6 \times 10^{14}$ cm⁻³ (20 mTorr argon at 300 K), $\omega = 85 \times 10^6$ s⁻¹ (13.56 MHz), absorbed power $P_{\rm abs} = 600$ W, and low voltage sheaths
- At 20 mTorr, $\lambda_i \approx 0.15$ cm, $h_l \approx h_R \approx 0.1$, $d_{\text{eff}} \approx 34$ cm [pp. 21, 27, 29]
- Particle balance (T_e versus $n_g d_{\text{eff}}$ figure [p. 30]) yields T_e ≈ 2.1 V
- Collisional energy losses (\mathcal{E}_c versus T_e figure [p. 23]) are $\mathcal{E}_c \approx 110$ V. Adding $\mathcal{E}_e + \mathcal{E}_i = 7.2 T_e$ yields total energy losses $\mathcal{E}_T \approx 126$ V [p. 22]
- $u_B \approx 2.3 \times 10^5 \text{ cm/s} \text{ [p. 24] and } A_{\text{eff}} \approx 185 \text{ cm}^2 \text{ [p. 33]}$
- Power balance yields $n_e \approx 7.1 \times 10^{11} \text{ cm}^{-3}$ and $n_{se} \approx 7.4 \times 10^{10} \text{ cm}^{-3}$ [p. 33]
- Use n_{se} to find skin depth $\delta_p \approx 2.0$ cm [p. 41]; estimate $\nu_m = K_{\rm el} n_g$ ($K_{\rm el}$ versus T_e figure [p. 20]) to find $\nu_m \approx 3.4 \times 10^7 \text{ s}^{-1}$
- Use ν_m and n_{se} to find $\sigma_{dc} \approx 61 \ \Omega^{-1} \text{-m}^{-1}$ [p. 17]
- Evaluate impedance elements $R_s \approx 23.5 \Omega$ and $L_s \approx 2.2 \mu$ H; $|Z_s| \approx \omega L_s \approx 190 \Omega$ [p. 45]
- Power balance yields $I_{\rm rf} \approx 7.1$ A; from source impedance $|Z_s| = 190 \Omega$, $\widetilde{V}_{\rm rf} \approx 1360$ V [p. 45]


 ${\it LiebermanMinicourse10}$

University of California, Berkeley

46

MATCHING DISCHARGE TO POWER SOURCE

• Consider an rf power source connected to a discharge

- Source impedance $Z_T = R_T + jX_T$ is given Discharge impedance $Z_L = R_L + jX_L$
- Time-average power delivered to discharge $P_{\text{abs}} = \frac{1}{2} \text{Re} \left(\widetilde{V} \widetilde{I}^* \right)$
- For fixed source \widetilde{V}_T and Z_T , maximize power delivered to discharge

$$\begin{aligned} X_L &= -X_T \\ R_L &= R_T \end{aligned}$$

LiebermanMinicourse10

University of California, Berkeley

47

MATCHING NETWORK

• Insert lossless matching network between power source and coil

 $R_{T}=50 \Omega$

 $\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\$

 C_1

 $L_{\rm s}$

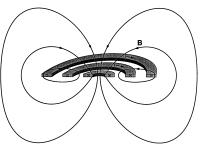
PLASMA

- Continue EXAMPLE [p. 46] with $R_s = 23.5 \ \Omega$ and $\omega L_s = 190 \ \Omega$; assume $R_T = 50 \ \Omega$ (corresponds to a conductance $1/R_T = 1/50 \ S$)
- Choose C_1 such that the conductance seen looking to the right at terminals AA' is 1/50 S

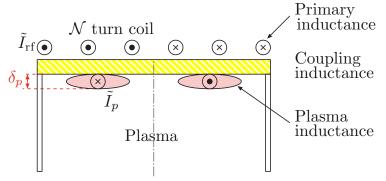
$$\implies C_1 = 71 \text{ pF}$$

• Choose C_2 to cancel the reactive part of the impedance seen at AA'

$$\implies C_2 = 249 \text{ pF}$$


- For $P_{\rm abs} = 600$ W, the 50 Ω source supplies $\tilde{I}_{\rm rf} = 4.9$ A
- Voltage at source terminals $(AA') = \tilde{I}_{rf}R_T = 245 \text{ V}$

 ${\it LiebermanMinicourse10}$


University of California, Berkeley

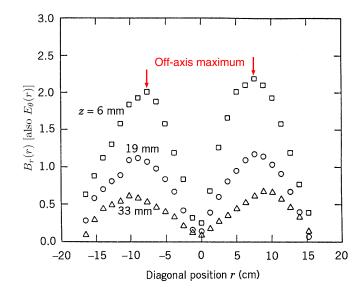
PLANAR COIL DISCHARGE

• Magnetic field produced by planar coil

• RF power is deposited in a ring-shaped plasma volume

• As for a cylindrical discharge, there is a primary (L_{11}) , coupling $(L_{12} = L_{21})$ and secondary $(L_p = L_{22})$ inductance

 ${\it Lieberman Minicourse 10}$


University of California, Berkeley -

PLANAR COIL FIELDS

• A ring-shaped plasma forms because

Induced electric field =
$$\begin{cases} 0, & \text{on axis} \\ \max, & \text{at } r \approx \frac{1}{2} R_{\text{wall}} \\ 0, & \text{at } r = R_{\text{wall}} \end{cases}$$

• Measured radial variation of B_r (and E_{θ}) at three distances below the window (5 mTorr argon, 500 W, Hopwood et al, 1993)

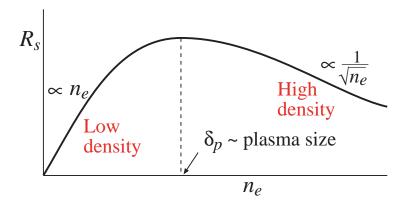
INDUCTIVE DISCHARGES

POWER BALANCE

 ${\it LiebermanMinicourse10}$

- University of California, Berkeley -

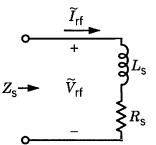
51

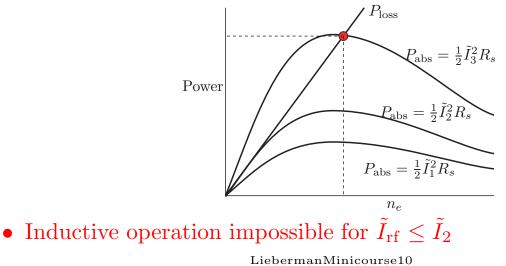

- PLASMA

RESISTANCE AT HIGH AND LOW DENSITIES

• Plasma resistance seen by the coil [p. 45]

$$R_{s} = R_{p} \frac{\omega^{2} L_{12}^{2}}{R_{p}^{2} + \omega^{2} L_{p}^{2}}$$

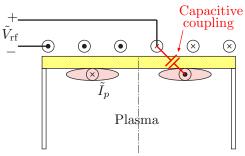

- High density (normal inductive operation) [p. 45] $R_s \propto R_p \propto \frac{1}{\sigma_{\rm dc}\delta_p} \propto \frac{1}{\sqrt{n_e}}$
- Low density (skin depth > plasma size) $R_s \propto$ number of electrons in the heating volume $\propto n_e$


LiebermanMinicourse10

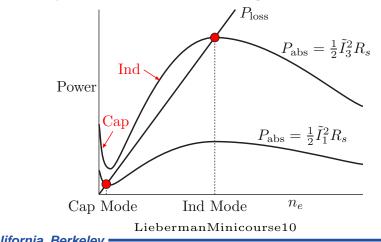
POWER BALANCE

• Drive discharge with rf current

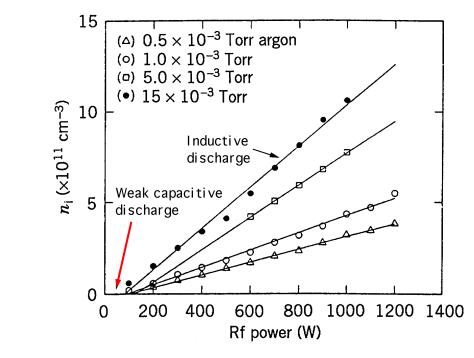
- Power absorbed by discharge is $P_{\rm abs} = \frac{1}{2} |\tilde{I}_{\rm rf}|^2 R_s(n_e)$ [p. 45] Power lost by discharge $P_{\rm loss} \propto n_e$ [p. 33]
- Intersection (red dot) gives operating point; let $\tilde{I}_1 < \tilde{I}_2 < \tilde{I}_3$



PLASMA


University of California, Berkeley

CAPACITIVE COUPLING OF COIL TO PLASMA


• For \tilde{I}_{rf} below the minimum current \tilde{I}_2 , there is only a weak capacitive coupling of the coil to the plasma

• A small capacitive power is absorbed \implies low density capacitive discharge

MEASURMENTS OF ARGON ION DENSITY

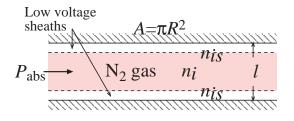
- Above 100 W, discharge is inductive and $n_e \propto P_{\rm abs}$
- Below 100 W, a weak capacitive discharge is present

LiebermanMinicourse10

University of California, Berkeley

REACTIVE NEUTRAL BALANCE IN DISCHARGES

 ${\it LiebermanMinicourse10}$


University of California, Berkeley -

56

- PLASMA

PLANE-PARALLEL DISCHARGE

• Example of N₂ discharge with low fractional ionization $(n_g \approx n_{N_2})$ and planar 1D geometry $(l \ll R)$

• Determine T_e

Ion particle balance is [p. 29]

 $K_{\rm iz} n_g n_i lA \approx 2 n_{is} u_B A$

where $n_{is} = h_l n_i$ with $h_l = 0.86/(3 + l/2\lambda_i)^{1/2}$ [p. 26]

$$\frac{K_{\rm iz}({\rm T}_e)}{u_B({\rm T}_e)} \approx \frac{2h_l}{n_g l} \Longrightarrow {\rm T}_e$$

LiebermanMinicourse10

University of California, Berkeley

57

PLANE-PARALLEL DISCHARGE (CONT'D)

• Determine edge plasma density n_{is} Overall discharge power balance [p. 33] gives the plasma density at the sheath edge

$$n_{is} \approx \frac{P_{\rm abs}}{2e\mathcal{E}_T u_B A}$$

• Determine central plasma density [p. 26]

$$n_i = \frac{n_{is}}{h_l}$$

• Determine ion flux to the surface [p. 26]

$$\Gamma_{is} \approx n_{is} u_B$$

• Determine ion bombarding energy [p. 31]

$$\mathcal{E}_i = 5.2 \,\mathrm{T}_e$$

University of California, Berkeley

 ${\it LiebermanMinicourse10}$

REACTIVE NEUTRAL BALANCE

• For nitrogen atoms

$$e + N_2 \xrightarrow{K_{diss}} 2N + e$$

• Assume low fractional dissociation and loss of N atoms only due to a vacuum pump S_p (m³/s)

$$Al\frac{dn_{\rm N}}{dt} = Al\,2K_{\rm diss}n_gn_i - S_pn_{\rm NS} = 0$$

• Solve for reactive neutral density at the surface

$$n_{\rm NS} = K_{\rm diss} \frac{2Aln_g}{S_p} n_i$$

• Flux of N atoms to the surface

$$\Gamma_{\rm NS} = \frac{1}{4} n_{\rm NS} \bar{v}_{\rm N}$$

where $\bar{v}_{\rm N} = (8kT_{\rm N}/\pi M_{\rm N})^{1/2}$

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

59

LOADING EFFECT

• Consider recombination and/or reaction of N atoms on surfaces

$$N + \text{wall} \xrightarrow{\gamma_{\text{rec}}} \frac{1}{2}N_2$$
$$N + \text{substrate} \xrightarrow{\gamma_{\text{reac}}} \text{product}$$

• Pumping speed S_p in the expression for n_{NS} [p. 59] is replaced by $S_p \longrightarrow S_p + \gamma_{\rm rec} \frac{1}{4} \bar{v}_{\rm N} (2A - A_{\rm subs}) + \gamma_{\rm reac} \frac{1}{4} \bar{v}_{\rm N} A_{\rm subs}$

 $A_{\rm subs}$ is the part of the substrate area reacting with N atoms

- n_{NS} is reduced due to recombination and reaction losses
- $n_{\rm NS}$, and therefore etch and deposition rates, now depend on the part of the substrate area $A_{\rm subs}$ exposed to the reactive neutrals, a *loading effect*

University of California, Berkeley

60

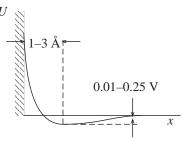
4SM

ADSORPTION AND DESORPTION KINETICS

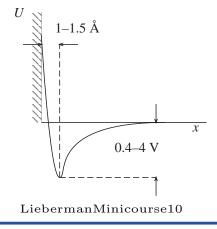
 ${\it LiebermanMinicourse10}$

- University of California, Berkeley -

61


- PLASMA

ADSORPTION


• Reaction of a molecule with the surface

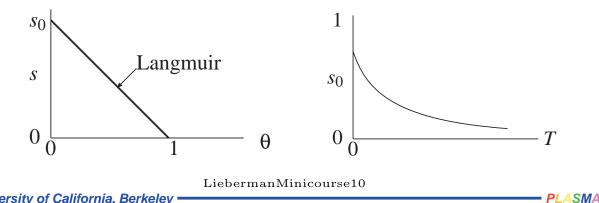
$$\mathbf{A} + \mathbf{S} \underset{K_d}{\overset{K_a}{\longleftrightarrow}} \mathbf{A} : \mathbf{S}$$

• Physisorption (due to weak van der Waals forces)

• Chemisorption (due to formation of chemical bonds)

STICKING COEFFICIENT

• Adsorbed flux [p. 13]


$$\Gamma_{\rm ads} = s\Gamma_A = s \cdot \frac{1}{4} n_{AS} \bar{v}_A$$

 $s(\theta, T) = \text{sticking coefficient}$ $\theta =$ fraction of surface sites covered with absorbate $n_{AS} = \text{gas phase density of A near the surface}$ $\bar{v}_A = (8kT_A/\pi M_A)^{1/2}$ = mean thermal speed of A

• Langmuir kinetics

$$s(\theta, \mathbf{T}) = s_0(1-\theta)$$

 $s_0 = \text{zero-coverage sticking coefficient } (s_0 \sim 10^{-6} - 1)$

University of California, Berkeley

DESORPTION

$$\mathbf{A}:\mathbf{S}\xrightarrow{K_d}\mathbf{A}+\mathbf{S}$$

• Rate coefficient has "Arrhenius" form

$$K_d = K_{d0} \,\mathrm{e}^{-\mathcal{E}_{\mathrm{desor}}/\mathrm{T}}$$

where $\mathcal{E}_{desor} = \mathcal{E}_{chemi}$ or \mathcal{E}_{physi}

• Pre-exponential factors are typically

$$K_{d0} \sim 10^{14} - 10^{16} \text{ s}^{-1}$$
 physisorption
 $\sim 10^{13} - 10^{15} \text{ s}^{-1}$ chemisorption

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

64

ADSORPTION-DESORPTION KINETICS

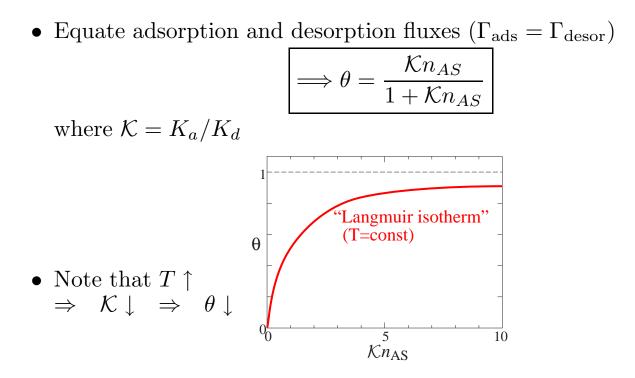
• Consider the reactions

$$\mathbf{A} + \mathbf{S} \underset{K_d}{\overset{K_a}{\longleftrightarrow}} \mathbf{A} : \mathbf{S}$$

• Adsorbed flux is [p. 63]

$$\Gamma_{\rm ads} = K_a n_{AS} n'_0 (1 - \theta)$$

 $n'_0 = \text{area density (m^{-2}) of adsorption sites}$
 $n_{AS} = \text{the gas phase density at the surface}$
 $K_a = s_0 \frac{1}{4} \bar{v}_A / n'_0 \qquad [\text{m}^3/\text{s}] \qquad \text{(adsorption rate coef)}$


• Desorbed flux \propto area density $n_0^{\prime}\theta$ of covered sites [p. 64]

$$\Gamma_{\rm desor} = K_d n_0' \theta$$

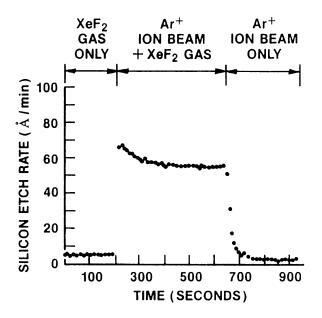
 ${\it LiebermanMinicourse10}$

University of California, Berkeley

ADSORPTION-DESORPTION KINETICS (CONT'D)

66

PLASMA-ASSISTED ETCH KINETICS


 ${\it LiebermanMinicourse10}$

- University of California, Berkeley -

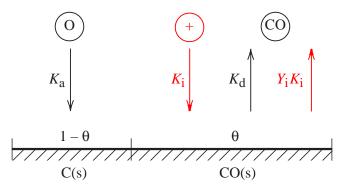
67

- PLASMA

ION-ENHANCED PLASMA ETCHING

1. Low chemical etch rate of silicon substrate in XeF_2 etchant gas

- 2. Tenfold increase in etch rate with $XeF_2 + 500$ V argon ions, simulating ion-enhanced plasma etching
- 3. Very low "etch rate" due to the physical sputtering of silicon by ion bombardment alone


LiebermanMinicourse10

PLASM

University of California, Berkeley

STANDARD MODEL OF ETCH KINETICS

• O atom etching of a carbon substrate

• Let $n'_0 = \text{active surface sites}/\text{m}^2$

• Let θ = fraction of surface sites covered with C : O bonds

$$O(g) + C(s) \xrightarrow{K_a} C : O \qquad (O \text{ atom adsorption})$$
$$C : O \xrightarrow{K_d} CO(g) \qquad (CO \text{ thermal desorption})$$
$$ion + C : O \xrightarrow{Y_i K_i} CO(g) \qquad (CO \text{ ion-assisted desorption})$$

LiebermanMinicourse10

University of California, Berkeley

SURFACE COVERAGE

- The steady-state surface coverage is found from [pp. 65–66] $\frac{d\theta}{dt} = K_a n_{\rm OS} (1-\theta) - K_d \theta - Y_i K_i n_{\rm is} \theta = 0$
- $n_{\rm OS}$ is the O-atom density near the surface $n_{\rm is}$ is the ion density at the plasma-sheath edge
- K_a is the rate coefficient for O-atom adsorption K_d is the rate coefficient for thermal desorption of CO $K_i = u_B/n'_0$ is the rate coefficient for ions incident on the surface
- Y_i is the yield of CO molecules desorbed per ion incident on a fully covered surface

Typically $Y_i \gg 1$ and $Y_i \approx Y_{i0}\sqrt{\mathcal{E}_i - \mathcal{E}_{\text{thr}}}$ (as for sputtering)

$$\implies \theta = \frac{K_a n_{\rm OS}}{K_a n_{\rm OS} + K_d + Y_i K_i n_{\rm is}}$$

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

70

ETCH RATES

- The flux of CO molecules leaving the surface is $\Gamma_{\rm CO} = (K_d + Y_i K_i n_{\rm is}) \theta n'_0 \qquad [{\rm m}^{-2} - {\rm s}^{-1}]$ with n'_0 = number of surface sites/m²
- The vertical etch rate is

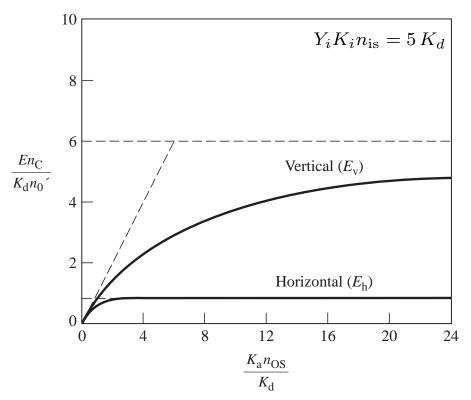
$$E_v = \frac{\Gamma_{\rm CO}}{n_{\rm C}}$$
 [m/s]

where $n_{\rm C}$ is the carbon atom density of the substrate

• The vertical (ion-enhanced) etch rate is

$$E_{v} = \frac{n_{0}'}{n_{\rm C}} \frac{1}{\frac{1}{K_{d} + Y_{i}K_{i}n_{\rm is}} + \frac{1}{K_{a}n_{\rm OS}}}$$

• The horizontal (non ion-enhanced) etch rate is


$$E_{h} = \frac{n_{0}'}{n_{\rm C}} \frac{1}{\frac{1}{K_{d}} + \frac{1}{K_{a} n_{\rm OS}}}$$

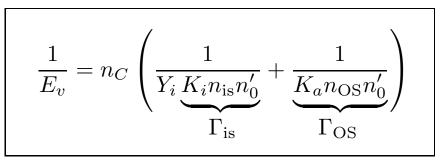
PLASMA

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

NORMALIZED ETCH RATES

- High O-atom flux \Rightarrow highest anisotropy $E_v/E_h = 1 + Y_i K_i n_{is}/K_d$
- Low O-atom flux \Rightarrow low etch rates with $E_v/E_h \rightarrow 1$


 ${\it Lieberman Minicourse 10}$

University of California, Berkeley

72

SIMPLEST MODEL OF ION-ENHANCED ETCHING

• In the usual ion-enhanced regime $Y_i K_i n_{is} \gg K_d$

- The ion and neutral fluxes and the yield (a function of ion energy) determine the ion-assisted etch rate
- The discharge parameters set the ion and neutral fluxes and the ion bombarding energy

LiebermanMinicourse10

University of California, Berkeley

ADDITIONAL CHEMISTRY AND PHYSICS

• Sputtering of carbon

$$\Gamma_{\rm C} = \gamma_{\rm sput} K_i n_{\rm is} n_0'$$

- Associative and normal desorption of O atoms, $C: O \longrightarrow C + O(g)$ $2C: O \longrightarrow 2C + O_2(g)$
- Ion energy driven desorption of O atoms ions + C : O \longrightarrow C + O(g)
- Formation and desorption of CO_2 as an etch product
- Non-zero ion angular bombardment of sidewall surfaces
- Deposition kinetics (C-atoms, etc)

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

74

SUMMARY

- Plasma discharges are widely used for materials processing and are indispensible for microelectronics fabrication
- The charged particle balance determines the electron temperature and ion bombarding energy to the substrate $\implies Y_i(\mathcal{E}_i)$
- The energy balance determines the plasma density and the ion flux to the substrate $\implies \Gamma_{is}$
- A transformer model determines the relation among voltage, current, and power for inductive discharges
- The reactive neutral balance determines the flux of reactive neutrals to the surface $\implies \Gamma_{OS}$
- Hence the discharge parameters (power, pressure, geometry, etc) set the ion and neutral fluxes and the ion bombarding energy
- The ion and neutral fluxes and the yield (a function of ion energy) determine the ion-assisted etch rate

 ${\it LiebermanMinicourse10}$

University of California, Berkeley

THANK YOU FOR ATTENDING THIS COURSE

MIKE LIEBERMAN

LiebermanMinicourse10

University of California, Berkeley

76