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OUTLINE

• Introduction

• Summary of Plasma and Discharge Fundamentals

• Global Model of Discharge Equilibrium

— Break —

• Inductive Discharges

• Reactive Neutral Balance in Discharges

• Adsorption and Desorption Kinetics

• Plasma-Assisted Etch Kinetics
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INTRODUCTION TO PLASMA DISCHARGES

AND PROCESSING
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THE NANOELECTRONICS REVOLUTION

• Transistors/chip doubling every 11
2–2 years since 1959

• 1,000,000-fold decrease in cost for the same performance

EQUIVALENT AUTOMOTIVE ADVANCE

• 4 million km/hr

• 1 million km/liter

• Never break down

• Throw away rather than pay parking fees

• 3 cm long × 1 cm wide

• Crash 3× a day
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EVOLUTION OF ETCHING DISCHARGES
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ISOTROPIC PLASMA ETCHING

1. Start with inert molecular gas CF4

2. Make discharge to create reactive species:
CF4 −→ CF3 + F

3. Species reacts with material, yielding volatile product:
Si + 4F −→ SiF4 ↑

4. Pump away product

ANISOTROPIC PLASMA ETCHING

5. Energetic ions bombard trench bottom, but not sidewalls:
(a) Increase etching reaction rate at trench bottom
(b) Clear passivating films from trench bottom

Mask

Plasma
Ions
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PLASMA DENSITY VERSUS TEMPERATURE
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RELATIVE DENSITIES AND ENERGIES

Charged particle densities ≪ neutral particle densities
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NON-EQUILIBRIUM

• Energy coupling between electrons and heavy particles is weak

Input

Electrons Ions

Neutrals

strong

power

Walls

Walls

Walls

strong

strongweak

weak
weak

• Electrons are not in thermal equilibrium with ions or neutrals

Te ≫Ti in plasma bulk

Bombarding Ei ≫ Ee at wafer surface

• “High temperature processing at low temperatures”
1. Wafer can be near room temperature
2. Electrons produce free radicals =⇒ chemistry
3. Electrons produce electron-ion pairs =⇒ ion bombardment
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ELEMENTARY DISCHARGE BEHAVIOR

• Uniform density of electrons and ions ne and ni at time t = 0
• Low mass warm electrons quickly drain to the wall, forming sheaths

• Ion bombarding energy Ei
= plasma-wall potential Vp

• Separation into bulk plasma and sheaths occurs for ALL discharges
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SUMMARY OF PLASMA FUNDAMENTALS
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THERMAL EQUILIBRIUM PROPERTIES

• Electrons generally near thermal equilibrium
Ions generally not in thermal equilibrium

• Maxwellian distribution of electrons

fe(v) = ne

(
m

2πkTe

)3/2

exp

(
−mv2

2kTe

)

where v2 = v2
x + v2

y + v2
z

fe(vx)

vxvTe =
(kTe/m)1/2

• Pressure p = nkT
For neutral gas at room temperature (300 K)

ng[cm
−3] ≈ 3.3× 1016 p[Torr]
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AVERAGES OVER MAXWELLIAN DISTRIBUTION

• Average energy
〈 12mv2〉 = 1

ne

∫
d3v 1

2mv2fe(v) = 3
2kTe

• Average speed

v̄e =
1

ne

∫
d3v vfe(v) =

(
8kTe

πm

)1/2

• Average electron flux lost to a wall

x

y

z Γe [m–2s–1]

Γe =

∫ ∞

−∞

dvx

∫ ∞

−∞

dvy

∫ ∞

0

dvzvzfe(v) =
1

4
nev̄e [m−2-s−1]

• Average kinetic energy lost per electron lost to a wall

Ee = 2 Te
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FORCES ON PARTICLES

• For a unit volume of electrons (or ions)

mne
due

dt
= qneE−∇pe −mneνmue

mass × acceleration = electric field force +
+ pressure gradient force + friction (gas drag) force

• m = electron mass
ne = electron density
ue = electron flow velocity
q = −e for electrons (+e for ions)
E = electric field
pe = nekTe = electron pressure
νm = collision frequency of electrons with neutrals

x

pe

pe(x) pe(x + dx) ue

Drag
force

Neutrals

x x + dx

∇pe
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BOLTZMANN FACTOR FOR ELECTRONS

• If electric field and pressure gradient forces almost balance
0 ≈ −eneE−∇pe

• Let E = −∇Φ and pe = nekTe

∇Φ =
kTe

e

∇ne

ne
• Put kTe/e = Te (volts) and integrate to obtain

ne(r) = ne0 eΦ(r)/Te

Φ

x

m
x

ne

ne0
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PLASMA DIELECTRIC CONSTANT ǫp

• RF discharges are driven at a frequency ω

E(t) = Re (Ẽ ejωt), etc.

• Define ǫp from the total current in Maxwell’s equations

∇× H̃ = J̃c + jωǫ0Ẽ︸ ︷︷ ︸ ≡ jωǫpẼ

Total current J̃

• Conduction current is J̃c = −eneũe

Newton’s law is jωmũe = −eẼ −mνmũe

Solve for ũe and evaluate J̃c to obtain

ǫp ≡ ǫ0κp = ǫ0

[
1− ω2

pe

ω(ω − jνm)

]

with ωpe = (e2ne/ǫ0m)1/2 the electron plasma frequency

• For ω ≫ νm, ǫp is mainly real (nearly lossless dielectric)
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PLASMA CONDUCTIVITY σp

• It is useful to introduce rf plasma conductivity J̃c ≡ σpẼ

• Since J̃c is a linear function of Ẽ [p. 16]

σp =
e2ne

m(νm + jω)

• DC plasma conductivity (ω ≪ νm)

σdc =
e2ne

mνm

• RF current flowing through the plasma heats electrons
(just like a resistor)
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SUMMARY OF DISCHARGE FUNDAMENTALS
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ELECTRON COLLISIONS WITH ARGON

• Maxwellian electrons collide with Ar atoms (density ng)
# collisions of a particular kind

s-m3 = νne = Kng ne

ν = collision frequency [s−1], K(Te) = rate coefficient [m3/s]

• Electron-Ar collision processes
e + Ar −→ Ar+ + 2e (ionization)
e + Ar −→ e + Ar∗ −→ e + Ar + photon (excitation)
e + Ar −→ e + Ar (elastic scattering) e

Ar
Ar

e

• Rate coefficient K(Te) is average of cross section σ(vR) [m2]
over Maxwellian distribution

K(Te) = 〈σ vR〉Maxwellian

vR = relative velocity of colliding particles

LiebermanMinicourse10 19



University of California, Berkeley PLASMA

ELECTRON-ARGON RATE COEFFICIENTS
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ION COLLISIONS WITH ARGON

• Argon ions collide with Ar atoms
Ar+ + Ar −→ Ar+ + Ar (elastic scattering)
Ar+ + Ar −→ Ar + Ar+ (charge transfer)

Ar
Ar

Ar+

Ar+

Ar

Ar

Ar+

Ar+

• Total cross section for room temperature ions σi ≈ 10−14 cm2

• Ion-neutral mean free path (distance ion travels before colliding)

λi =
1

ngσi

• Practical formula

λi(cm) =
1

330 p
, p in Torr

LiebermanMinicourse10 21



University of California, Berkeley PLASMA

THREE ENERGY LOSS PROCESSES

1. Collisional energy Ec lost per electron-ion pair created

KizEc = KizEiz + KexEex + Kel(2m/M)(3Te/2)

=⇒ Ec(Te) (voltage units)

Eiz, Eex, and (3m/M)Te are energies lost by an electron due to an
ionization, excitation, and elastic scattering collision

2. Electron kinetic energy lost to walls

Ee = 2 Te

3. Ion kinetic energy lost to walls is mainly due to the dc potential V̄s

across the sheath
Ei ≈ V̄s

• Total energy lost per electron-ion pair lost to walls

ET = Ec + Ee + Ei
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COLLISIONAL ENERGY LOSSES
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BOHM (ION LOSS) VELOCITY uB

Plasma Sheath Wall

Density ns

uB

• Due to formation of a “presheath”, ions arrive at the plasma-sheath
edge with directed energy kTe/2

1

2
Mu2

i =
kTe

2

• Electron-ion pairs are lost at the Bohm velocity at the plasma-sheath
edge (density ns)

ui = uB =

(
kTe

M

)1/2
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STEADY STATE DIFFUSION

• Particle balance: losses to walls = creation in volume

∇ · Γe,i = νizne

• Ambipolar: equal fluxes (and densities) of electrons and ions

Γ = −Da∇n
Da = kTe/Mνi = ambipolar diffusion coefficient

• Boundary condition: Γwall = nsuB at plasma-sheath edge

0
x

ns

n0

Γwall Γwall

l/2−l/2

=⇒ hl ≡ ns/n0 = edge-to-center density ratio
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PLASMA DIFFUSION AT LOW PRESSURES

• Plasma density profile is relatively flat in the center and falls
sharply near the sheath edge

0
x

ns

n0

Γwall Γwall

l/2−l/2

• Ion and electron loss flux to the wall is
Γwall = nsuB ≡ hln0uB

• The edge-to-center density ratio is

hl ≡
ns

n0
≈ 0.86

(3 + l/2λi)
1/2

where λi = ion-neutral mean free path [p. 21]
• Applies for pressures < 100 mTorr in argon
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PLASMA DIFFUSION IN
LOW PRESSURE CYLINDRICAL DISCHARGE

R

l

Plasma

ne = ni = n0

nsl = hl n0

nsR = hR n0

• Loss fluxes to the axial and radial walls are
Γaxial = hln0uB , Γradial = hRn0uB

where the edge-to-center density ratios are

hl ≈
0.86

(3 + l/2λi)
1/2

, hR ≈
0.8

(4 + R/λi)
1/2

• Applies for pressures < 100 mTorr in argon

LiebermanMinicourse10 27



University of California, Berkeley PLASMA

GLOBAL MODEL OF DISCHARGE EQUILIBRIUM
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PARTICLE BALANCE AND Te

• Assume uniform cylindrical plasma absorbing power Pabs

R

l

PlasmaPabs

ne = ni = n0

• Particle balance

Production due to ionization = loss to the walls

Kizngn0πR2l = (2πR2hln0 + 2πRlhRn0)uB/ / /

• Solve to obtain

Kiz(Te)

uB(Te)
=

1

ngdeff

where

deff =
1

2

Rl

Rhl + lhR

is an effective plasma size
• Given ng and deff =⇒ electron temperature Te

• Te varies over a narrow range of 2–5 volts
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ELECTRON TEMPERATURE IN ARGON DISCHARGE
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ION ENERGY FOR LOW VOLTAGE SHEATHS

• Ei = energy entering sheath + energy gained traversing sheath
• Ion energy entering sheath = Te/2 (voltage units)
• Sheath voltage determined from particle conservation

Plasma Sheath

+ −

Γi Γi

Γe

V̄s

Insulating
wall

Density ns
~ 0.2 mm

Γi = nsuB , Γe = 1
4nsv̄e︸ ︷︷ ︸

e−V s/Te

with v̄e = (8eTe/πm)1/2 Random flux
at sheath edge

• The ion and electron fluxes at the wall must balance

V s =
Te

2
ln

(
M

2πm

)

or V s ≈ 4.7 Te for argon
• Accounting for the initial ion energy, Ei ≈ 5.2 Te
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ION ENERGY FOR HIGH VOLTAGE SHEATHS

• Large ion bombarding energies can be gained near
rf-driven electrodes

+– –+

Clarge

+–

~
Vrf

~
Vrf

Low voltage
sheath ~ 5.2 Te

Plasma

Plasma

s

Vs

VsVs

Vs ~ 0.4 Vrf

Vs ~ 0.8 Vrf

• The sheath thickness s is given by the Child law

J̄i = ensuB =
4

9
ǫ0

(
2e

M

)1/2
V̄

3/2
s

s2

• Estimating ion energy is not simple as it depends on the type of
discharge and the application of rf or dc bias voltages

LiebermanMinicourse10 32



University of California, Berkeley PLASMA

POWER BALANCE AND n0

• Assume low voltage sheaths at all surfaces
ET (Te) = Ec(Te)︸ ︷︷ ︸ + 2 Te︸︷︷︸ + 5.2 Te︸ ︷︷ ︸

Collisional Electron Ion
• Power balance

Power in = power out

Pabs = (hln02πR2 + hRn02πRl) uB eET
• Solve to obtain

n0 =
Pabs

AeffuBeET
where

Aeff = 2πR2hl + 2πRlhR

is an effective area for particle loss

• Density n0 is proportional to the absorbed power Pabs

• Density n0 depends on pressure p through hl, hR, and Te
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PARTICLE AND POWER BALANCE

• Particle balance =⇒ electron temperature Te

(independent of plasma density)

• Power balance =⇒ plasma density n0

(once electron temperature Te is known)
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EXAMPLE 1

• Let R = 0.15 m, l = 0.3 m, ng = 3.3× 1019 m−3 (p = 1 mTorr
at 300 K), and Pabs = 800 W

• Assume low voltage sheaths at all surfaces

• Find λi = 0.03 m. Then hl ≈ hR ≈ 0.3 and deff ≈ 0.17 m
[pp. 21, 27, 29]

• From the Te versus ngdeff figure, Te ≈ 3.5 V [p. 30]

• From the Ec versus Te figure, Ec ≈ 42 V [p. 23].
Adding Ee = 2Te ≈ 7 V and Ei ≈ 5.2Te ≈ 18 V yields
ET = 67 V [p. 22]

• Find uB ≈ 2.9× 103 m/s and find Aeff ≈ 0.13 m2 [pp. 24, 33]

• Power balance yields n0 ≈ 2.0× 1017 m−3 [p. 33]

• Ion current density Jil = ehln0uB ≈ 2.9 mA/cm2

• Ion bombarding energy Ei ≈ 18 V [p. 31]
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EXAMPLE 2

• Apply a strong dc magnetic field along the cylinder axis
=⇒ particle loss to radial wall is inhibited

• Assume no radial losses, then deff = l/2hl ≈ 0.5 m
• From the Te versus ngdeff figure, Te ≈ 3.3 V (was 3.5 V)
• From the Ec versus Te figure, Ec ≈ 46 V. Adding Ee = 2Te ≈ 6.6 V

and Ei ≈ 5.2Te ≈ 17 V yields ET = 70 V
• Find uB ≈ 2.8× 103 m/s and find Aeff = 2πR2hl ≈ 0.043 m2

• Power balance yields n0 ≈ 5.8× 1017 m−3 (was 2× 1017 m−3)

• Ion current density Jil = ehln0uB ≈ 7.8 mA/cm2

• Ion bombarding energy Ei ≈ 17 V

=⇒ Slight decrease in electron temperature Te

=⇒ Significant increase in plasma density n0

EXPLAIN WHY!

• What happens to Te and n0 if there is a sheath voltage
Vs = 500 V at each end plate?
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ELECTRON HEATING MECHANISMS

• Discharges can be distinguished by electron heating mechanisms

(a) Ohmic (collisional) heating (capacitive, inductive discharges)

(b) Stochastic (collisionless) heating (capacitive, inductive
discharges)

(c) Resonant wave-particle interaction heating (Electron cyclotron
resonance and helicon discharges)

• Although the heated electrons provide the ionization required to
sustain the discharge, the electrons tend to short out the applied
heating fields within the bulk plasma

• Achieving adequate electron heating is a key issue
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INDUCTIVE DISCHARGES

DESCRIPTION AND MODEL
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MOTIVATION

• High density (compared to capacitive discharge)

• Independent control of plasma density and ion energy

• Simplicity of concept

• RF rather than microwave powered

• No source magnetic fields
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CYLINDRICAL AND PLANAR CONFIGURATIONS

• Cylindrical coil

• Planar coil
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HIGH DENSITY REGIME

• Inductive coil launches decaying wave into plasma

z

Coil

Plasma

Ẽ

H̃

Window

Decaying wave

δp

• Wave decays exponentially into plasma

Ẽ = Ẽ0 e−z/δp , δp =
c

ω

1

Im(κ
1/2
p )

where κp = plasma dielectric constant [p. 16]

κp = 1− ω2
pe

ω(ω − jνm)
For typical high density, low pressure (νm ≪ ω) discharge

δp ≈
c

ωpe
∼ 1–2 cm
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TRANSFORMER MODEL

• For simplicity consider a long cylindrical discharge

Plasma

l

R
b

z

N turn coil Ĩrf

Ĩpδp

• Current Ĩrf in N turn coil induces current Ĩp in 1-turn
plasma skin

=⇒ A transformer
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PLASMA RESISTANCE AND INDUCTANCE

• Plasma resistance Rp

Rp =
1

σdc

circumference of plasma loop

average cross sectional area of loop
where [p. 17]

σdc =
e2nes

mνm
with nes = density at plasma-sheath edge

=⇒ Rp =
πR

σdclδp

• Plasma inductance Lp

Lp =
magnetic flux produced by plasma current

plasma current
• Using magnetic flux = πR2µ0Ĩp/l

=⇒ Lp =
µ0πR2

l
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COUPLING OF COIL TO PLASMA

• Model the source
as a transformer

Ṽrf = jωL11Ĩrf + jωL12Ĩp

Ṽp = jωL21Ĩrf + jωL22Ĩp

• Transformer inductances

L11 =
magnetic flux linking coil

coil current
=

µ0πb2N 2

l

L12 = L21 =
magnetic flux linking plasma

coil current
=

µ0πR2N
l

L22 = Lp =
µ0πR2

l
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SOURCE CURRENT AND VOLTAGE

• Put Ṽp = −ĨpRp in transformer equations and solve for the

impedance Zs = Ṽrf/Ĩrf seen at coil terminals

Zs = jωL11 +
ω2L2

12

Rp + jωLp
≡ Rs + jωLs

• Equivalent circuit at coil terminals

Rs = N 2 πR

σdclδp

Ls =
µ0πR2N 2

l

(
b2

R2
− 1

)

• Power balance =⇒ Ĩrf

Pabs =
1

2
Ĩ2
rfRs

• From source impedance =⇒ Vrf

Ṽrf = ĨrfZs
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EXAMPLE

• Assume plasma radius R = 10 cm, coil radius b = 15 cm, length l = 20 cm,
N = 3 turns, gas density ng = 6.6×1014 cm−3 (20 mTorr argon at 300 K),
ω = 85 × 106 s−1 (13.56 MHz), absorbed power Pabs = 600 W, and low
voltage sheaths

• At 20 mTorr, λi ≈ 0.15 cm, hl ≈ hR ≈ 0.1, deff ≈ 34 cm [pp. 21, 27, 29]
• Particle balance (Te versus ngdeff figure [p. 30]) yields Te ≈ 2.1 V
• Collisional energy losses (Ec versus Te figure [p. 23]) are Ec ≈ 110 V.

Adding Ee + Ei = 7.2Te yields total energy losses ET ≈ 126 V [p. 22]
• uB ≈ 2.3 × 105 cm/s [p. 24] and Aeff ≈ 185 cm2 [p. 33]
• Power balance yields ne ≈ 7.1 × 1011 cm−3 and nse ≈ 7.4 × 1010 cm−3

[p. 33]

• Use nse to find skin depth δp ≈ 2.0 cm [p. 41]; estimate νm = Kelng

(Kel versus Te figure [p. 20]) to find νm ≈ 3.4 × 107 s−1

• Use νm and nse to find σdc ≈ 61 Ω−1-m−1 [p. 17]
• Evaluate impedance elements Rs ≈ 23.5 Ω and Ls ≈ 2.2 µH;

|Zs| ≈ ωLs ≈ 190 Ω [p. 45]
• Power balance yields Ĩrf ≈ 7.1A; from source impedance |Zs| = 190 Ω,

Ṽrf ≈ 1360 V [p. 45]
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MATCHING DISCHARGE TO POWER SOURCE

• Consider an rf power source connected to a discharge

~

+

−

ṼT

ZT

Ĩ

Ṽ

+

−

ZL

Source Discharge

• Source impedance ZT = RT + jXT is given
Discharge impedance ZL = RL + jXL

• Time-average power delivered to discharge Pabs = 1
2Re (Ṽ Ĩ∗)

• For fixed source ṼT and ZT , maximize power delivered to discharge

XL = −XT

RL = RT

LiebermanMinicourse10 47



University of California, Berkeley PLASMA

MATCHING NETWORK

• Insert lossless matching network between power source and coil

Power source Matching network Discharge coil

• Continue EXAMPLE [p. 46] with Rs = 23.5 Ω and ωLs = 190 Ω;
assume RT = 50 Ω (corresponds to a conductance 1/RT = 1/50 S)

• Choose C1 such that the conductance seen looking to the right at
terminals AA′ is 1/50 S

=⇒ C1 = 71 pF

• Choose C2 to cancel the reactive part of the impedance seen at AA′

=⇒ C2 = 249 pF

• For Pabs = 600 W, the 50 Ω source supplies Ĩrf = 4.9 A

• Voltage at source terminals (AA′) = ĨrfRT = 245 V
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PLANAR COIL DISCHARGE

• Magnetic field produced by planar coil

• RF power is deposited in a ring-shaped plasma volume

Plasma

z

N turn coil
Ĩrf

Ĩp

δp

Primary
inductance

Coupling
inductance

Plasma
inductance

¾

• As for a cylindrical discharge, there is a primary (L11),
coupling (L12 = L21) and secondary (Lp = L22) inductance
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PLANAR COIL FIELDS

• A ring-shaped plasma forms because

Induced electric field =

{ 0, on axis
max, at r ≈ 1

2Rwall

0, at r = Rwall

• Measured radial variation of Br (and Eθ) at three distances below
the window (5 mTorr argon, 500 W, Hopwood et al, 1993)
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INDUCTIVE DISCHARGES

POWER BALANCE

LiebermanMinicourse10 51



University of California, Berkeley PLASMA

RESISTANCE AT HIGH AND LOW DENSITIES

• Plasma resistance seen by the coil [p. 45]

Rs = Rp
ω2L2

12

R2
p + ω2L2

p

• High density (normal inductive operation) [p. 45]

Rs ∝ Rp ∝
1

σdcδp
∝ 1√

ne

• Low density (skin depth > plasma size)
Rs ∝ number of electrons in the heating volume ∝ ne

Low
density

High
density

∝ ne

δp ~ plasma size

√ne
∝ 1

ne

Rs
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POWER BALANCE

• Drive discharge
with rf current

• Power absorbed by discharge is Pabs = 1
2 |Ĩrf |2Rs(ne) [p. 45]

Power lost by discharge Ploss ∝ ne [p. 33]

• Intersection (red dot) gives operating point; let Ĩ1 < Ĩ2 < Ĩ3

ne

Ploss

Pabs = 1
2 Ĩ2

1Rs

Pabs = 1
2 Ĩ2

2Rs

Pabs = 1
2 Ĩ2

3Rs

Power

• Inductive operation impossible for Ĩrf ≤ Ĩ2
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CAPACITIVE COUPLING OF COIL TO PLASMA

• For Ĩrf below the minimum current Ĩ2, there is only a weak
capacitive coupling of the coil to the plasma

Plasma

z

Ĩp

+

−
Ṽrf

coupling
Capacitive

• A small capacitive power is absorbed
=⇒ low density capacitive discharge

ne

Ploss

Pabs = 1
2 Ĩ2

1Rs

Pabs = 1
2 Ĩ2

3Rs

Power

Cap

Ind

Cap Mode Ind Mode
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MEASURMENTS OF ARGON ION DENSITY

• Above 100 W, discharge is inductive and ne ∝ Pabs

• Below 100 W, a weak capacitive discharge is present
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REACTIVE NEUTRAL BALANCE IN DISCHARGES
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PLANE-PARALLEL DISCHARGE

• Example of N2 discharge with low fractional ionization (ng ≈ nN2
)

and planar 1D geometry (l≪ R)

Pabs

A=πR2

N2 gas ni
nis

l
nis

Low voltage
sheaths

• Determine Te

Ion particle balance is [p. 29]

KizngnilA ≈ 2nisuBA

where nis = hlni with hl = 0.86/(3 + l/2λi)
1/2 [p. 26]

Kiz(Te)

uB(Te)
≈ 2hl

ngl
=⇒ Te
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PLANE-PARALLEL DISCHARGE (CONT’D)

• Determine edge plasma density nis

Overall discharge power balance [p. 33] gives the plasma density
at the sheath edge

nis ≈
Pabs

2eET uBA

• Determine central plasma density [p. 26]

ni =
nis

hl

• Determine ion flux to the surface [p. 26]

Γis ≈ nisuB

• Determine ion bombarding energy [p. 31]

Ei = 5.2 Te
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REACTIVE NEUTRAL BALANCE

• For nitrogen atoms

e + N2
Kdiss−→ 2N + e

• Assume low fractional dissociation and loss of N atoms only
due to a vacuum pump Sp (m3/s)

Al
dnN

dt
= Al 2Kdissngni − SpnNS = 0

• Solve for reactive neutral density at the surface

nNS = Kdiss
2Alng

Sp
ni

• Flux of N atoms to the surface

ΓNS =
1

4
nNS v̄N

where v̄N = (8kTN/πMN)1/2
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LOADING EFFECT

• Consider recombination and/or reaction of N atoms on surfaces

N + wall
γrec−→ 1

2N2

N + substrate
γreac−→ product

• Pumping speed Sp in the expression for nNS [p. 59] is replaced by

Sp −→ Sp + γrec
1

4
v̄N(2A−Asubs) + γreac

1

4
v̄NAsubs

Asubs is the part of the substrate area reacting with N atoms

• nNS is reduced due to recombination and reaction losses

• nNS , and therefore etch and deposition rates, now depend on
the part of the substrate area Asubs exposed to the reactive neutrals,
a loading effect
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ADSORPTION AND DESORPTION KINETICS
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ADSORPTION

• Reaction of a molecule with the surface

A + S
Ka−→←−
Kd

A: S

• Physisorption (due to weak van der Waals forces)
U

x

1–3 Å

0.01–0.25 V

• Chemisorption (due to formation of chemical bonds)
U

x

1–1.5 Å

0.4–4 V

LiebermanMinicourse10 62



University of California, Berkeley PLASMA

STICKING COEFFICIENT

• Adsorbed flux [p. 13]

Γads = sΓA = s · 1
4
nAS v̄A

s(θ, T ) = sticking coefficient
θ = fraction of surface sites covered with absorbate
nAS = gas phase density of A near the surface

v̄A = (8kTA/πMA)1/2 = mean thermal speed of A

• Langmuir kinetics
s(θ, T) = s0(1− θ)

s0 = zero-coverage sticking coefficient (s0 ∼ 10−6–1)

s

s0

0 0 1 θ

Langmuir
s0

0 0

1

T
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DESORPTION

A: S
Kd−→ A + S

• Rate coefficient has “Arrhenius” form

Kd = Kd0 e−Edesor/T

where Edesor = Echemi or Ephysi

• Pre-exponential factors are typically

Kd0 ∼ 1014–1016 s−1 physisorption

∼ 1013–1015 s−1 chemisorption
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ADSORPTION-DESORPTION KINETICS

• Consider the reactions

A + S
Ka−→←−
Kd

A: S

• Adsorbed flux is [p. 63]

Γads = KanASn′

0(1− θ)

n′
0 = area density (m−2) of adsorption sites

nAS = the gas phase density at the surface

Ka = s0
1

4
v̄A/n′

0 [m3/s] (adsorption rate coef)

• Desorbed flux ∝ area density n′
0θ of covered sites [p. 64]

Γdesor = Kdn
′

0θ
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ADSORPTION-DESORPTION KINETICS (CONT’D)

• Equate adsorption and desorption fluxes (Γads = Γdesor)

=⇒ θ =
KnAS

1 +KnAS

where K = Ka/Kd

00

1

5 10

θ

KnAS

“Langmuir isotherm”
  (T=const)

• Note that T ↑
⇒ K ↓ ⇒ θ ↓
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PLASMA-ASSISTED ETCH KINETICS
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ION-ENHANCED PLASMA ETCHING

1. Low chemical etch rate of silicon substrate in XeF2 etchant gas

2. Tenfold increase in etch rate with XeF2 + 500 V argon ions,
simulating ion-enhanced plasma etching

3. Very low “etch rate” due to the physical sputtering of silicon by
ion bombardment alone
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STANDARD MODEL OF ETCH KINETICS

• O atom etching of a carbon substrate

+

Ka Ki Kd Yi Ki

O CO

1 – θ θ

C(s) CO(s)

• Let n′
0 = active surface sites/m2

• Let θ = fraction of surface sites covered with C : O bonds

O(g) + C(s)
Ka−→ C : O (O atom adsorption)

C : O
Kd−→ CO(g) (CO thermal desorption)

ion + C : O
YiKi−→ CO(g) (CO ion-assisted desorption)
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SURFACE COVERAGE

• The steady-state surface coverage is found from [pp. 65–66]
dθ

dt
= KanOS(1− θ)−Kdθ − YiKinisθ = 0

• nOS is the O-atom density near the surface

nis is the ion density at the plasma-sheath edge

• Ka is the rate coefficient for O-atom adsorption

Kd is the rate coefficient for thermal desorption of CO

Ki = uB/n′
0 is the rate coefficient for ions incident on the surface

• Yi is the yield of CO molecules desorbed per ion incident on a
fully covered surface

Typically Yi ≫ 1 and Yi ≈ Yi0

√Ei − Ethr (as for sputtering)

=⇒ θ =
KanOS

KanOS + Kd + YiKinis
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ETCH RATES

• The flux of CO molecules leaving the surface is
ΓCO = (Kd + YiKinis) θ n′

0 [m−2-s−1]
with n′

0 = number of surface sites/m2

• The vertical etch rate is

Ev =
ΓCO

nC
[m/s]

where nC is the carbon atom density of the substrate

• The vertical (ion-enhanced) etch rate is

Ev =
n′

0

nC

1

1

Kd + YiKinis
+

1

KanOS

• The horizontal (non ion-enhanced) etch rate is

Eh =
n′

0

nC

1

1

Kd
+

1

KanOS
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NORMALIZED ETCH RATES

EnC

Kdn0´

0

KanOS

Kd

0

2

4

6

8

10

4 8 12 16 20 24

Vertical (Ev)

Horizontal (Eh)

YiKinis = 5 Kd

• High O-atom flux ⇒ highest anisotropy Ev/Eh = 1 + YiKinis/Kd

• Low O-atom flux ⇒ low etch rates with Ev/Eh → 1
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SIMPLEST MODEL OF ION-ENHANCED ETCHING

• In the usual ion-enhanced regime YiKinis ≫ Kd

1

Ev
= nC


 1

Yi Kinisn
′

0︸ ︷︷ ︸
+

1

KanOSn′

0︸ ︷︷ ︸




Γis ΓOS

• The ion and neutral fluxes and the yield (a function of ion energy)
determine the ion-assisted etch rate

• The discharge parameters set the ion and neutral fluxes and the ion
bombarding energy
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ADDITIONAL CHEMISTRY AND PHYSICS

• Sputtering of carbon
ΓC = γsputKinisn

′

0

• Associative and normal desorption of O atoms,
C : O −→ C + O(g)

2C : O −→ 2C + O2(g)

• Ion energy driven desorption of O atoms
ions + C : O −→ C + O(g)

• Formation and desorption of CO2 as an etch product

• Non-zero ion angular bombardment of sidewall surfaces

• Deposition kinetics (C-atoms, etc)
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SUMMARY

• Plasma discharges are widely used for materials processing and are
indispensible for microelectronics fabrication

• The charged particle balance determines the electron temperature
and ion bombarding energy to the substrate =⇒ Yi(Ei)

• The energy balance determines the plasma density and the ion flux
to the substrate =⇒ Γis

• A transformer model determines the relation among voltage, cur-
rent, and power for inductive discharges

• The reactive neutral balance determines the flux of reactive neutrals
to the surface =⇒ ΓOS

• Hence the discharge parameters (power, pressure, geometry, etc) set
the ion and neutral fluxes and the ion bombarding energy

• The ion and neutral fluxes and the yield (a function of ion energy)
determine the ion-assisted etch rate
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THANK YOU
FOR ATTENDING
THIS COURSE

MIKE LIEBERMAN
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