
UC Berkeley, CS 285 Fall 2023

REWARD MODELING FROM GPT4-VISION
PREFERENCES

Bryce Wong, Jonathan Lu & Laryn Qi ∗†

Electrical Engineering and Computer Science
University of California, Berkeley

1 EXTENDED ABSTRACT

Previously, researchers have determined that a human arbitrator can effectively train a reward model
for a reinforcement learning (RL) agent, as opposed to hand-engineering a reward for a task. With
the recent rise of vision-language models (VLMs), we attempt to replace the human arbitrator with
OpenAI’s GPT-4 VLM, as the VLM is much cheaper than using human labeling and we can benefit
from improvements in foundational models without much tinkering.

Our reward modeling setup is very similar to (Christiano et al., 2023)’s original structure, although
we conduct extensive experimentation with prompting and visual cues to aid the VLM. We use a
mixture of SAC and PPO for the policy training, where SAC is used initially to improve agent ex-
ploration during segment collection and PPO is used to optimize the final performance. The reward
model consists of an ensemble of simple MLP networks, and the model computes the reward of a
state by passing the state’s observation and action tensors into each MLP network and calculating
the average of each network’s output. More specific details can be found in the Design section.

We collect segments of agent trajectories to be rated by randomly sampling at each iteration through
the preference training loop. Then, an arbitrator (either human or VLM) compares pairs of segments
and selects the segment whose visual best satisfies the target task. We utilize these preferences to
train the reward model to assign higher rewards to segments that the arbitrator prefers.

We conducted experiments on a variety of Gymnasium environments (Brockman et al., 2016) with
varying degrees of success. For each environment, we used the results of human preference training
as the baseline to compare with VLM performance. First, we examined if VLM preference training
could solve CartPole. We tested a variety of prompts and visual cues in the image to guide the
model; however, we found that GPT4-Vision was unable to perform the task at all. We then tested
on LunarLander, to see if the model would be able to place the spaceship in the upper left corner of
the frame, which also did not work. Additionally, we also tried a few objectives with Walker2D to
see if the model could make the agent squat or do the splits. Ultimately, we found the splits task to
be most successful with the final agent achieving the splits goal around 60-70% of the time.

Figure 1: Walker2d trained to do splits using GPT4-V preferences. Video performance found here.

∗{brywong,jonathan.lu,larynqi}@berkeley.edu
†Names in alphabetical order

1

https://drive.google.com/file/d/1zFA_cIM3a-MNcNc584cbj-U3PXTM2m45/view?usp=sharing

UC Berkeley, CS 285 Fall 2023

2 INTRODUCTION

Within the past few years, significant progress has been made in the development of VLM’s, or
vision-language models. VLMs are unique in their ability to process both visual and text-based
inputs, allowing them to perform a much wider range of tasks. For example, a VLM can be trained
to generate captions for different input images, or answer questions about the contents of a visual
source (Alayrac et al., 2022). They’ve also been used as success detectors for specified tasks (Du
et al., 2023). This recent development motivates the aim of our project: determining whether a
reinforcement learning (RL) agent can leverage the world knowledge of pretrained VLMs to achieve
complex tasks.

Previous work has explored whether human preferences can be leveraged to effectively train a reward
model for an RL agent (Christiano et al., 2023). Although these methods are effective, they require
a lot of human interaction to train the RL agent, making this type of strategy extremely expensive
and time-consuming to operate. Our approach is to replace the ”human” component of this training
process with a VLM. As opposed to prior work, our method aims to use off-the-shelf, black box
models as currently, the most powerful VLMs are arguably proprietary, closed source models. Any
improvements to the base model can directly be incorporated into our system for better downstream
performance.

3 DESIGN

3.1 OVERVIEW

Our objective is to train an RL agent on a task with no predefined reward function using VLM
feedback. Our approach is two-fold: first, we use the world knowledge of VLMs to train a reward
model for a target task. The reward model will take in the observation and action from RL agent
rollouts and will be trained to assign higher rewards to observations that the VLM prefers. Then, we
use this reward model to directly train an agent using a state-of-the-art RL algorithm. Our training
loop is as follows:

1. The agent’s current policy π interacts with the environment and collects visual sources
(images or videos of its current observation) in addition to other raw information (obser-
vation/action tensors). The policy π’s parameters are updated using an RL algorithm from
Stable-Baselines3 to maximize the current reward function.

2. We create pairs of segments (s1, s2) from the trajectories collected from the previous step.

3. An external arbitrator compares pairs of collected segments and decides which segment is
closer to achieving the target goal.

4. The reward model is trained to fit the preferences specified by the arbitrator’s decisions.

5. Repeat

Here, we will utilize two different arbitrators for this task: a baseline human arbitrator and OpenAI’s
GPT-4 vision model (gpt-4-vision-preview). Also, although our approach supports segments of
arbitrary length, we evaluate on length one segments (i.e. images) for all our experiments to simplify
the task.

3.2 HANDLING PREFERENCES

In order to collect preferences throughout the entire training cycle, we implement a multiprocessing
architecture for our system. Namely, we have two processes, one to collect Segments and handle
the main training loop of the policy and reward models, and another to receive Segments and collect
preference ratings from a human or AI. We created a Preference Database that stores each snapshot
along a trajectory as a Segment object, where each Segment stores the visual frame(s) of the envi-
ronment, the observations, actions, and rewards that correspond to each frame. The database only
stores the last 100 Segments provided by the model to ensure that preferences are being chosen from
up-to-date data.

2

UC Berkeley, CS 285 Fall 2023

As Segments are added to the database, we use a custom Preference Interface (See Figure 2 and
Figure 3) to elicit feedback and generate data for the reward model to train on. At each iteration, we
sample two Segments (s1, s2) at random from the Preference Database and have the arbitrator (hu-
man / VLM) decide which visual source appears closer to achieving the current task. If the arbitrator
chooses s1, we assign that pair a probability distribution of [1, 0]; otherwise, we assign that pair a
probability distribution of [0, 1]. We also support a NEITHER choice, where the probability distri-
bution is uniform over the two; however, we found that this doesn’t work with GPT4-V sometimes
since the model will often hedge and output NEITHER unnecessarily.

Figure 2: Human-Labeling Preference Interface
The human arbitrator selects their preferred segment using a corresponding hotkey (LEFT, RIGHT,

NEITHER). After selection, the interface would refresh with a new pair of Segments.

3.3 POLICY TRAINING

We tested a few RL algorithms to train the policy, most notably PPO (Schulman et al., 2017) and
SAC (Haarnoja et al., 2018). During the main training loop, we use SAC as it also contains a max
entropy objective. We believe that more random policies would be best for the segment collection
step to ensure ample coverage from the preference labels of important states. At each epoch, the
current policy π first explores the environment for num steps explore steps before starting the first
training rollout. This process allows the agent to populate the Preference Database with Segments
to train the reward model with.

Since calibrating the best proportions of policy training steps and reward training steps per loop of
the training algorithm is difficult, we added an additional training stage for the agent at the end. We
take a static reward model and run a standard RL algorithm like PPO to maximize performance.
Although prior work mentioned this can lead to reward hacking (Skalse et al., 2022), we found this
was not a particularly big issue for our experiments.

3.4 REWARD MODEL

The custom reward model is designed as an ensemble of MLP networks, where each MLP consists
of five linear layers with LeakyReLUs (Xu et al., 2015) as activations. We designed the reward
model to either take in just the observations or the observations and actions and didn’t find much
of a difference. However, we mainly used it with just the observations as we only used images for
preference ratings instead of videos so the action isn’t visible to the human rater anyway.

To calculate the reward, a given observation o and action a is concatenated into one tensor t or just
o if we don’t include actions and pass t into each network in the ensemble. The reward is calculated
as the mean of the network outputs.

3

UC Berkeley, CS 285 Fall 2023

We train the model on the probability distributions generated by the arbitrator between pairs of
segments s1 and s2, where a higher probability for s1 indicates that the observation and action in s1
is closer to achieving the target task (and vice versa). To calculate this probability distribution, we
have the model generate a sum of rewards over all the frames for each segment, then take a softmax
over the two values to generate the probability distribution. We then use cross-entropy loss, treating
the arbitrator’s distribution as the correct label, and backpropogate the loss through the ensemble.

3.5 ENVIRONMENT

In order to utilize our reward model in place of the base rewards of Gymnasium environments, we
create a custom environment that replaces the default reward function with our reward model. We
also change some environment configurations to better enable the agent to perform the tasks we want
it to do, like changing the termination criteria or joint gains for movement. Specifically, we tested
our system on environments like CartPole, LunarLander, Swimmer, HalfCheetah, and Walker2d but
record the ones with interesting findings.

3.6 GPT4-V INTEGRATION

We tested a few approaches to query GPT4-V for visual preferences. The list of prompts we used
for the tasks and environments is listed in the appendix. In order to save on token usage and to retain
consistency between the human and VLM preference visuals, we first tried querying the model by
combining two images side by side. We found that the model strongly biased a LEFT output, to the
point of being practically unusable. We tried reducing this bias by sending two queries to GPT4-V,
with the second having swapped the order of the segments in the image (i.e. (s1, s2) and (s2, s1)).
We then only recorded the preference if the model selected the same segment, regardless of whether
it was positioned on the right or left. Although this approach seemed to filter out bad responses, it
was extremely inefficient and expensive due to the overwhelming proportion of bad responses, so
we abandoned the approach.

We additionally tried sending the images as two different messages and asking the model to choose
between the first message or the second message. This still did not improve the bias as the VLM
instead chose to output FIRST the vast majority of the time.

We considered using video inputs as well since GPT4-V technically supports them; however, we
were concerned about token usage and didn’t believe the VLM would be able to reason about them
any better than the images. Thus, we designed the tasks such that success could be mostly deter-
mined by a static image instead of a sequence of frames.

To help GPT4-V reason over the images, we experimented with some visual overlays on the input
as guidelines for the model to make its judgement (Figure 3). For example, in the CartPole task,
the blue dot at the center of the cart should intersect the dotted red line and the pole itself should be
colinear with the line. However, these visual cues did not ultimately result in better performance.

Figure 3: VLM Visual Input for CartPole
The black bar is intended to help the model differentiate between the left and right image, and the

red dotted line is used as a suggestion for optimal pole alignment.

4

UC Berkeley, CS 285 Fall 2023

Finally, we also used chain-of-thought prompting (Wei et al., 2022) to encourage GPT4-V to output
reasonable ratings. We found this works very well for the Walker2d splits task but doesn’t help for
CartPole.

4 RESULTS

4.1 CARTPOLE

Our objective with the CartPole environment was to replicate the original reward from preferences,
i.e. we wanted to use feedback to teach the cart how to balance the pole. In Figure 4, we show
that rewards learned from 350 human preferences are sufficient for an RL algorithm like PPO to
solve CartPole. Unfortunately, when testing with GPT4-V, we were unable to get any sort of usable
ratings from the model as the LLM heavily biased toward outputting LEFT.

Figure 4: CartPole episode length vs step (left) and reward value vs step (right). Blue curves use
baseline reward function from Gym. Orange curves use learned reward function from human pref-
erences.

From the left plot, we observe that our model performs as well as the baseline model in the long run
but learns slower. This is expected as the baseline starts with a validated reward function while our
model needs time to learn a good reward function.

The baseline Gym reward function is simply the episode length as the goal is to keep the pole
balanced for as long as possible and each trajectory terminates as soon as the pole falls. From the
right plot, we see that our model learns essentially the same reward function after 100k steps, only
shifted down by 100.

4.2 LUNARLANDER

Our objective with the LunarLander environment is to place the lander in the upper left corner of
the frame and have it hover there. Unlike CartPole, we didn’t have a quantifiable measure of the
performance of the model so instead we link a video of the policy trained from 350 human labels.
We also include the training/validation loss and accuracy curves of the reward model as it learns
from preference data in Figure 5. Similar to CartPole, we could not get any usable ratings from
GPT4-V as it mainly outputted LEFT.

4.3 WALKER2D

Our objective with the Walker2d environment was to do the splits. Surprisingly, GPT4 was more
able to output reasonable answers when asked for ratings compared to the CartPole and LunarLander
environments. One potential explanation is that the MuJoCo environments have less objects and are
arguably simpler to reason about, even though they’re harder to control. It’s not obvious that the
purple shape in LunarLander is a spaceship and the orientation is also hard to judge.

5

https://drive.google.com/file/d/1FPDq18LP44zHxRqqiGp53ZBRtWSfcecO/view?usp=sharing

UC Berkeley, CS 285 Fall 2023

Figure 5: Reward model training curves from the LunarLander environment
In general, we found that validation accuracy > 75% is necessary for good performance

With Walker2d, we use GPT4-V and chain-of-thought prompting to elicit 380 AI ratings. Perfor-
mance is shown in Figure 1 and the training plots are shown in Figure 6. Also surprisingly, even
though validation performance is abysmal as shown in the graphs, the reward predictor is good
enough to be used by an agent to perform the desired task.

Figure 6: Reward model training curves from the Walker2d environment.

5 LIMITATIONS AND FUTURE WORK

Although preference training can be used help align an agent’s current behavior to a task, we found
it was challenging to use it to direct an agent towards novel behavior. For example, training an
agent to write English letters while only being able to provide preference feedback would be quite
challenging as the model would need randomly explore and connect a lot of sequences together for
good segments to be sent to the preference labeler.

In the future, we hope to explore leveraging short video segments rather than static images when
labeling preferences. This would help the reward model capture the reliance that complex tasks
often have on a sequence of actions which is lost when resorting to a single timestep.

6

UC Berkeley, CS 285 Fall 2023

6 CONCLUSION

Overall, we found that although current VLMs aren’t able to robustly perform the kind of visual
reasoning necessary for preference rating, they can still be used in certain settings to reduce human
labor and train nontrivial tasks for an agent. As the capabilities of VLMs continue to improve, their
ability to distill and transfer their world knowledge into agents or smaller models will also improve,
allowing for complex tasks requiring general knowledge to be more accessible for researchers and
engineers without large training budgets. Much of our training was run on single GPUs or CPUs,
with less than $10 of OpenAI credits. We look forward to the innovation that is soon to be built on
top of these foundational models.

AUTHOR CONTRIBUTIONS

Bryce: Worked on initial reward model design and policy training loop. Ran human-labeled (base-
line) experiments. Drafted introduction and design sections of writeup.

Jonathan: Worked on the multiprocessing loop and policy/reward training scripts. Ran and pro-
posed experiments and collected data for human preference runs. GPT4-Vision prompt tuning and
optimization. Added experimental section of writeups.

Laryn: Human & LLM preference interface design and implementation, running human-labeled
(baseline) experiments, debugging multiprocessing & reward training code, generating write-up
plots.

7

UC Berkeley, CS 285 Fall 2023

7 APPENDIX

7.1 CODE

GitHub

7.2 LLM PROMPTS

Environment Task Prompt

Swimmer Make the letter M You are an expert in the English lan-
guage. This is an image of two lines
on a checkboard background. Which
of the two lines looks more like an M.
They both probably won’t look much
like the letter but give your best judge-
ment. Output a single answer: LEFT or
RIGHT.

CartPole Balance the pole You have been given two drawings of a
square cart trying to balance a brown,
wooden pole. Priority 1: The pole
should be as close to vertical as possi-
ble, perpendicular to the ground. Prior-
ity 2: the cart should be centered in its
respective frame. Pick the image (LEFT
or RIGHT) that best satisfies these pri-
orities. They both might bad at balanc-
ing the pole but give your best judge-
ment. Output a single answer: LEFT or
RIGHT.

LunarLander Hover in the top left
corner

You have been given two drawings sep-
arated by a red line. They each con-
tain a purple spaceship in the air. The
spaceship should move to and hover
at the upper left corner. Pick the im-
age (RIGHT or LEFT) where the pur-
ple shape is closest to the upper left cor-
ner of its frame. Do not pick the im-
age if the spaceship is not visible in
frame. Do not pick the image if the
purple trapezoid spaceship is pointed to-
wards the ground. They both might
be far away, but give your best judge-
ment about which is most likely to ar-
rive at the corner. Output a single an-
swer: RIGHT or LEFT.

Walker2D Do the splits You have been given two images of an
object with two legs in a checkerboard
background. Pick the image (RIGHT
or LEFT) where the object’s legs look
most like they’re doing a split, specifi-
cally, the purple and brown legs should
be far apart. They both might not look
like a split, but give your best judge-
ment about which is most similar to
a split. Explain your reasoning step-
by-step and end with a single answer:
RIGHT or LEFT.

8

https://github.com/jonathanlu31/285-project

UC Berkeley, CS 285 Fall 2023

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
model for few-shot learning, 2022.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2023.

Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando
de Freitas, and Serkan Cabi. Vision-language models as success detectors, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
characterizing reward hacking, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2022.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network, 2015.

9

	Extended Abstract
	Introduction
	Design
	Overview
	Handling Preferences
	Policy Training
	Reward Model
	Environment
	GPT4-V Integration

	Results
	CartPole
	LunarLander
	Walker2d

	Limitations and Future Work
	Conclusion
	Appendix
	Code
	LLM Prompts

