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Abstract. This work developes a quantitative framework for describing the overcomplete-
ness of a large class of frames. A previous paper introduced notions of localization and
approximation between two frames F = {fi}i∈I and E = {ej}j∈G (G a discrete abelian
group), relating the decay of the expansion of the elements of F in terms of the elements
of E via a map a : I → G. This paper shows that those abstract results yield an array of
new implications for irregular Gabor frames. Additionally, various Nyquist density results
for Gabor frames are recovered as special cases, and in the process both their meaning and
implications are clarified. New results are obtained on the excess and overcompleteness of
Gabor frames, on the relationship between frame bounds and density, and on the structure
of the dual frame of an irregular Gabor frame. More generally, these results apply both
to Gabor frames and to systems of Gabor molecules, whose elements share only a common
envelope of concentration in the time-frequency plane.

The notions of localization and related approximation properties are a spectrum of ideas
that quantify the degree to which elements of one frame can be approximated by elements
of another frame. In this paper, a comprehensive examination of the interrelations among
these localization and approximation concepts is made, with most implications shown to be
sharp.

1. Introduction

The fundamental structural feature of frames that are not Riesz bases is the overcom-
pleteness of its elements. To date, even partial understanding of this overcompleteness has
been restricted to limited examples, such as finite-dimensional frames or highly structured
(“lattice”) frames of windowed exponentials or of time-frequency shifts (Gabor systems). To-
gether, the ideas and results presented in this paper and in [BCHL05a] provide a quantitative
framework for describing the overcompleteness of a large class of frames. The consequences
of these ideas are: (a) an array of fundamental new results for frames that hold in a general
setting, (b) significant new results for the case of Gabor frames, as well as a new framing of
existing results that clarifies their meaning, and (c) the presentation of a novel and fruitful
point of view for future research.
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Our approach begins with two frames F = {fi}i∈I and E = {ej}j∈G, where G is a discrete
abelian group; we then introduce a notion of the localization of F with respect to E . The idea
of localization is that it describes the decay of the coefficients of the expansion of elements
of F in terms of the elements of E . To make this notion of decay meaningful, a map a from
the index set I into the index set G is introduced. With this setup, we establish a remarkable
equality between three seemingly unrelated quantities: certain averages of 〈fi, f̃i〉 and 〈ej, ẽj〉
of frame elements with corresponding canonical dual frame elements, which we refer to as
relative measures, and the density of the set a(I) in G [BCHL05a, Thm. 3.4]. This equality
between density and relative measure is striking since the relative measure is a function of the
frame elements, while the density is solely determined by the index set I and the mapping
a : I → G.

Due to the length of this work, it is natural to present it in two parts. The first part,
containing the theoretical and structural results that have driven the research, appeared in
[BCHL05a] (hereafter referred to as “Part I”). In this paper (the second part) we accomplish
the following two main goals.

(1) We apply the theoretical results to the case of Gabor systems

G(g, Λ) = {MωTxg}(x,ω)∈Λ = {e2πiω·tg(t − x)}(x,ω)∈Λ,

which yields a collection of new results that can be summarized as follows.

(a) Functions with time-frequency concentration generate localized Gabor frames (Theo-
rem 3.8). We show how the degree of localization of a Gabor frame is tied to the
time-frequency concentration of the generating window function or “atom” g. This
alone yields a significant improvement over what was previously known about the ap-
proximation properties of irregular Gabor frames. We extend these results to more
general systems of Gabor molecules whose elements are not required to be simple
time-frequency shifts of each other, but instead need only share a common envelope
of concentration about points in the time-frequency plane.

(b) Characterization of the dual frame of a Gabor frame (Theorem 4.6). We prove that
if an irregular Gabor frame is generated by a function g which is sufficiently con-
centrated in the time-frequency plane (specifically, g lies in the modulation space
M1), then the elements of the dual frame also lie in M 1. We further prove that
the dual frame forms a set of Gabor molecules, and thus, while it need not form a
Gabor frame, the elements do share a common envelope of concentration in the time-
frequency plane. Moreover, this same result applies if the original frame was only
itself a frame of Gabor molecules. This greatly extends a recent result of Gröchenig
and Leinert [GL04] which covered only the case of lattice Gabor frames.

(c) A relationship between density of time-frequency shifts and inner products of frame el-

ements (Theorems 4.1, 4.2). We apply the core abstract result of Part I, the Density–
Relative Measure Theorem [BCHL05a, Thm. 3.4]. This implies a remarkable equality
between seemingly unrelated quantities: the density of the time-frequency shifts of a
Gabor frame and certain averages of inner products between Gabor frame elements
and the canonical dual frame elements. As a consequence we obtain new relationships
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between the density of the index set, the frame bounds, and the norm of the window
of the Gabor frame.

(d) The excess of Gabor frames (Theorem 4.3). We show that in any overcomplete Gabor
frame or set of Gabor molecules, a set of frame elements with positive density can be
removed yet still leave a frame.

(2) We provide a comprehensive examination of the interrelations among the suite of
localization localization and approximation concepts introduced in Part I, and in most cases
provided counterexamples showing that these implications are sharp.

1.1. Outline. We briefly review some results known for irregular Gabor frames that are
related to the themes of this paper and then discuss our new contributions.

There is an extensive literature available for “lattice” Gabor systems of the form G(g, αZd×
βZd) or G(g, A(Zd)), where A is an invertible d × d matrix. However, until only recently,
very few results were available for irregular Gabor systems G(g, Λ) where Λ is an arbitrary
subset of R2d. Some previous papers on irregular Gabor frames are [Grö93], [Lan93], [RS95],
[Jan98], [CDH99], [DH00], [CFZ01], [HW01], [SZ02], [BCHL03b], [LW03], [SZ03], [Grö04].
We note that many basic questions remain open even for lattice Gabor frames. For example,
until [BCHL03a], it was not known if every overcomplete lattice Gabor frame G(g, αZd×βZd)
that was not a Riesz basis contained an infinite subset that could be removed yet leave a
frame.

In [RS95], Ramanathan and Steger proved a Nyquist density result for certain irregular
Gabor frames. Together with the extensions from [CDH99], this can be stated as follows
(compare also [Lan93], [GR96], [Jan98]):

(a) If G(g, Λ) is a frame for L2(Rd), then 1 ≤ D−
B(Λ) ≤ D+

B(Λ) < ∞;

(b) If G(g, Λ) is a Riesz basis for L2(Rd), then D−
B(Λ) = D+

B(Λ) = 1.

Here D±
B(Λ) are the lower and upper Beurling densities of Λ, which are defined precisely

in Example 2.4. In the case that Λ is a rectangular lattice of the form Λ = αZd × βZd,
several alternative proofs of these facts are known, see [Rie81], [Bag90], [Dau90], [Jan94],
[DLL95], [BR03]. For additional history and references see the exposition in [Dau92],
[BHW95], [Grö01]. Note that a lattice Λ = αZd × βZd has uniform Beurling densities
D+

B(αZd × βZd) = D−
B(αZd × βZd) = 1/(αβ)d.

Ramanathan and Steger’s results showed that it is not the algebraic structure of the
lattice as such that is essential, but rather the fact that Gabor frames satisfy a certain
Homogeneous Approximation Property (essentially the weak HAP presented in this paper,
using as a reference system a Gabor frame with a Gaussian generating function). For a
Gabor frame, the HAP essentially states that the rate of approximation of a given function
by Gabor frame elements is invariant under time-frequency shifts of the function. This is
remarkable in the case of irregular Gabor frames, since there is no structure to relate the
specific frame elements used in the approximation of one time-frequency shift MqTpf to
those in an approximation of another time-frequency shift of f . The HAP is a fundamental
property of Gabor frames, yet very few papers subsequent to [RS95] have made use of it.

We investigate the localization properties of irregular Gabor frames in Section 3. Following
the introduction of some notation in Section 3.1, we show in Section 3.2 that every Gabor
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system has at least a weak amount of localization (`2-row decay) with respect to the Gabor
orthonormal basis generated by the box function, and as a consequence, we recover the fact
that every Gabor Bessel sequence has finite density.

In Section 3.3 we show that much stronger localization is obtained if the reference Gabor
system is generated by a function that is well-concentrated in the time-frequency plane.
The degree of concentration is quantified by the modulation spaces, which are the natural
function spaces associated with Gabor analysis. In particular, we show that if G(g, Λ) is
an arbitrary Gabor system such that g lies in the modulation space M p (1 ≤ p ≤ 2),
and G(φ, αZd × βZd) is a reference Gabor system whose generator φ lies in the modulation
space M1, then (G(g, Λ), a, G(φ, αZd × βZd)) is `p-localized. Additionally, (G(g, Λ), a) is
`1-self-localized if p = 1. In particular, by the implications established in Theorem 5.1,
`2-localization for a frame implies both the Strong HAP and the Strong Dual HAP, so these
results greatly improve the Homogeneous Approximation Property previously established for
Gabor frames in [RS95], [CDH99].

In Section 4 we use this extended knowledge of the localization properties of Gabor systems
to derive new implications for irregular Gabor frames. In Section 4.1 we recover the density
results for Gabor frames given above, and furthermore we extend the meaning of density by
showing that the Beurling densities of Λ are related to the measures of the Gabor frame. We
show that the upper and lower measures of a Gabor frame satisfy M±(G(g, Λ)) = 1/D∓

B(Λ).
This gives a new interpretation of the density of a Gabor frame, and as a consequence we
obtain new relations among the density of the index set, the frame bounds, and the norm of
the generator. In particular, we show that if G(g, Λ) is a tight frame then the index set Λ
must have uniform Beurling density, i.e., D−

B(Λ) = D+
B(Λ). Thus tight Gabor frames require

a certain amount of uniformity in the index set.
In Section 4.2, we show that if G(g, Λ) is a Gabor frame whose generator g lies in M 1,

then whenever D−
B(Λ) > 1, there is not merely an infinite subset but a subset with positive

density which may be removed from the frame yet still leave a frame.
In Section 4.3 we address the fundamental question of the structure of the canonical dual

frame of an irregular Gabor frame. As is well-known, the canonical dual frame of a lattice
Gabor frame is again a lattice Gabor frame, indexed by the same lattice. This need not be
the case for an irregular Gabor frame G(g, Λ) = {e2πiω·tg(t−x)}(x,ω)∈Λ with an arbitrary index

set Λ. A canonical dual frame G̃ = {g̃x,ω}(x,ω)∈Λ will exist, but to date essentially nothing
has been known about this dual beyond the fact that each dual frame element g̃x,ω is some
function in L2(Rd). We prove that if g possesses sufficient time-frequency concentration,
namely that g ∈ M 1, then each g̃x,ω possesses the same concentration, i.e., g̃x,ω ∈ M1. For
the case of lattice systems (Λ = αZd×βZd), this result was previously obtained by Gröchenig
and Leinert [GL04]. However, in addition to extending to the completely irregular setting,
we also prove that the dual frame G̃ is Gabor-like. Namely, even though G̃ need not itself
be a Gabor frame, we show that it will form a set of Gabor molecules, meaning that each
function g̃x,ω is concentrated in the time-frequency plane about the point (x, ω) with a
common envelope of concentration for each (x, ω) ∈ Λ. In fact, this result holds even if the
original frame was only itself a frame of Gabor molecules.
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We conclude the Gabor portion of the paper in Section 4.4 where we observe that most of
the results obtained for Gabor frames carry over with minor changes to the case of Gabor
molecules.

For simplicity of presentation, most of our results will be stated for the case of Gabor
frames for all of L2(Rd), but many of them can be extended to the case of Gabor frame
sequences, or to Gabor frames with multiple generators, by making use of the machinery
developed in Part I and this paper. Results analogous to the ones formulated for Gabor
systems could also be formulated for the case of windowed exponentials.

Finally, in Section 5 we carefully examine the interrelations between the range of local-
ization properties and approximation concepts that have been used to develop the theory.
A set of approximation properties for abstract frames introduced in Part I is given in Defi-
nition 2.8. These are defined in terms of how well the elements of the reference system are
approximated by finite linear combinations of frame elements, or vice versa, and provide an
abstraction for general frames of the essential features of the Homogeneous Approximation
Property (HAP) that is known to hold for Gabor frames or windowed exponentials (see
[RS95], [GR96], [CDH99]). Theorem 5.1 establishes an extensive list of implications that
hold among the localization and approximation properties, and additionally in most cases
we provide examples which show that these implications are sharp. In particular, there is an
equivalence between `2-column decay and the HAP, and between `2-row decay and a dual
HAP.

We believe that localization is a powerful and useful new concept. As evidence of this
fact, we note that Gröchenig has independently introduced a concept of localized frames, for
a completely different purpose, in [Grö04]. We learned of Gröchenig’s results shortly after
completion of our own major results. The definitions of localizations presented here and in
[Grö04] differ, but the fact that this single concept has independently arisen for two very
distinct applications shows its utility. In his elegant paper, Gröchenig has shown that frames
which are sufficiently localized in his sense provide frame expansions not only for the Hilbert
space H but for an entire family of associated Banach function spaces. Gröchenig further
showed that if a frame is sufficiently localized in his sense (a polynomial or exponential
localization) then the dual frame is similarly localized.

1.2. General Notation. We use the notation from Part I, which we briefly review here.
H will refer to a separable Hilbert space. The frame or system of interest will be indexed
by a countable index set I. The reference frame or system will be indexed by an additive
discrete group G of the form

G =

d
∏

i=1

aiZ ×
e

∏

j=1

Znj
.

We define a metric on G as follows. If mj ∈ Znj
, set δ(mj) = 0 if mj = 0, otherwise

δ(mj) = 1. Then given g = (a1n1, . . . , adnd, m1, . . . , me) ∈ G, set

|g| = sup
{

|a1n1|, . . . , |adnd|, δ(m1), . . . , δ(me)
}

.

The metric is d(g, h) = |g − h| for g, h ∈ G. The reader can simply take G = Zd without
much loss of insight on a first reading (the metric in this case is simply the `∞ metric on Rd

restricted to Zd).
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We implicitly assume that there exists a map a : I → G associated with I and G. This
map will often not be injective. For each integer N > 0 we let

SN(j) =
{

k ∈ G : |k − j| ≤ N

2

}

denote a discrete “cube” or “box” in G centered at j ∈ G. The cardinality of SN(j) is
independent of j. For example, if G = Zd then |S2N(j)| = |S2N+1(j)| = (2N + 1)d. We let
IN(j) denote the inverse image of SN(j) under a, i.e.,

IN(j) = a−1(SN(j)) = {i ∈ I : a(i) ∈ SN(j)}.

1.3. Notation for Frames and Riesz Bases. We use standard notations for frames and
Riesz bases as found in the texts [Chr03], [Dau92], [Grö01], [You01] or the research-tutorials
[Cas00], [HW89].

A sequence F = {fi}i∈I is a frame for H if there exist frame bounds A, B > 0 such
that A ‖f‖2 ≤ ∑

i∈I |〈f, fi〉|2 ≤ B ‖f‖2 for all f ∈ H. The analysis operator T : H →
`2(I) is Tf = {〈f, fi〉}i∈I , and its adjoint T ∗c =

∑

i∈I ci fi is the synthesis operator. The
Gram matrix is TT ∗ = [〈fi, fj〉]i,j∈I . The frame operator Sf = T ∗Tf =

∑

i∈I〈f, fi〉 fi is
a bounded, positive, and invertible mapping of H onto itself. The canonical dual frame is
F̃ = S−1(F) = {f̃i}i∈I where f̃i = S−1fi. We call F a tight frame if we can take A = B,
and a Parseval frame if we can take A = B = 1. If F is any frame, then S−1/2(F) is the
canonical Parseval frame associated to F . We call F a uniform norm frame if all the frame
elements have identical norms, i.e., if ‖fi‖ = const. for all i ∈ I. A frame is norm-bounded

below if inf i ‖fi‖ > 0.
A sequence which satisfies the upper frame bound estimate, but not necessarily the lower

estimate, is called a Bessel sequence and B is a Bessel bound.
A sequence F = {fi}i∈I that is a frame for its closed linear span in H is called a frame

sequence. In this case F̃ = {f̃i}i∈I will denote its canonical dual frame within span(F ), and
PF will denote the orthogonal projection of H onto span(F).

A frame is a basis if and only if it is a Riesz basis. A Riesz sequence is a sequence that
forms a Riesz basis for its closed linear span in H.

2. Density, Localization, HAP, and Relative Measure

In this section we recall basic definitions from Part I, and show how they are implemented
for the case of Gabor systems. In Theorem 5.1 we will derive an extended set of implications
that hold among these properties, and provide examples in Section 5.2 showing that most
of those implications are sharp.

2.1. Density. Given an index set I and a map a : I → G, we define the density of I by
computing the Beurling density of its image a(I) as a subset of G. Note that we regard I as
a sequence, and hence repetitions of images count in determining the density.

Definition 2.1 (Density). The lower and upper densities of I with respect to a are

D−(I, a) = lim inf
N→∞

inf
j∈G

|IN(j)|
|SN(j)| , D+(I, a) = lim sup

N→∞
sup
j∈G

|IN(j)|
|SN(j)| , (2.1)
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respectively. These quantities could be zero or infinite, 0 ≤ D−(I, a) ≤ D+(I, a) ≤ ∞.
When D−(I, a) = D+(I, a) = D we say I has uniform density D. �

These lower and upper densities are only the extremes of the possible densities that we
could naturally assign to I with respect to a. In particular, instead of taking the infimum
or supremum over all possible centers in (2.1) we could choose one specific sequence of
centers, and instead of computing the liminf or limsup we could consider the limit with
respect to some ultrafilter (some background on ultrafilters is provided in Appendix A). The
different possible choices of ultrafilters and sequences of centers gives us the following natural
collection of definitions of density.

Definition 2.2. Let p be a free ultrafilter, and let c = (cN)N∈N be any sequence of centers
cN ∈ G. Then the density of I with respect to a, p, and c is

D(p, c) = D(p, c; I, a) = p-lim
N∈N

|IN(cN)|
|SN(cN)| . �

Example 2.3. If I = G and a is the identity map, then IN(j) = SN(j) for every N and j,
and hence D(p, c) = D−(I, a) = D+(I, a) = 1 for every choice of free ultrafilter p and
sequence of centers c. �

It follows from basic properties of ultrafilters that we always have D−(I, a) ≤ D(p, c) ≤
D+(I, a). It is shown in [BCHL05a, Lem. 2.5] that there exist free ultrafilters p−, p+ and
sequence of centers c− = (c−N)N∈N, c+ = (c+

N )N∈N in G such that D−(I, a) = D(p−, c−) and
D+(I, a) = D(p+, c+).

Example 2.4 (Gabor Systems). Consider an arbitrary Gabor system F = G(g, Λ) and a
reference lattice Gabor system E = G(φ, αZd × βZd). The index set I = Λ is a countable
sequence of points in R2d, and the reference group is G = αZd × βZd. A natural map
a : Λ → G, that we will employ whenever dealing with Gabor systems, is rounding to a near
element of G, i.e.,

a(x, ω) =
(

α Int
(

x
α

)

, β Int
(

ω
β

))

, (x, ω) ∈ Λ, (2.2)

where Int(x) = (bx1c, . . . , bxdc). With this setup, SN(j) is the intersection of αZd×βZd with
the cube QN(j) in R2d centered at j with side lengths N . Such a cube contains approximately
N2d/(αβ)d points of αZd × βZd; precisely,

lim
N→∞

|SN(j)|
N2d

=
1

(αβ)d
.

Likewise, because a is a bounded perturbation of the identity map, the number of points in
IN(j) is asymptotically the cardinality of Λ ∩ QN(j). Consequently, the standard definition
of the upper Beurling density D+

B(Λ) of Λ is related to our definition of the upper density of
Λ with respect to a as follows:

D+
B(Λ) = lim sup

N→∞
sup

j∈R2d

|Λ ∩ QN (j)|
N2d

=
1

(αβ)d
lim sup

N→∞
sup

j∈αZd×βZd

|IN(j)|
|SN(j)| =

1

(αβ)d
D+(Λ, a). (2.3)
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Similarly the lower Beurling density of Λ is D−
B(Λ) = (αβ)−d D−(Λ, a). In particular, when

αβ = 1 (the “critical density” case), our definition coincides with Beurling density, but in
general the extra factor of (αβ)d must be taken into account.

The map a given in (2.2) is the one we will use when dealing with Gabor systems, but
any bounded perturbation of a would serve just as well. That is, given δ > 0, we could
map (x, ω) to any point in G = αZd × βZd that is within a distance δ of (α Int( x

α
), β Int(ω

β
))

without any change in the results. �

2.2. The Localization Properties. The words “column” and “row” in the following defi-
nition refer to the I × G cross-Grammian matrix [〈fi, ej〉]i∈I,j∈G. We think of the elements
in locations (i, a(i)) as corresponding to the main diagonal of this matrix.

Definition 2.5 (Localization). Let F = {fi}i∈I and E = {ej}j∈G be sequences in H and
a : I → G an associated map.

(a) We say F is `p-localized with respect to the reference sequence E and the map a, or
simply that (F , a, E) is `p-localized, if

∑

j∈G

sup
i∈I

|〈fi, ej+a(i)〉|p < ∞.

Equivalently, there must exist an r ∈ `p(G) such that

∀ i ∈ I, ∀ j ∈ G, |〈fi, ej〉| ≤ ra(i)−j .

(b) We say that (F , a, E) has `p-column decay if for every ε > 0 there is an integer Nε > 0
so that

∀ j ∈ G,
∑

i∈I\INε(j)

|〈fi, ej〉|p < ε.

(c) We say (F , a, E) has `p-row decay if for every ε > 0 there is an integer Nε > 0 so that

∀ i ∈ I,
∑

j∈G\SNε(a(i))

|〈fi, ej〉|p < ε. �

Note that given a sequence F , the definition of localization is dependent upon both the
choice of reference sequence E and the map a.

Example 2.6 (Gabor Systems). For motivation, consider the especially simple case of Gabor
systems both indexed by Z2d, i.e., F = G(g,Z2d) = {MnTkg}(k,n)∈Z2d and E = G(φ,Z2d) =

{MnTkφ}(k,n)∈Z2d. The map a : Z2d → Z2d given by (2.2) is the identity map, and the

Z2d × Z2d cross-Grammian matrix
[

〈MmTjg, MnTkφ〉
]

(j,m)∈Z2d, (k,n)∈Z2d =
[

〈g, Mn−mTk−jφ〉
]

(j,m)∈Z2d, (k,n)∈Z2d

is Toeplitz. Set rk,n = |〈g, MnTkφ〉|. If E = G(φ,Z2d) is a Bessel sequence with Bessel
bound B, then

∑

(k,n)∈Z2d

r2
k,n =

∑

(k,n)∈Z2d

|〈g, MnTkφ〉|2 ≤ B ‖g‖2
2 < ∞,



DENSITY, OVERCOMPLETENESS, AND LOCALIZATION OF FRAMES, II 9

so r ∈ `2(Z2d), and hence (G(g,Z2d), a, G(φ,Z2d)) is `2-localized.
Unfortunately, Gabor frames indexed by αZd × βZd with αβ = 1 are not very useful in

practice. It can easily be shown via Zak transform techniques that if such a system is a frame
for L2(Rd) then it will be a Riesz basis. However, the Balian–Low Theorem (BLT) states that
the generator g of such a Gabor Riesz basis cannot be simultaneously well-concentrated in
both time and frequency. For exposition and references on the BLT see the survey [BHW95].
Some recent results on the BLT in higher dimensions are in [BCGP02], [GHHK02].

Therefore, consider an arbitrary Gabor system F = G(g, Λ) = {MωTxg}(x,ω)∈Λ, where
Λ ⊂ R2d. For a reference system take a lattice Gabor system of the form E = G(φ, αZd ×
βZd) = {MηTuφ}(u,η)∈αZd×βZd, where α, β > 0. We regard E as being indexed by G =

αZd × βZd and use the natural map a : Λ → G given in (2.2) that sends an element
of Λ to a near element of G. It is no longer the case that the cross-Grammian matrix
[

〈MωTxg, MηTuφ〉
]

(x,ω)∈Λ, (u,η)∈G
is Toeplitz, but we will show in Theorem 3.8 that if Λ has

finite density and φ possesses a certain amount of joint concentration in time and frequency
then (G(g, Λ), a, G(φ, αZd × βZd)) is `2-localized. The specific requirement on φ is that it
must lie in the modulation space M 1(Rd), which is defined precisely in Section 3.3. Moreover,
the localization can be improved by also imposing a time-frequency concentration condition
on g. Specifically, we show in Theorem 3.8 that if g ∈ M p(Rd) and φ ∈ M1(Rd), then
(G(g, Λ), a, G(φ, αZd × βZd)) is `p-localized. �

Remark 2.7. For comparison, let us give Gröchenig’s notion of localization from [Grö04].
Let I and J be countable index sets in Rd that are separated, i.e., inf i6=j∈I |i − j| > 0 and
similarly for J . Then F = {fi}i∈I is s-polynomially localized with respect to a Riesz basis
E = {ej}j∈J if for every i ∈ I and j ∈ J we have

|〈fi, ej〉| ≤ C (1 + |i − j|)−s and |〈fi, ẽj〉| ≤ C (1 + |i − j|)−s,

where {ẽj}j∈J is the dual basis to {ej}j∈J . Likewise F = {fi}i∈I is exponentially localized

with respect to a Riesz basis E = {ej}j∈J if for some α > 0 we have for every i ∈ I and j ∈ J
that

|〈fi, ej〉| ≤ C e−α|i−j| and |〈fi, ẽj〉| ≤ C e−α|i−j|. �

2.3. The Approximation Properties. The following approximation properties extract
the essence of the Homogeneous Approximation Property that is satisfied by Gabor frames,
but without reference to the exact structure of Gabor frames.

Definition 2.8 (Homogeneous Approximation Properties). Let F = {fi}i∈I be a frame

for H with canonical dual F̃ = {f̃i}i∈I , and let E = {ej}j∈G be a sequence in H. Let
a : I → G be an associated map.

(a) We say (F , a, E) has the weak HAP if for every ε > 0, there is an integer Nε > 0 so

that for every j ∈ G we have dist
(

ej, span
{

f̃i : i ∈ INε
(j)

})

< ε. Equivalently, there
must exist scalars ci,j, with only finitely many nonzero, such that

∥

∥

∥
ej −

∑

i∈INε(j)

ci,j f̃i

∥

∥

∥
< ε. (2.4)
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(b) We say (F , a, E) has the strong HAP if for every ε > 0, there is an integer Nε > 0 so
that for every j ∈ G we have

∥

∥

∥
ej −

∑

i∈INε(j)

〈ej, fi〉 f̃i

∥

∥

∥
< ε. �

Definition 2.9 (Dual Homogeneous Approximation Properties). Let F = {fi}i∈I be a

sequence in H, and let E = {ej}j∈G be a frame for H with canonical dual Ẽ = {ẽj}j∈G. Let
a : I → G be an associated map.

(a) We say (F , a, E) has the weak dual HAP if for every ε > 0, there is an integer Nε > 0
so that for every i ∈ I we have dist

(

fi, span
{

ẽj : j ∈ SNε
(a(i))

})

< ε.

(b) We say (F , a, E) has the strong dual HAP if for every ε > 0, there is an integer
Nε > 0 so that for every i ∈ I we have

∥

∥fi −
∑

j∈SNε(a(i))〈fi, ej〉 ẽj

∥

∥ < ε. �

2.4. Self-Localization. It is also useful to consider localizations where the system F =
{fi}i∈I is compared to itself or to its canonical dual frame instead of to a reference sys-
tem E . An analogous polynomial or exponential “intrinsic localization” was independently
introduced by Gröchenig in [Grö03]; see also [For03], [GF04]. Although there is no reference
system, we still require a mapping a : I → G associating I with a group G.

Definition 2.10 (Self-localization). Let F = {fi}i∈I be a sequence in H, and let a : I → G
be an associated map.

(a) We say that (F , a) is `p-self-localized if there exists r ∈ `p(G) such that

∀ i, j ∈ I, |〈fi, fj〉| ≤ ra(i)−a(j).

(b) If F is a frame sequence, then we say that (F , a) is `p-localized with respect to its

canonical dual frame sequence F̃ = {f̃i}i∈I if there exists r ∈ `p(G) such that

∀ i, j ∈ I, |〈fi, f̃j〉| ≤ ra(i)−a(j). �

Remark 2.11. If I = G and a is the identity map, then (F , a) is `1-self-localized if and
only if (F , a,F) is `1-localized. However, if a is not the identity map, then this need not
be the case. For example, every orthonormal basis is `1-self-localized regardless of which
map a is chosen, but in Example 5.7 we construct an orthonormal basis F = {fi}i∈Z and a
map a : Z → Z such that (F , a, E) is not `1-localized for any Riesz basis E ; in fact, (F , a, E)
cannot even possess both `2-column decay and `2-row decay for any Riesz basis E . �

We show in Example 5.8 that `1-localization with respect to the dual frame does not imply
`1-self-localization. However, the following result proved in Part I states that the converse
is true. This result will play a key role in Section 4.3 for determining the properties of the
canonical dual frame of an irregular Gabor frame.

Theorem 2.12. Let F = {fi}i∈I be a frame for H, and let a : I → G be an associated map
such that D+(I, a) < ∞. Let F̃ be the canonical dual frame and S−1/2(F) the canonical
Parseval frame. If (F , a) is `1-self-localized, then:
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(a) (F , a) is `1-localized with respect to its canonical dual frame F̃ = {f̃i}i∈I ,

(b) (F̃ , a) is `1-self-localized, and

(c) (S−1/2(F), a) is `1-self-localized.

2.5. Relative Measure.

Definition 2.13. (a) Let F = {fi}i∈I and E = {ej}j∈G be frame sequences in H, and let
a : I → G be an associated map. Let PF , PE denote the orthogonal projections of H onto
span(F) and span(E), respectively. Then given a free ultrafilter p and a sequence of centers
c = (cN)N∈N in G, we define the relative measure of F with respect to E , p, and c to be

ME(F ; p, c) = p-lim
N∈N

1

|IN(cN)|
∑

i∈IN (cN )

〈PEfi, f̃i〉.

The relative measure of E with respect to F , p, and c is

MF(E ; p, c) = p-lim
N∈N

1

|SN(cN)|
∑

j∈SN (cN )

〈PF ẽj, ej〉.

(b) If span(E) ⊃ span(F) then PE is the identity map and E plays no role in determining
the value of ME(F ; p, e). Therefore, in this case we define the measure of F with respect to

p and c to be

M(F ; p, c) = p-lim
N∈N

1

|IN(cN )|
∑

i∈IN (cN )

〈fi, f̃i〉.

Since 〈fi, f̃i〉 = ‖S−1/2fi‖2, we have that M(F ; p, c) is real. Additionally, since S−1/2(F) is

a Parseval frame, we have 0 ≤ 〈fi, f̃i〉 ≤ 1 for all i, and therefore

0 ≤ M(F ; p, c) ≤ 1.

For this case we further define the lower and upper measures of F by

M−(F) = lim inf
N→∞

inf
j∈G

1

|IN(j)|
∑

i∈IN (j)

〈fi, f̃i〉,

M+(F) = lim sup
N→∞

sup
j∈G

1

|IN(j)|
∑

i∈IN (j)

〈fi, f̃i〉.

It can be seen that there exist free ultrafilters p−, p+ and sequences of centers c−, c+ such
that M−(F) = M(F ; p−, c−) and M+(F) = M(E ; p+, c+).

(c) When span(F) ⊃ span(E), we define the measures M(E ; p, c) and M±(E) in an anal-
ogous manner. �

Example 2.14. The following special cases show that the measure of a Riesz basis is 1.

(a) If span(E) ⊃ span(F) and F is a Riesz sequence then 〈fi, f̃i〉 = 1 for every i ∈ I, so
M(F ; p, c) = M+(F) = M−(F) = 1.

(b) If span(F) ⊃ span(E) and E is a Riesz sequence then 〈ẽj, ej〉 = 1 for every j ∈ G, so
M(E ; p, c) = M+(E) = M−(E) = 1. �
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Example 2.15 (Lattice Gabor Systems). Consider a lattice Gabor frame, i.e., a frame of
the form G(g, αZd × βZd). The canonical dual frame is a lattice Gabor frame of the form
G(g̃, αZd × βZd) for some g̃ ∈ L2(Rd). By the Wexler–Raz relations, we have 〈g, g̃〉 = (αβ)d

(we also derive this fact directly from our results in Theorem 4.1). Since for all k, n we have
〈MβnTαkg, MβnTαkg̃〉 = 〈g, g̃〉, it follows that for any free ultrafilter p and sequence of centers
c = (cN)N∈N in αZd × βZd,

M(G(g, αZd × βZd); p, c) = M±(G(g, αZd × βZd)) = 〈g, g̃〉 = (αβ)d.

Since we also have D±
B(αZd × βZd) = (αβ)−d, we conclude that

M±(G(g, αZd × βZd)) =
1

D∓
B(αZd × βZd)

. � (2.5)

Equation (2.5) is essentially a special case of the Density–Relative Measure Theorem of
Part I, which states that if F , E are frame sequences such that (F , a, E) has both `2-column
and row decay and D+(I, a) < ∞, then

MF(E ; p, c) = D(p, c) ·ME(F ; p, c)

for every free ultrafilter p and choice of centers c = (cN )N∈N in G. We apply this general
result to irregular Gabor frames in Section 4.1.

3. Localization of Gabor Systems

In this section we will determinine the localization properties of Gabor systems.

3.1. Notation and Preliminary Observations for Gabor Systems.

3.1.1. Gabor systems and the reference system. A generic Gabor system generated by a
function g ∈ L2(Rd) and a sequence Λ ⊂ R2d will be written in any of the following forms:

G(g, Λ) = {MωTxg}(x,ω)∈Λ = {e2πiω·tg(t − x)}(x,ω)∈Λ = {gλ}λ∈Λ.

In the case that G(g, Λ) is a frame sequence we let

G̃ = {g̃λ}λ∈Λ

denote the canonical dual frame sequence in span(G(g, Λ)), but it is important to note that
while gλ is a time-frequency shift of g, it need not be the case that the functions g̃λ are
time-frequency shifts of a single function. We address the question of the structure of the
dual frame in more detail in Section 4.3.

Our reference systems will be lattice Gabor systems indexed by the group

G = αZd × βZd,

where α, β > 0 are fixed scalars. For compactness of notation, we usually let G implicitly
denote the group above, only writing out αZd × βZd when we wish to explicitly emphasize
the values of α, β. Thus our reference systems have the form

G(φ, G) = G(φ, αZd × βZd) = {MηTuφ}(η,u)∈G = {MβnTαkφ}k,n∈Zd.

The canonical dual frame of a lattice Gabor frame sequence is another lattice Gabor frame
sequence G(φ̃, G), generated by some dual window φ̃ ∈ L2(Rd). Usually the reference system
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makes an appearance only during the course of a proof, and does not appear in the statement
of most of the theorems.

3.1.2. Cubes and the a mapping. For simplicity of notation, we introduce the following ab-
breviations.

Given x = (x1, . . . , xd) ∈ Rd, we define Int(x) = (bx1c, . . . , bxdc) and Frac(x) = x−Int(x).
Let α, β be fixed. Then given a point x = (x1, . . . , xd) ∈ Rd, we set

x̄ = α Int
(

x
α

)

, x̃ = α Frac
(

x
α

)

, ω̄ = β Int
(

ω
β

)

, ω̃ = β Frac
(

ω
β

)

. (3.1)

Note the implicit dependence on α and β in this notation.
We define the map a : Λ → G as in Example 2.6 by rounding off to a near element of G,

i.e.,

a(x, ω) =
(

αInt
(

x
α

)

, βInt
(

ω
β

))

=
(

x̄, ω̄
)

, (x, ω) ∈ Λ.

Given z = (x, y) ∈ R2d, let Qr(z) = Qr(x, y) denote the closed cube in R2d centered at z
with side length r. Then given j ∈ G = αZd × βZd, we have

SN(j) = G ∩ QN (j) and IN(j) = a−1(G ∩ QN(j)).

Note that IN(j) is very nearly Λ ∩ QN (j), except for the effect of rounding off points via
the a map. Thus

|SN(j)| = |G ∩ QN(j)| ≈ (αβ)−d N2d, (3.2)

|IN(j)| = |a−1(G ∩ QN (j))| ≈ |Λ ∩ QN (j)|.

3.1.3. Density and Measure. Recall from (2.3) the definitions of the lower and upper Beurling
densities of the index set Λ:

D−
B(Λ) = lim inf

N→∞
inf

j∈R2d

|Λ ∩ QN(j)|
N2d

and D+
B(Λ) = lim sup

N→∞
sup

j∈R2d

|Λ ∩ QN (j)|
N2d

.

Note that taking the inf and sup over j ∈ G instead of j ∈ R2d does not affect the value of
these densities. Example 2.4 derived the relationship between the Beurling densities D±

B(Λ)
and the densities D±(Λ, a) defined in this paper. Specifically,

D+
B(Λ) = (αβ)−d D+(Λ, a) = (αβ)−d lim sup

N→∞
sup

j∈αZd×βZd

|a−1(G ∩ QN(j))|
|G ∩ QN (j)| ,

and similarly D−
B(Λ) = (αβ)−d D−(Λ, a). In light of this equation, we define the Beurling

density of Λ with respect to a free ultrafilter p and a sequence of centers c = (cN)N∈N in R2d

to be

DB(Λ; p, c) = (αβ)−d D(Λ, a; p, c) = (αβ)−d p-lim
N∈N

|a−1(G ∩ QN (cN))|
|G ∩ QN (cN)| .

Our results for Gabor systems will all be stated in terms of these Beurling densities.
The measure of a Gabor frame sequence G(g, Λ) with respect to a free ultrafilter p and a

sequence of centers c = (cN)N∈N in R2d is

M(G(g, Λ); p, c) = p-lim
N∈N

1

|a−1(G ∩ QN (cN))|
∑

a−1(G∩QN (cN ))

〈gλ, g̃λ〉.
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In particular, note that if G(g, Λ) is a Riesz sequence then 〈gλ, g̃λ〉 = 1 for all λ, so the
measure is M±(G(g, Λ)) = 1. Also recall that the measure of a lattice Gabor system was
computed in Example 2.15.

By making the approximations in (3.2) precise, the next lemma reformulates the density
and measure in such a way that it becomes clear that they do not depend on the choice of
α, β. That is, the density of I and the measure of G(g, Λ) are independent of the choice of
reference group. Analogous reformulations of the upper and lower density and measures also
hold under the same hypotheses.

Lemma 3.1. Let Λ ⊂ R2d be given.

(a) If D+
B(Λ) < ∞, then for any ultrafilter p and any sequence of centers c = (cN)N∈N

in R2d,

DB(Λ; p, c) = p-lim
N∈N

|Λ ∩ QN(cN)|
N2d

.

(b) Let g ∈ L2(Rd) be given. If 0 < D−
B(Λ) ≤ D+

B(Λ) < ∞, then for any ultrafilter p and
any sequence of centers c = (cN)N∈N in R2d,

M(G(g, Λ); p, c) = p-lim
N∈N

1

|Λ ∩ QN(cN)|
∑

λ∈Λ∩QN (cN )

〈gλ, g̃λ〉.

Proof. (a) The map a is a bounded perturbation of the identity map. In particular, if
δ = max{α, β}, then we have

Λ ∩ QN−δ(cN) ⊂ a−1(G ∩ QN (cN)) ⊂ Λ ∩ QN+δ(cN ). (3.3)

Since the upper density is finite, there is a constant C such that |Λ∩QN+δ(cN) \QN(cn)| ≤
C N2d−1. Using the second inclusion in (3.3), we therefore have

DB(Λ; p, c) = (αβ)−d p-lim
N∈N

|a−1(G ∩ QN(cN))|
|G ∩ QN(cN )|

≤ (αβ)−d p-lim
N∈N

|Λ ∩ QN+δ(cN)|
|G ∩ QN (cN)|

= (αβ)−d p-lim
N∈N

( |Λ ∩ QN (cN)|
|G ∩ QN(cN )| +

|Λ ∩ QN+δ(cN) \ QN(cN )|
|G ∩ QN (cN)|

)

= p-lim
N∈N

|Λ ∩ QN (cN)|
N2d

,

and a similar computation making use of the first inclusion in (3.3) yields the opposite
inequality.

(b) The fact that 0 < D−
B(Λ) and D+

B(Λ) < ∞ implies that there exist C1, C2 > 0 such
that for all N large enough and all j ∈ G we have C1N

2d ≤ |Λ∩QN(j)| ≤ C2N
2d. Combining

this with (3.3) then implies that

p-lim
N∈N

|Λ ∩ QN(cN )|
|a−1(G ∩ QN (cN))| = 1.
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Since 0 ≤ 〈gλ, g̃λ〉 ≤ 1, we therefore have

M(G(g, Λ); p, c) = p-lim
N∈N

1

|a−1(G ∩ QN (cN))|
∑

λ∈a−1(G∩QN (cN ))

〈gλ, g̃λ〉

≤ p-lim
N∈N

1

|Λ ∩ QN (cN)|
∑

λ∈Λ∩QN+δ(cN )

〈gλ, g̃λ〉

≤ p-lim
N∈N

1

|Λ ∩ QN (cN)|
∑

λ∈Λ∩QN (cN )

〈gλ, g̃λ〉 +

p-lim
N∈N

|Λ ∩ QN+δ(cN) \ QN (cN)|
|Λ ∩ QN (cN)| ,

and the final term in this computation is zero. Combining this with a similar computation
for the opposite inequality then yields the result. �

3.2. Localization with respect to the Box Function. We now show that any Gabor
system G(g, Λ) has `2-row decay with respect to the Gabor orthonormal basis G(χ,Z2d)
generated by the “box function” χ = χ

[− 1
2
, 1
2
)d , and that we recover as a consequence the

fact first proved in [CDH99] that any Gabor system that forms a Bessel sequence must have
finite density.

The Gabor system generated by the box function is convenient both because it is an
orthonormal basis and because the index set is G = Z2d (so, in particular, α = β = 1).
However, in general this is not a useful basis in applications because the generating function χ

is poorly concentrated in the time-frequency plane (in fact, by the Balian–Low Theorem, no
Gabor Riesz basis of the form G(φ, αZd×βZd) can have a generator φ that is simultaneously
well-concentrated in both time and frequency). In the next section we show in more detail
how time-frequency concentration is related to localization.

Proposition 3.2. If g ∈ L2(Rd) and Λ ⊂ R2d, then (G(g, Λ), a, G(χ,Z2d)) has `2-row decay.

Proof. Choose ε > 0, and let R > 0 be large enough that
∫

Rd\[−R,R]d
|g(t)|2 dt < ε. Fix an

even integer Nε > R + 3.
Consider now any (x, ω) ∈ Λ. Since α = β = 1, we have x̃ = Frac(x) ∈ [0, 1)d and

ω̃ = Frac(ω) ∈ [0, 1)d. Note that for each k ∈ Zd, {MnTkχ}n∈Zd is an orthonormal basis for
the subspace of L2(Rd) consisting of functions supported in the unit cube Bk in Rd centered
at k. Therefore,

∑

(k,n)∈Z2d\SNε (a(x,ω))

|〈MωTxg, MnTkχ〉|2 =
∑

(k,n)∈Z2d\SNε (x̄,ω̄)

|〈Mω̃Tx̃g, Mn−ω̄Tk−x̄χ〉|2

=
∑

(k,n)∈Z2d\SNε (0,0)

|〈Mω̃Tx̃g, MnTkχ〉|2

≤
∑

k∈Zd\[−Nε
2

, Nε
2

)d

∑

n∈Zd

|〈Mω̃Tx̃g, MnTkχ〉|2
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=
∑

k∈Zd\[−Nε
2

, Nε
2

)d

∫

Bk

|Mω̃Tx̃g(t)|2 dt

≤
∫

Rd\[−Nε+1
2

, Nε−1
2

]d
|g(t − x̃)|2 dt

≤
∫

Rd\[−R
2

, R
2

]d
|g(t)|2 dt < ε. �

Note that the preceeding result does not require that Λ have finite density. However, we
next observe that it follows as a consequence of Part I results that the density must be finite
if the Gabor system is a Bessel sequence.

Corollary 3.3. If g ∈ L2(Rd) and Λ ⊂ R2d are such that G(g, Λ) is a Bessel sequence, then
D+

B(Λ) < ∞.

Proof. Since (G(g, Λ), a, G(χ,Z2d)) has `2-row decay and G(g, Λ) is norm-bounded below,
all the hypotheses of [BCHL05a, Thm. 3.3] are fulfilled, and consequently the upper density
must be finite. �

3.3. Localization with respect to M 1 Functions. For most applications in time-fre-
quency analysis, the generator of a Gabor system must possess some amount of joint con-
centration in both time and frequency. Concentration is quantified by the norms of the mod-
ulation spaces, which are the Banach function spaces naturally associated to time-frequency
analysis. The modulation spaces were invented and extensively investigated by Feichtinger,
with some of the main references being [Fei81], [Fei89], [FG89a], [FG89b], [FG97], [Fei03].
For a detailed development of the theory of modulation spaces and their weighted counter-
parts, we refer to the original literature mentioned above and to [Grö01, Ch. 11–13].

For our purposes, the following special case of unweighted modulation spaces will be
sufficient.

Definition 3.4.

(a) The Short-Time Fourier Transform (STFT) of a tempered distribution g ∈ S ′(Rd)
with respect to a window function φ ∈ S(Rd) is

Vφg(x, ω) = 〈g, MωTxφ〉, (x, ω) ∈ R2d.

(b) Let γ(x) = 2d/4e−πx·x be the Gaussian function, which has been normalized so that
‖γ‖2 = 1. Then for 1 ≤ p ≤ ∞, the modulation space M p(Rd) consists of all
tempered distributions f ∈ S ′(Rd) such that

‖f‖Mp = ‖Vγf‖Lp =

(
∫∫

R2d

|〈f, MωTxγ〉|p dx dω

)1/p

< ∞, (3.4)

with the usual adjustment if p = ∞. �
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Mp is a Banach space for each 1 ≤ p ≤ ∞, and any nonzero function g ∈ M 1 can be
substituted for γ in (3.4) to define an equivalent norm for M p. We have M2 = L2, and
S ( Mp ( M q ( S ′ for 1 ≤ p < q ≤ ∞, where S is the Schwartz class. The box function χ

lies in Mp for p > 1, but is not in M 1.

Remark 3.5. There is a complete characterization of the frame properties of lattice Gabor
systems generated by the Gaussian:

(a) G(γ, αZd × βZd) is a frame for L2(Rd) if 0 < αβ < 1,
(b) G(γ, αZd × βZd) is a Riesz sequence in L2(Rd) if αβ > 1 (but not a Riesz basis),
(c) G(γ, αZd × βZd) is complete but not a frame for L2(Rd) if αβ = 1.

Part (a) was proved in [Lyu92], [Sei92], [SW92]; see also the simple proof given in [Jan94].
Part (b) is a consequence of part (a) and the Wexler–Raz relations, and part (c) is easy to
show using Zak transform techniques, see [Grö01]. Such a complete characterization of frame
properties is known for only a few specific functions [Jan94], [Jan03], [JS02], cf. also [CK02].
In particular such a characterization is not available for general M 1 functions. On the other
hand, given any particular choice of α, β with 0 < αβ < 1, it is easy to construct a function
g ∈ C∞

c (Rd) such that G(g, αZd × βZd) is a Parseval frame for L2(Rd), cf. [DGM86]. It is
known that if G(φ, αZd × βZd) is a frame for L2(Rd) generated by a function φ ∈ M 1, then

the canonical dual frame G(φ̃, αZd × βZd) has a generator φ̃ that also lies in M 1 [GL04].
In Section 4.3 we will extend that result to the more general setting of irregular Gabor
frames. �

In addition to the modulation spaces, we will also need a special case of the Wiener
amalgam spaces on R2d. Feichtinger has developed a general notion of amalgam spaces, e.g.,
[Fei80], [FG85], [Fei87], [Fei90], [Fei92]. For an introduction, with extensive references to the
original literature, to the particular Wiener amalgams appearing in the following definition,
we refer to [Hei03].

Definition 3.6. Given 1 ≤ p ≤ ∞, the Wiener amalgam W (C, `p) consists of all continuous
functions F on R2d for which

‖F‖W (C,`p) =

(

∑

(k,n)∈Z2d

sup
(u,η)∈Qα,β(αk,βn)

|F (u, η)|p
)1/p

< ∞,

with the usual adjustment if p = ∞, and where Qα,β(x, y) = [0, α)d × [0, β)d + (x, y). �

W (C, `p) is a Banach space, and its definition is independent of the values of α and β in
the sense that each choice of α, β yields an equivalent norm for W (C, `p).

We will require the following lemma on the basic properties of the STFT. Part (a) is
proved in [Grö01, Thm. 12.2.1], and part (b) in [Grö01, Lem12.1.1].

Lemma 3.7.

(a) Let 1 ≤ p ≤ ∞ be given. If g ∈ M p and φ ∈ M1, then Vφg ∈ W (C, `p), and

‖Vφg‖W (C,`p) ≤ C ‖g‖Mp ‖φ‖M1,

where C is a constant independent of g and φ.

(b) Let f , g ∈ L2(Rd) be given. If Vgf ∈ L1(R2d), then f , g ∈ M1(Rd).
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Next we will show that if the generator of our reference system is an M 1 function φ, then
(G(g, Λ), a, G(φ, G)) is `p-localized whenever g ∈ M p. We also show that the converse is true
if we assume that φ generates a frame. Thus the degree of localization is tied to the time-
frequency concentration of the generator g. This is a stronger statement than previously
known results, which only demonstrated that Gabor frames satisfy the weak HAP with
respect to reference systems generated by the Gaussian. We will also show that if g ∈ M 1

then (G(g, Λ), a) is `1-self-localized (this statement does not require a reference system).
However, the converse of this is false. For example, if we set g = χ and Λ = Z2d, then
G(g, Λ) is an orthonormal basis for L2(Rd) and hence is `1-self-localized, but g /∈ M 1.

Theorem 3.8. Let g ∈ L2(Rd) and Λ ⊂ R2d be given. Let φ ∈ L2(Rd) and α, β > 0 be
given, and fix 1 ≤ p ≤ 2. Then the following statements hold.

(a) If g ∈ Mp and φ ∈ M1 then (G(g, Λ), a, G(φ, G)) is `p-localized.

(b) Suppose φ ∈ M1 and α, β > 0 are such that G(φ, G) is a frame for L2(Rd). If
(G(g, Λ), a, G(φ, G)) is `p-localized, then g ∈ Mp.

(c) If g ∈ M1 and φ ∈ Mp then (G(g, Λ), a, G(φ, G)) is `p-localized.

(d) If g ∈ M1 then (G(g, Λ), a) is `1-self-localized.

Proof. (a) Set

r(αk,βn) = sup
(u,η)∈Qα,β(αk,βn)

|Vφg(−u,−η)|.

By Lemma 3.7 we have Vφg ∈ W (C, `p), so r = (r(αk,βn))(αk,βn)∈G ∈ `p(G). Let (x, ω) ∈ Λ and
(u, v) ∈ G be given. Then, recalling the notations x̃, ω̃ introduced in (3.1), since x̃ ∈ [0, α)d

and ω̃ ∈ [0, β)d, we have

|〈MωTxg, MvTuφ〉| = |〈g, Mv−ω̄−ω̃Tu−x̄−x̃φ〉|
= |Vφg(u − x̄ − x̃, v − ω̄ − ω̃)| ≤ ra(x,ω)−(u,v),

so `p-localization holds.

(b) By [GL04] or Theorem 4.6, the dual frame of G(φ, G) is a lattice Gabor frame G(φ̃, G)

with a dual window φ̃ ∈ M1. Fix any (x, ω) ∈ Λ. Expanding MωTxg with respect to this
frame, we have

MωTxg =
∑

k,n∈Zd

〈MωTxg, MβnTαkφ〉MβnTαkφ̃, (3.5)

with convergence in L2(Rd). Now, by definition of `p-localization, there exists r ∈ `p(G)
such that

|〈MωTxg, MβnTαkφ〉| ≤ ra(x,ω)−(αk,βn), (αk, βn) ∈ G.

Consequently, {〈MωTxg, MβnTαkφ〉}k,n∈Zd ∈ `p, and so by [Grö01, Thm. 12.2.4] the series
on the right-hand side of (3.5) converges in M p-norm. Since it also converges in L2-norm,
the series must converge in M p-norm to MωTxg, so MωTxg ∈ Mp. Since Mp is closed under
time-frequency shifts, we conclude g ∈ M p.

(c) Since |Vφg(x, ω)| = |Vgφ(−x,−ω)|, this follows from part (a).
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(d) This can be shown directly, similarly to part (a), or by applying [BCHL05a, Lem. 2.15]
to part (a), using as a reference system any lattice Gabor frame G(φ, G) whose generator φ
lies in M1. �

4. New Implications for Gabor Frames

4.1. Density and Overcompleteness for Gabor Systems. Parts (b) and (c) of the
following theorem are new results for Gabor frames; the equalities given are much stronger
than the single inequality obtained in [BCHL03b]. Parts (a) and (d) recover the known
density facts for irregular Gabor frames, and part (e) is the special case of lattice systems.
These results are stated in terms of Beurling density, which was discussed in Section 3.1.3.

Theorem 4.1. Let g ∈ L2(Rd) and Λ ⊂ R2d be such that G(g, Λ) is a Gabor frame for
L2(Rd). Then the following statements hold.

(a) 1 ≤ D−
B(Λ) ≤ D+

B(Λ) < ∞.

(b) For any free ultrafilter p and any sequence of centers c = (cN)N∈N in Rd, we have

M(G(g, Λ); p, c) =
1

DB(Λ; p, c)
, (4.1)

and consequently

p-lim
N∈N

1

N2d

∑

λ∈Λ∩QN (cN )

〈gλ, g̃λ〉 = 1. (4.2)

(c) M−(G(g, Λ)) =
1

D+
B(Λ)

and M+(G(g, Λ)) =
1

D−
B(Λ)

.

(d) If G(g, Λ) is a Riesz basis, then D−
B(Λ) = D+

B(Λ) = 1.

(e) If Λ = αZd × βZd then 0 < αβ ≤ 1 and 〈g, g̃〉 = (αβ)d.

Proof. (a) In this part we use a reference system G(γ, G) generated by the Gaussian γ.
If we take any α, β > 0 so that αβ > 1, then G(γ, G) is a Riesz sequence in L2(Rd),
and (G(g, Λ), a, G(γ, G)) is `2-localized by Theorem 3.8. Therefore, we have by [BCHL05a,
Thm. 3.2] that (αβ)d D−

B(Λ) = D−(Λ, a) ≥ 1. Since this is true for any αβ > 1, we conclude
that D−

B(Λ) ≥ 1. The fact that D+
B(Λ) < ∞ follows from Corollary 3.3.

(b) In this part our reference system will be generated by the function

φ(x) =

d
∏

k=1

e2πixk + 1

2
χ

[− 1
2
, 1
2
](xk), x = (x1, . . . , xd) ∈ Rd.

Since φ is compactly supported, φ ∈ L1(Rd), and φ̂(ω) =
∏d

k=1
sinπωk

2π(ωk−ω2
k
)
∈ L1(Rd), it

follows from [FZ98, Thm. 3.2.17] that φ ∈ M 1. If we set α = 1/2 and β = 1, then since
∑ |φ(x − 1

2
k)|2 = 1, we have by [Grö01, Thm. 6.4.1] that G(φ, G) is a Parseval frame for

L2(Rd). By direct computation, the measure of this frame is M(G(φ, G); p, c) = ‖φ‖2
2 = 2−d.
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Since (G(g, Λ), a, G(φ, G)) is `2-localized, we have by [BCHL05a, Thm. 3.5(a)] that

M(G(g, Λ); p, c) =
M(G(φ, G); p, c)

D(p, c)
=

2−d

2−d DB(Λ; p, c)
=

1

DB(Λ; p, c)
.

Finally, the reformulation in (4.2) follows by applying Lemma 3.1 to (4.1).

(c) Using the same reference system as in part (b), we have by [BCHL05a, Thm. 3.5(a)]
that

2−d = M−(G(φ, G)) ≤ D+(Λ, a) ·M−(G(g, Λ)) ≤ M+(G(φ, G)) = 2−d,

so M−(G(g, Λ)) = 2−d

D+(Λ,a)
= 1

D+
B

(Λ)
, and similarly M+(G(g, Λ)) = 1

D−

B
(Λ)

.

(d) If G(g, Λ) is a Riesz basis then M±(G(g, Λ)) = 1, so the result follows from part (c).

(e) In the lattice case Λ = αZd×βZd we have D±
B(αZd×βZd) = (αβ)−d and M±(G(g, Λ)) =

〈g, g̃〉, so the result follows from parts (a) and (c). �

Next we prove results on the relationship between the density, frame bounds, and norm
of the generator of a Gabor frame. The special case of lattice systems was first proved by
Daubechies [Dau90, Eq. 2.2.9].

Theorem 4.2. Let g ∈ L2(Rd) and Λ ⊂ R2d be such that G(g, Λ) is a Gabor frame for
L2(Rd), with frame bounds A, B. Then the following statements hold.

(a) A ≤ D−
B(Λ) ‖g‖2

2 ≤ D+
B(Λ) ‖g‖2

2 ≤ B.

(b) If G(g, Λ) is a tight frame, then Λ has uniform Beurling density, that is, D−
B(Λ) =

D+
B(Λ), and furthermore A = D±

B(Λ) ‖g‖2
2.

(c) If Λ = αZd × βZd, then A ≤ ‖g‖2
2

(αβ)d
≤ B.

Proof. For a reference system, fix any φ ∈ M 1 and any α, β > 0 such that G(φ, G)
is a Parseval frame for L2(Rd). By Theorem 4.1(e) we have ‖φ‖2

2 = (αβ)d. Further,
(G(g, Λ), a, G(φ, G)) is `2-localized by Theorem 3.8, so [BCHL05a, Thm. 3.6(c)] implies
that

A (αβ)d

‖g‖2
2

=
A ‖φ‖2

2

‖g‖2
2

≤ D−(Λ, a)

= (αβ)d D−
B(Λ)

≤ (αβ)d D+
B(Λ)

= D+(Λ, a) =
B ‖φ‖2

2

‖g‖2
2

≤ B (αβ)d

‖g‖2
2

,

so part (a) follows. Parts (b) and (c) are immediate consequences of part (a). �
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4.2. Excess of Gabor Frames. In this section we consider the excess of Gabor frames,
and show that subsets with positive density may be removed from an overcomplete Gabor
frame yet still leave a frame.

Theorem 4.3. Let g ∈ L2(Rd) and Λ ⊂ R2d be such that G(g, Λ) is a Gabor frame for
L2(Rd). Then the following statements hold.

(a) If D+
B(Λ) > 1 then G(g, Λ) has infinite excess, and there exists an infinite subset

J ⊂ Λ such that G(g, Λ \ J) is a frame for L2(Rd).

(b) If g ∈ M1 and D−
B(Λ) > 1, then there exists J ⊂ Λ with D+

B(J) = D−
B(J) > 0 such

that G(g, Λ \ J) is a frame for L2(Rd).

Proof. (a) By Theorem 4.1(c) we have M−(G(g, Λ)) < 1. The result therefore follows from
[BCHL05a, Prop. 2.21].

(b) By Theorem 4.1(c) we have M+(G(g, Λ)) < 1. Since g ∈ M 1, we have that (G(g, Λ), a)
is `1-self-localized by Theorem 3.8. Hence the result follows from [BCHL05a, Thm. 3.8]. �

4.3. Localization and Structure of the Canonical Dual Frame. In this section we
study the structure of the canonical dual frame of an irregular Gabor frame.

First we introduce the notion of Gabor molecules. The term “molecule” arises from the
convention that the generator g of a Gabor system G(g, Λ) is often referred to as an “atom.”

Definition 4.4. Let Λ ⊂ R2d and fλ ∈ L2(Rd) for λ ∈ Λ be given. Then F = {fλ}λ∈Λ is a
set of Gabor molecules if there exists an envelope function Γ ∈ W (C, `2) such that

∀λ ∈ Λ, ∀ z ∈ R2d, |Vγfλ(z)| ≤ Γ(z − λ). �

Thus, if Γ is concentrated around the origin in R2d, then the STFT of fλ is concentrated
around the point λ. Every Gabor system G(g, Λ) is a set of Gabor molecules, as |Vγgλ(z)| =
|Vγg(z−λ)| for every z, λ. Sometimes the following equivalent definition is more convenient:
F = {MωTxfxω}(x,ω)∈Λ is a set of Gabor molecules if there exists Γ ∈ W (C, `2) such that
|Vγfxω(z)| ≤ Γ(z) for all (x, ω) ∈ Λ and z ∈ R2d.

The following lemma shows that the definition of Gabor molecules is unchanged if we
replace the Gaussian window by any window function φ ∈ M 1.

Lemma 4.5. Suppose F = {fλ}λ∈Λ is a set of Gabor molecules with envelope Γ ∈ W (C, `2).
If φ ∈ M1, then Γφ = Γ ∗ Vφγ ∈ W (C, `2), and |Vφfλ(z)| ≤ Γφ(z − λ) for all λ ∈ Λ and
z ∈ R2d.

Proof. Since γ, φ ∈ M 1 we have Vγγ ∈ L1(R2d). Therefore Γφ ∈ W (C, `2) ∗ L1 ⊂ W (C, `2)
by [Grö01, Thm. 11.1.5]. Further,

|Vφfλ(z)| ≤ (|Vγfλ| ∗ |Vφγ|)(z) =

∫

R2d

|Vφfλ(z − w)| |Vφγ(w)| dw

≤
∫

R2d

Γ(z − w − λ) |Vφγ(w)| dw

= (Γ ∗ |Vφγ|)(z − λ) = Γφ(z − λ),

the first inequality following from [Grö01, Lem. 11.3.3]. �
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Gröchenig and Leinert [GL04] proved that if Λ is a lattice then the canonical dual frame
of a lattice Gabor frame generated by a function g ∈ M 1 is generated by a dual window
that also lies in M 1 (they also obtained weighted versions of this result). Their proof relied
on deep results about symmetric Banach algebras. Here we extend this result to the more
general setting of irregular Gabor frame sequences, and furthermore determine the structure
of the dual frame (which in the lattice setting is simply another lattice Gabor frame). Note
in particular that this result also applies to Gabor Riesz sequences.

Theorem 4.6. Let g ∈ M 1 and Λ ⊂ R2d be such that G(g, Λ) is a Gabor frame sequence

in L2(Rd), with canonical dual frame sequence G̃ = {g̃λ}λ∈Λ. Then the following statements
hold:

(a) g̃λ ∈ M1 for all λ ∈ Λ,

(b) supλ ‖g̃λ‖M1 < ∞, and

(c) G̃ is a set of Gabor molecules with respect to an envelope Γ ∈ W (C, `1).

Furthermore, the same conclusions hold when G̃ is replaced by the canonical Parseval frame
S−1/2(G(g, Λ)).

Proof. (a) Since g ∈ M 1, we have by Theorem 3.8 that (G(g, Λ), a) is `1-self-localized. The-

orem 2.12 therefore implies that (G̃, a) is `1-self-localized as well. Hence, by definition, there
exists r ∈ `1(G) such that

|〈g̃λ, g̃µ〉| < ra(λ)−a(µ).

Since G(g, Λ) is a Bessel sequence, Λ has finite density by Theorem 3.3. Thus K =
supλ |a−1(λ)| < ∞.

For each λ ∈ Λ, the frame expansion of g̃λ is

g̃λ =
∑

µ∈Λ

〈g̃λ, g̃µ〉 gµ, (4.3)

with convergence in L2(Rd). However, {〈g̃λ, g̃µ〉}µ∈Λ ∈ `1(Λ), so by [Grö01, Thm. 12.1.8] the
series on the right-hand side of (4.3) converges in M 1-norm, and therefore g̃λ ∈ M1.

(b) Since translation and modulation are isometries in M 1-norm, we have

‖g̃λ‖M1 ≤
∑

µ∈Λ

|〈g̃λ, g̃µ〉| ‖gµ‖M1

=
∑

j∈G

∑

µ∈a−1(j)

|〈g̃λ, g̃µ〉| ‖g‖M1 ≤ K ‖r‖`1 ‖g‖M1.

(c) Set

Qα,β(x, y) = [0, α)d × [0, β)d + (x, y),

Rα,β(x, y) = [−α, α)d × [−β, β)d + (x, y),

and define
Γ(z) = K

∑

j∈G

rj sup
w∈Rα,β(j)

|Vγg(z − w)|, z ∈ R2d.
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Because r ∈ `1 and Vγg ∈ W (C, `1), we have Γ ∈ W (C, `1) as well.
Given µ ∈ Λ, recall that a(µ) = µ̄, so µ = a(µ) + µ̃ ∈ Qαβ(a(µ)). Also,

Qαβ(j + a(λ)) = [0, α)d × [0, β)d + j + λ − λ̃ ⊂ Rαβ(j + λ).

Therefore, taking the STFT of both sides of (4.3), we have

|Vγ g̃λ(z)| ≤
∑

µ∈Λ

|〈g̃λ, g̃µ〉| |Vγgµ(z)|

≤
∑

j∈G

∑

µ∈a−1(j)

ra(µ)−a(λ) |Vγg(z − µ)|

≤ K
∑

j∈G

rj−a(λ) sup
w∈Qαβ(j)

|Vγg(z − w)|

= K
∑

j∈G

rj sup
w∈Qαβ(j+a(λ))

|Vγg(z − w)|

≤ K
∑

j∈G

rj sup
w∈Rαβ(j+λ)

|Vγg(z − w)| = Γ(z − λ).

Thus G̃ is a set of Gabor molecules.
Finally, by Theorem 2.12, the canonical Parseval frame S−1/2(G(g, Λ)) is `1-self-localized,

and computations similar to the ones above extend the results to the Parseval frame. �

4.4. Gabor Molecules. We close by noting that many of the results of the preceding
sections proved for Gabor frames carry over to frames of Gabor molecules with only minor
changes in proof.

Theorem 4.7. Let F = {fλ}λ∈Λ be a set of Gabor molecules with respect to an envelope
Γ ∈ W (C, `2). Let φ ∈ M1 and α, β > 0 be given. Then the following statements hold.

(a) If 1 ≤ p ≤ 2 and Γ ∈ W (C, `p), then (F , a,G(φ, G)) is `p-localized. Further, fλ ∈ Mp

for every λ ∈ Λ.

(b) If Γ ∈ W (C, `1), then (F , a) is `1-self-localized.

Theorem 4.8. Let F = {fλ}λ∈Λ be a set of Gabor molecules with respect to an envelope
Γ ∈ W (C, `2). If F is a frame for L2(Rd) then the following statements hold.

(a) 1 ≤ D−
B(Λ) ≤ D+

B(Λ) < ∞.

(b) M−(F) = 1
D+

B
(Λ)

and M+(F) = 1
D−

B
(Λ)

.

(c) If D+
B(Λ) > 1 then F has infinite excess, and there exists an infinite subset J ⊂ Λ

such that {fλ}λ∈Λ\J is a frame for L2(Rd).

(d) If Γ ∈ W (C, `1) and D−
B(Λ) > 1, then there exists J ⊂ Λ with D+

B(J) = D−
B(J) > 0

such that {fλ}λ∈Λ\J is a frame for L2(Rd).

(e) If Γ ∈ W (C, `1) then the canonical dual frame F̃ = {f̃λ}λ∈Λ is a set of Gabor molecules

with respect to an envelope function Γ̃ ∈ W (C, `1).



24 R. BALAN, P. G. CASAZZA, C. HEIL, AND Z. LANDAU

5. Relations Among the Localization and Approximation Properties

We conclude this work by determining the relationships that hold among the localization
and approximation properties described in section 2. For the case that F and E are both
frames for H and the upper density D+(I, a) is finite, these relations can be summarized in
the diagram in Figure 1.

= l 2
 l 2

= l 2

Weak HAP Weak Dual HAP

Strong Dual HAP
Strong HAP

−column decay
−localized −row decay

Figure 1. Relations among the localization and approximation properties for
p = 2, under the assumptions that F , E are frames and D+(I, a) < ∞.

5.1. Implications Among the Localization and Approximation Properties.

Theorem 5.1. Let F = {fi}i∈I and E = {ej}j∈G be sequences in H, and let a : I → G be
an associated map. Then the following statements hold.

(a) If F is a frame for H, then `2-column decay implies the strong HAP.

(b) If F is a frame for H and supj ‖ej‖ < ∞, then the strong HAP implies `2-column
decay.

(c) If E is a frame for H, then `2-row decay implies the strong dual HAP.

(d) If E is a frame for H and supi ‖fi‖ < ∞, then the strong dual HAP implies `2-row
decay.

(e) If F is a frame for H, then the strong HAP implies the weak HAP. If F is a Riesz
basis for H, then the weak HAP implies the strong HAP.

(f) If E is a frame for H, then the strong dual HAP implies the weak dual HAP. If E is
a Riesz basis for H, then the weak dual HAP implies the strong dual HAP.

(g) If D+(I, a) < ∞ and 1 ≤ p < ∞, then `p-localization implies both `p-column and
`p-row decay.

Before giving the proof of Theorem 5.1, we note that in Section 5.2 we construct coun-
terexamples to most of the converse implications of Theorem 5.1, including the following.

(a) There exist orthonormal bases E , F such that (F , a, E) does not have `2-column
decay, and hence does not satisfy the strong HAP.
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(b) There exists a frame F and orthonormal basis E such that (F , a, E) satisfies the weak
HAP but not the strong HAP.

(c) There exists a frame F and orthonormal basis E such that D+(I, a) < ∞, (F , a, E)
has both `2-column decay and `2-row decay, but fails to have `2-localization.

(d) There exists a Riesz basis F and orthonormal basis E such that (F , a, E) has `2-
column decay but not `2-row decay.

Proof of Theorem 5.1. (a) Assume F is a frame for H, with frame bounds A, B, and suppose

that (F , a, E) has `2-column decay. For each j ∈ G we have ej =
∑

i∈I〈ej, fi〉 f̃i, so

∥

∥

∥

∥

ej −
∑

i∈INε(j)

〈ej, fi〉 f̃i

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∑

i∈I\INε(j)

〈ej, fi〉 f̃i

∥

∥

∥

∥

2

≤ 1

A

∑

i∈I\INε(j)

|〈ej, fi〉|2 <
ε

A
.

Consequently, `2-column decay implies the strong HAP.

(b) Assume that F is a frame for H, that E is uniformly bounded above in norm, and
that (F , a, E) has the strong HAP. Let S be the frame operator for F . Since S is bounded,

C = supj ‖Sej‖ < ∞. Let F̃ = {f̃i}i∈I be the canonical dual frame to F . Since f̃i = S−1fi

and S is self-adjoint, we have

∑

i∈I\INε(j)

|〈ej, fi〉|2 =
〈

ej,
∑

i∈I\INε(j)

〈ej, fi〉 fi

〉

=
〈

Sej,
∑

i∈I\INε(j)

〈ej, fi〉 f̃i

〉

≤ ‖Sej‖
∥

∥

∥

∥

∑

i∈I\INε(j)

〈ej, fi〉 f̃i

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

ej −
∑

i∈INε(j)

〈ej, fi〉 f̃i

∥

∥

∥

∥

< Cε.

Consequently, (F , a, E) has `2-column decay.

(c), (d) These arguments are entirely symmetrical to the ones for (a), (b).

(e) Clearly the strong HAP trivially implies the weak HAP.
Suppose that F is a Riesz basis for H, and that (F , a, E) satisfies the weak HAP. Since F̃

is also a Riesz basis for H, there exist constants A′, B′ such that

A′
∑

i∈I

|ai|2 ≤
∥

∥

∥

∥

∑

i∈I

aif̃i

∥

∥

∥

∥

2

≤ B′
∑

i∈I

|ai|2
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for any square-summable sequence of scalars (ai). Fix any ε > 0, and let ci,j be the numbers
from (2.4). Then for any j ∈ G,

ε >

∥

∥

∥

∥

ej −
∑

i∈Nε(j)

ci,jf̃i

∥

∥

∥

∥

2

=

∥

∥

∥

∥

ej −
∑

i∈Nε(j)

〈ej, fi〉 f̃i +
∑

i∈Nε(j)

(

〈ej, fi〉 − ci,j

)

f̃i

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∑

i∈I\Nε(j)

〈ej, fi〉 f̃i +
∑

i∈Nε(j)

(〈ej, fi〉 − ci,j) f̃i

∥

∥

∥

∥

2

≥ A′
(

∑

i∈I\Nε(j)

|〈ej, fi〉|2 +
∑

i∈Nε(j)

|〈ej, fi〉 − ci,j|2
)

≥ A′
∑

i∈I\Nε(j)

|〈ej, fi〉|2

≥ A′

B′

∥

∥

∥

∥

∑

i∈I\Nε(j)

〈ej, fi〉 f̃i

∥

∥

∥

∥

2

=
A′

B′

∥

∥

∥

∥

ej −
∑

i∈Nε(j)

〈ej, fi〉 f̃i

∥

∥

∥

∥

2

.

Hence (F , a, E) satisfies the strong HAP.

(f) This argument is symmetrical to the one for (e).

(g) Assume that (F , a, E) is `p-localized and that D+(I, a) < ∞. Then we have K =
supn∈G |a−1(n)| < ∞. By definition of `p-localization, there exists an r ∈ `p(G) such that
|〈fi, ej〉| ≤ ra(i)−j for all i ∈ I and j ∈ G. Given ε > 0, let Nε be such that

∑

`∈G\SNε (0)

rp
` < ε.

Then
∑

i∈I\INε(j)

|〈fi, ej〉|p ≤
∑

n∈G\SNε(j)

∑

i∈a−1(n)

rp
a(i)−j ≤ K

∑

n∈G\SNε (j)

rp
n−j ≤ Kε.

Thus (F , a, E) has `p-column decay. Additionally,
∑

j∈G\SNε (a(i))

|〈fi, ej〉|p ≤
∑

j∈G\SNε(a(i))

rp
a(i)−j ≤

∑

`∈G\SNε (0)

rp
` ≤ ε,

so (F , a, E) has `p-row decay as well. �

5.2. Counterexamples. In this section, we provide examples showing that most of the
implications of Theorem 5.1 are sharp, along with several other useful examples.

The following example constructs orthonormal bases F and E such that (F , a, E) does not
satisfy the strong HAP.
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Example 5.2. For each n ∈ N, let Hn be an n-dimensional Hilbert space with orthonormal
basis {en

j }n
j=1. Let H = `2 ⊕ ∑∞

n=1 Hn, the orthogonal direct sum of `2 and the Hn. Let

{ej}j≤0 be an orthonormal basis for `2, and let {ej}j>0 be the orthonormal bases for the Hn

put into their natural order, i.e., e (n−1)n
2

+j
= en

j for j = 1, . . . , n. Then E = {ej}j∈Z is an

orthonormal basis for H.
Let ωn = e2πi/n be a primitive nth root of unity, and let {fn

k }n
k=1 be the harmonic or-

thonormal basis for Hn given by

fn
k =

1√
n

n
∑

j=1

ωjk
n en

j , k = 1, . . . , n.

Let {fk}k>0 be the fn
k put in their natural order, and for k ≤ 0 set fk = ek. Then F = {fk}k∈Z

is an orthonormal basis for H.
Let a : Z → Z be the identity map. Fix any N > 0. If j = (n−1)n

2
+ 1, then 〈fk, ej〉 = 0 for

all k < j or k ≥ j + n. Since I2N(j) = S2N(j) = [j − N, j + N) ∩ Z, we therefore have for
n > N that

∑

k∈Z\I2N (j)

|〈fk, ej〉|2 =

j+n−1
∑

k=j+N

|〈fk, ej〉|2

=

n
∑

k=N+1

|〈fn
k , en

1〉|2 =

n
∑

k=N+1

1

n
=

n − N − 1

n
.

This quantity approaches 1 as n → ∞, so (F , a, E) fails to have `2-column decay, and hence
by Theorem 5.1 also fails the strong HAP. �

The following example shows that the weak HAP need not imply the strong HAP if F
is not a Riesz basis (compare to part (e) of Theorem 5.1). Note that in this example, E is
actually an orthonormal basis for H.

Example 5.3. Let E and F be as in Example 5.2. Define

gn
2i =

1√
2
en

i , gn
2i−1 =

1√
2
fn

i , i = 1, . . . , n.

Let {gi}i>0 be the gn
i put in their natural order, and for i ≤ 0 set gi = ei. Then G = {gi}i∈Z

is a Parseval frame for H, i.e., the frame bounds are A = B = 1. In particular, G is its own
dual frame.

Define a : Z → Z by a(i) = i for i ≤ 0 and

a
( (2n−1)2n

2
+ 2i − 1

)

= a
( (2n−1)2n

2
+ 2i

)

= (n−1)n
2

+ i, i = 1, . . . , 2n,

i.e., a associates the elements gn
2i−1 and gn

2i of G with the element en
i in E .

Given any j ∈ Z, we have gj = ej for j ≤ 0, and
√

2gn
2j = en

j for j > 0, so clearly (G, a, E)
satisfies the weak HAP. However, given any N > 0 we have

∑

i∈Z\I2N (j)

|〈gi, ej〉|2 ≥ 1

2

∑

k∈Z\S2N (j)

|〈fk, ej〉|2,
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and as we saw in Example 5.2, we cannot make this quantity arbitrarily small independently
of j. Thus (G, a, E) fails the strong HAP. �

The following example shows that the assumption of `2-localization alone does not guar-
antee that the upper density is finite. In particular, this shows that the hypothesis in
[BCHL05a, Thm. 3.3] that inf i ‖fi‖ > 0 is necessary.

Example 5.4. Let E = {en}n∈Z be an orthonormal basis for H and let F = {en}n>0 ∪
{2ne0}n≤0. Note that F is a frame sequence in H. If we let a(i) = i for i > 0 and a(i) = 0
for i ≤ 0, then |a−1(0)| = ∞, so D+(I, a) = ∞. On the other hand, supi∈Z |〈fi, ej+a(i)〉| = 1
if j = 0 and 0 otherwise, so (F , a, E) is `2-localized. �

The following example shows that the converse of part (g) of Theorem 5.1 fails in general,
i.e., `2-column decay combined with `2-row decay does not imply `2-localization, even if
D+(I, a) < ∞.

Example 5.5. Let E = {ej}j∈Z be an orthonormal basis for H, and define F = {fj}j∈Z by

fj = ej +

(

1

4 + |j|

)1/2

e−j, j ∈ Z

Let a : Z → Z be the identity map. Then D+(a,Z) = 1, and IN (j) = SN(j) for all j and N .
For j 6= 0, we have

sup
i∈Z

|〈fi, e2j+i〉|2 = |〈f−j, ej〉|2 =
1

4 + |j| ,

so (F , a, E) is not `2-localized. On the other hand, since 〈fi, ej〉 6= 0 only when i = ±j, we
have

∑

i∈Z\SNε (j)

|〈fi, ej〉|2 =

{

0, −N
4

< j ≤ N
4
,

1
4+|j| , otherwise.

(5.1)

By taking Nε large enough, we can make this quantity arbitrarily small, independently of j.
Thus (F , a, E) has `2-column decay, and a similar argument shows it has `2-row decay.

Note that no other choice for the map a would help in this example, for if (F , a, E) has
`2-column decay, then supj |a(j) − j| < ∞. Thus a can only be a bounded perturbation of
the identity. For such an a, there always exists an N sufficiently large so that for |j| > N
an inequality similar to (5.1) will hold.

Note also in this example that F is a frame. For, given f ∈ H we have

∑

j∈Z

|〈f, fj − ej〉|2 =
∑

j∈Z

(

1

4 + |j|

)

|〈f, e−j〉|2 ≤ 1

4

∑

j∈Z

|〈f, ej〉|2 =
1

4
‖f‖2,

and therefore, by the triangle inequality,
(

∑

j∈Z

|〈f, fj〉|2
)1/2

≥
(

∑

j∈Z

|〈f, ej〉|2
)1/2

−
(

∑

j∈Z

|〈f, fj − ej〉|2
)1/2

≥ ‖f‖ − 1

2
‖f‖ =

1

2
‖f‖.
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Thus F has a lower frame bound of 1/4, and a similar calculation shows it has an upper
frame bound of 9/4. �

The following example shows that `2-column decay does not imply `2-row decay. By
interchanging the roles of F and E in this example, we also see that `2-row decay does not
imply `2-column decay.

Example 5.6. Index an orthonormal basis for H as E = span{en
j }n∈N,j=1,...,n, and set Hn =

span{en
j }j=1,...,n. Define

fn
i =

{

en
1 , i = 1,
1

2
√

n
en
1 + en

i , i = 2, . . . , n,

and

f̃n
i =

{

en
1 − 1

2
√

n

∑n
j=2 en

j , i = 1,

en
i , i = 2, . . . , n.

Clearly fn
i , f̃n

i ∈ Hn, and a straightforward calculation shows that {fn
i }n

i=1 and {f̃n
i }n

i=1 are
biorthogonal sequences in Hn. Since Hn is n-dimensional, this shows that these are dual
Riesz bases for Hn. Given any scalars {ai}n

i=1, we have
∥

∥

∥

∥

n
∑

i=1

aif
n
i

∥

∥

∥

∥

≤
∥

∥

∥

∥

∑n
i=1 ai

2
√

n
en
1

∥

∥

∥

∥

+

∥

∥

∥

∥

n
∑

i=1

aie
n
i

∥

∥

∥

∥

≤
∑n

i=1 |ai|
2
√

n
+

( n
∑

i=1

|ai|2
)1/2

≤ 3

2

( n
∑

i=1

|ai|2
)1/2

,

and similarly
∥

∥

∑n
i=1 aif

n
i

∥

∥ ≥ 1
2

(
∑n

i=1 |ai|2
)1/2

. Thus {fn
i }n

i=1 has Riesz bounds 1
2
, 3

2
. Since

H is the orthogonal direct sum of the Hn and the Riesz bounds are independent of n, we
conclude that F = {fn

i }n∈N,i=1,...,n and F̃ = {f̃n
i }n∈N,i=1,...,n are dual Riesz bases for H.

Another direct calculation shows that

|〈fm
i , en

j 〉| =











1, i = j, m = n,
1

2
√

n
, m = n, j = 1, i = 2, . . . , n,

0, otherwise.

Consequently, given any N , we have for each n > N and j = 1, . . . , n that

∑

m>N

m
∑

i=1

|〈fm
i , en

j 〉|2 =
n

∑

i=1

〈fn
i , en

j 〉|2 =
1

4n
,

while for n ≤ N this sum is zero. Hence, by taking N large enough this sum is less than ε
independently of n ∈ N and j = 1, . . . , n. Thus, with a as the identity map, (F , a, E) has
`2-row decay. On the other hand, if m > N then we have for each i = 1, . . . , n that

∑

n>N

n
∑

j=1

|〈fm
i , en

j 〉|2 =
n

∑

j=1

|〈fn
i , en

j 〉|2 =
n

∑

j=2

1

4n
=

n − 1

4n
.

After mapping the index set of E and F onto Z, similarly to Example 5.2, we conclude that
(F , a, E) does not have `2-row decay. �
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The following example illustrates the importance of the map a in determining localization
properties.

Example 5.7. Let F = {fn}n∈Z be an orthonormal basis for H, and define a : Z → Z

by a(2n) = a(2n + 1) = n. Then (F , a) is `1-self-localized, and by Example 2.14 we have
M±(F) = 1. However, D±(I, a) = 2. Hence, by [BCHL05a, Thm. 3.5(c)], there cannot
be any Riesz basis E such that (F , a, E) has both `2-column decay and `2-row decay. In
particular (F , a, E) cannot be `2-localized for any Riesz basis E , and (F , a,F) is not `2-
localized.

However, if we let E = {f2n}n∈Z, then E is a Riesz sequence (but not a Riesz basis), and
(F , a, E) is `1-localized. Since E is a Riesz sequence and span(F) = H, we have M±(E) =
M(E ; p, c) = 1 by Example 2.14(b). On the other hand, since PE(f2n) = 1 and PE(f2n+1) = 0,
it follows directly that ME(F ; p, c) = 1

2
. Thus ME(F ; p, c) D(p, c) = 1, in accordance with

[BCHL05a, Thm. 3.4]. �

The following example shows that `1-localization with respect to the canonical dual frame
does not imply `1-self-localization.

Example 5.8. Let E = {ei}i∈Z be an orthonormal basis for H, and let a : Z → Z be the
identity map. Fix 1

2
< c0 < 1, and for i 6= 0 choose ci > 0 in such a way that

∑

i∈Z

c2
i = 1 and

∑

i∈Z

ci = ∞.

Define
f0 =

∑

i∈Z

ciei and fi = ei for i 6= 0.

If we set T (ei) = fi, then T extends to a bounded mapping on H. Further, if f =
∑

i〈f, ei〉 ei ∈ H, then

‖(1 − T )f‖2 =
∥

∥〈f, e0〉 (e0 − f0)
∥

∥

2
= |〈f, e0〉|2

(

|1 − c0|2 +
∑

i6=0

c2
i

)

≤ (2 − 2c0) ‖f‖2,

so ‖1−T‖ ≤ 2− 2c0 < 1. Hence T is a continuous bijection of H onto itself, so F = {fi}i∈Z

is a Riesz basis for H. Therefore 〈fi, f̃j〉 = δij, so (F , a) is `1-localized with respect to its
dual frame. However, 〈f0, fj〉 = cj, so (F , a) is not `1-self-localized. �

Appendix A. Ultrafilters

In this appendix we provide a brief review of ultrafilters and their basic properties. For
additional information, we refer to [HS98, Chap. 3]. Filters were introduced by H. Cartan
[Car37a], [Car37b] in order to characterize continuous functions on general topological spaces.
Soon after, it was realized that the set of ultrafilters endowed with the proper topology
is the Stone-Čech compactification of a discrete (or more generally, a completely regular)
topological space. In the following we will restrict our attention to ultrafilters over the
natural numbers N.

Definition A.1. A collection p of subsets of N is a filter if:
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(a) ∅ /∈ p,

(b) if A, B ∈ p then A ∩ B ∈ p,

(c) if A ∈ p and A ⊂ B ⊂ N, then B ∈ p.

A filter p is an ultrafilter if it is maximal in the sense that:

(d) if p′ is a filter on N such that p ⊂ p′, then p′ = p,

or, equivalently, if

(d’) for any A ⊂ N, either A ∈ p or N \ A ∈ p (but not both, because of properties a
and b).

The set of ultrafilters is denoted by βN. �

Definition A.2. Given any n ∈ N, en = {A ⊂ N : n ∈ A} is an ultrafilter, called a principal

ultrafilter. It is straightforward to show that any ultrafilter p that contains a finite set must
be one of these principal ultrafilters. An ultrafilter which contains no finite sets is called
free. The set of free ultrafilters is denoted by N∗. �

Our main use for ultrafilters is that they provide a notion of convergence for arbitrary
sequences.

Definition A.3. Let p ∈ βN be an ultrafilter. Then we say that a sequence {ck}k∈N of
complex numbers converges to c ∈ C with respect to p if for every ε > 0 there exists a set
A ∈ p such that |ck − c| < ε for all k ∈ A. In this case we write c = p-limk∈N ck or simply
c = p-lim ck. �

The following proposition summarizes the basic properties of convergence with respect to
an ultrafilter.

Proposition A.4. Let p ∈ βN be an ultrafilter. Then the following statements hold.

(a) Every bounded sequence of complex scalars {ck}k∈N converges with respect to p to
some c ∈ C.

(b) p-limits are unique.

(c) If p = en is a principal ultrafilter, then p-lim ck = cn.

(d) If {ck}k∈N is a convergent sequence in the usual sense, p is a free ultrafilter, and
limk→∞ ck = c, then p-lim ck = c.

(e) If {ck}k∈N is a bounded sequence and p is a free ultrafilter, then p-limk∈N ck is an
accumulation point of {ck}k∈N.

(f) If c is an accumulation point of a bounded sequence {ck}k∈N, then there exists a free
ultrafilter p such that p-lim ck = c. In particular, there exists an ultrafilter p such that
p-lim ck = lim sup ck, and there exists an ultrafilter q such that q-lim ck = lim inf ck.

(g) p-limits are linear, i.e., p-lim(ack + bdk) = a p-lim ck + b p-lim dk.

(h) p-limits respect products, i.e., p-lim(ckdk) =
(

p-lim ck

) (

p-lim dk

)

.
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[FG97] H. G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions,

J. Funct. Anal., 146 (1997), 464–495.
[FZ98] H. G. Feichtinger and G. Zimmermann, A Banach space of test functions for Gabor analysis, in:

“Gabor Analysis and Algorithms: Theory and Applications,” H. G. Feichtinger and T. Strohmer,
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