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Abstract. This work presents a quantitative framework for describing the
overcompleteness of a large class of frames. It introduces notions of localization
and approximation between two frames F = {fi}i∈I and E = {ej}j∈G (G a
discrete abelian group), relating the decay of the expansion of the elements of
F in terms of the elements of E via a map a : I → G. A fundamental set of
equalities are shown between three seemingly unrelated quantities: the relative
measure of F , the relative measure of E — both of which are determined by
certain averages of inner products of frame elements with their corresponding
dual frame elements — and the density of the set a(I) in G. Fundamental
new results are obtained on the excess and overcompleteness of frames, on
the relationship between frame bounds and density, and on the structure of
the dual frame of a localized frame. These abstract results yield an array of
new implications for irregular Gabor frames. Various Nyquist density results
for Gabor frames are recovered as special cases, but in the process both their
meaning and implications are clarified. New results are obtained on the excess
and overcompleteness of Gabor frames, on the relationship between frame
bounds and density, and on the structure of the dual frame of an irregular
Gabor frame. More generally, these results apply both to Gabor frames and
to systems of Gabor molecules, whose elements share only a common envelope
of concentration in the time-frequency plane.

1. Introduction

Frames were first introduced by Duffin and Schaeffer [DS52] in the context of
nonharmonic Fourier series, and today frames play important roles in many appli-
cations in mathematics, science, and engineering, including time-frequency analysis
[Grö01], internet coding [GKK01], speech and music processing [WGW04], commu-
nication [SH03], multiple antenna coding [SHHS01], medicine [UAL03], quantum
computing [KR05], and many other areas.

The fundamental structural feature of frames that are not Riesz bases is the
overcompleteness of its elements (i.e., after the deletion of a number of frame el-
ements, the remaining set still spans the original space). To date, even partial
understanding of this overcompleteness has been restricted to limited examples,
such as finite-dimensional frames or regular frames of time-frequency shifts (lat-
tice Gabor frames). The ideas and results presented here provide a quantitative
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framework for describing the overcompleteness of a large class of frames. The con-
sequences of these ideas are: (a) an array of fundamental new results for frames
that hold in a general setting, (b) significant new results for the case of irregular
and lattice Gabor frames, as well as a new framing of existing results that clarifies
their meaning, and (c) the presentation of a powerful new approach to density and
overcompleteness which introduces a fruitful new area of research. Full details and
proofs will appear in the papers [BCHL05a], [BCHL05b].

At the core of our main results is Theorem 3.3. The precise statement of the
theorem requires some detailed notation, but the essence of the result can be sum-
marized as follows. We begin with two frames F = {fi}i∈I and E = {ej}j∈G, where
G is a discrete abelian group, and introduce a notion of the localization of F with
respect to E . The idea of localization is that it describes the decay of the coeffi-
cients of the expansion of elements of F in terms of the elements of E . To make
this notion of decay meaningful, a map a from the index set I into the index set G
is introduced. With this setup, Theorem 3.3 establishes a remarkable equality be-
tween three seemingly unrelated quantities: the relative measure of F , the relative
measure of E — both of which are determined by certain averages of inner products
of frame elements with their corresponding dual frame elements — and the density
of the set a(I) in G. This equality between density and relative measure is striking
since the relative measure is a function of the frame elements, while the density is
solely determined by the index set I and the mapping a : I → G.

We can summarize the impact of Theorem 3.3 and the other main results of this
paper as follows.

Localization of Frames. We provide a comprehensive analysis of the localization
of frames. Localization is not a single concept, but a suite of related ideas. We
introduce a collection of notions of localization as well as related approximation
properties for frames. We provide a comprehensive examination of the interrelations
between these localization and approximation concepts (Theorem 2.6).

Density and Overcompleteness. We explore the implications of the connection
between density and overcompleteness. We show that in any overcomplete frame
which possesses sufficient localization, the overcompleteness must have a certain
degree of uniformity. Specifically, we construct an infinite subset of the frame with
positive density which can be removed yet still leave a frame (Theorem 3.6). We
obtain relations among the frame bounds, density of the index set I , and norms
of the frame elements, and prove in particular that if F is a tight localized frame
whose elements all have the same norm then the index set I must have uniform
density (Theorem 3.5).

Structure of the Canonical Dual Frame. We explore the structure of the canonical
dual frame, showing that if a frame is sufficiently localized then its canonical dual
frame is also (Theorem 2.8).

The Feichtinger Conjecture for Localized Frames. We prove that any sufficiently
localized frame can be written as a finite union of Riesz sequences (Theorem 3.7).
This shows that the Feichtinger conjecture (which has recently been shown to be
equivalent to the famous Kadison–Singer conjecture [CT05]) is true for the case of
localized frames.

Application to Gabor Frames. We apply our theoretical results to the case of
Gabor systems, yielding a collection of new results summarized as follows.
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(a) Atoms with time-frequency concentration generate localized Gabor frames

(Theorem 4.4). We show how the degree of localization of a Gabor frame
is tied to the time-frequency concentration of the generating function or
“atom”. This alone yields a significant improvement over what was previ-
ously known about the approximation properties of irregular Gabor frames.
We extend these results to more general systems of Gabor molecules whose
elements are not required to be simple time-frequency shifts of each other,
but instead need only share a common envelope of concentration about
points in the time-frequency plane.

(b) Structure of the canonical dual frame (Theorem 4.9). While there have
been several recent advances in the theory of irregular Gabor frames, e.g.,
[Jan98], [CFZ01], [HW01], [SZ02], [LW03], to date essentially nothing has
been known about the structure of the canonical dual of an irregular Gabor
frame beyond the fact that it is some collection of elements of L2(Rd). We
prove that if an irregular Gabor frame is generated by a function g which is
sufficiently concentrated in the time-frequency plane (specifically, g lies in
the modulation space M1), then the elements of the dual frame also lie in
M1. We further prove that the dual frame forms a set of Gabor molecules,
and thus, while it need not form a Gabor frame, the elements do share a
common envelope of concentration in the time-frequency plane. Moreover,
this same result applies if the original frame was only itself a frame of Gabor
molecules. This greatly extends a recent result of Gröchenig and Leinert
[GL04] which covered only the case of lattice Gabor frames.

(c) A relationship between density of time-frequency shifts and inner products

of frame elements (Theorems 4.5, 4.6). As a consequence of Theorem 3.3,
a remarkable equality between the density of the time-frequency shifts of a
Gabor frame and certain averages of inner products between Gabor frame
elements and the canonical dual frame elements is shown. This both recov-
ers and extends known density results for Gabor frames.

(d) Excess of Gabor frames (Theorem 4.7). We show that a set of frame ele-
ments with positive density can be removed from any overcomplete Gabor
frame.

Moreover, the results above extend with minor changes from irregular Gabor
frames to frames of Gabor molecules.

We believe that localization is a powerful and useful new concept. We note
that Gröchenig has independently introduced a concept of localized frames, for a
completely different purpose [Grö04]. In his elegant paper, Gröchenig has shown
that frames which are sufficiently localized in his sense provide frame expansions
not only for the base Hilbert space H but for an entire family of associated Banach
spaces. He further showed that if a frame is sufficiently localized in his sense
(a polynomial or exponential localization) then the dual frame is similarly localized.
We learned of Gröchenig’s results shortly after completion of our own major results.
The definitions of localizations presented here and in [Grö04] differ, but the fact
that this single concept has independently arisen for two very distinct applications
shows its utility.

1.1. General Notation. H will refer to a separable Hilbert space. The frame or
system of interest will be indexed by a countable index set I . The reference frame
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or system will be indexed by an additive discrete group G of the form

G =

d
∏

i=1

aiZ ×
e

∏

j=1

Znj
,

with a metric on G defined as follows. Given g = (a1n1, . . . , adnd, m1, . . . , me) ∈ G,
set

|g| = sup
{

|a1n1|, . . . , |adnd|, δ(m1), . . . , δ(me)
}

,

where δ(mj) = 0 if mj = 0, otherwise δ(mj) = 1. The metric is d(g, h) = |g − h|
for g, h ∈ G. The reader can simply take G = Zd without much loss of insight on
a first reading.

We implicitly assume that there exists a map a : I → G associated with I and G.
This map will often not be injective. For each integer N > 0 we let

SN (j) =
{

k ∈ G : |k − j| ≤
N

2

}

denote a discrete “cube” or “box” in G centered at j ∈ G. We let IN (j) denote the
inverse image of SN (j) under a, i.e.,

IN (j) = a−1(SN (j)) = {i ∈ I : a(i) ∈ SN (j)}.

1.2. Notation for Frames and Riesz Bases. We use standard notations for
frames and Riesz bases as found in the texts [Chr03], [Dau92], [Grö01], [You01].

A sequence F = {fi}i∈I is a frame for H if there exist frame bounds A, B > 0
such that A ‖f‖2 ≤

∑

i∈I |〈f, fi〉|2 ≤ B ‖f‖2 for all f ∈ H . The analysis operator

T : H → `2(I) is Tf = {〈f, fi〉}i∈I , and its adjoint T ∗c =
∑

i∈I ci fi is the synthesis

operator. The Gram matrix is TT ∗ = [〈fi, fj〉]i,j∈I . The frame operator Sf =
T ∗Tf =

∑

i∈I〈f, fi〉 fi is a bounded, positive, and invertible mapping of H onto

itself. The canonical dual frame is F̃ = S−1(F) = {f̃i}i∈I where f̃i = S−1fi. We
call F a tight frame if we can take A = B, and a Parseval frame if we can take
A = B = 1. If F is any frame, then S−1/2(F) is the canonical Parseval frame

associated to F . We call F a uniform norm frame if all the frame elements have
identical norms, i.e., if ‖fi‖ = const. for all i ∈ I . A frame is norm-bounded below

if inf i ‖fi‖ > 0.
A sequence which satisfies the upper frame bound estimate, but not necessarily

the lower estimate, is called a Bessel sequence and B is a Bessel bound.
A sequence F = {fi}i∈I that is a frame for its closed linear span in H is called

a frame sequence. In this case F̃ = {f̃i}i∈I will denote its canonical dual frame
within span(F ).

A frame is a basis if and only if it is a Riesz basis. A Riesz sequence is a sequence
that forms a Riesz basis for its closed linear span in H .

2. Density, Localization, HAP, and Relative Measure

2.1. Density. Given an index set I and a map a : I → G, we define the density
of I by computing the analogue of the Beurling density of its image a(I) as a subset
of G. Note that we regard I as a sequence, and hence repetitions of images count
in determining the density.
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Definition 2.1 (Density). The lower and upper densities of I with respect to a are

(2.1) D−(I, a) = lim inf
N→∞

inf
j∈G

|IN (j)|

|SN (j)|
, D+(I, a) = lim sup

N→∞
sup
j∈G

|IN (j)|

|SN (j)|
,

respectively. Note that 0 ≤ D−(I, a) ≤ D+(I, a) ≤ ∞. When D−(I, a) =
D+(I, a) = D we say I has uniform density D.

These lower and upper densities are only the extremes of the possible densities
that we could naturally assign to I with respect to a. In particular, instead of
taking the infimum or supremum over all possible centers in (2.1) we could choose
one specific sequence of centers, and instead of computing the liminf or limsup we
could consider the limit with respect to some ultrafilter. The different possible
choices of ultrafilters and sequences of centers gives the following natural collection
of definitions of density.

Definition 2.2. Let p be a free ultrafilter, and let c = (cN )N∈N be any sequence
of centers cN ∈ G. Then the density of I with respect to a, p, and c is

D(p, c) = D(p, c; I, a) = p-lim
N∈N

|IN (cN )|

|SN (cN )|
.

2.2. The Localization Properties. We introduce a collection of definitions of
localization, given in terms of the decay of the inner products of the elements of
one sequence F with respect to the elements of a reference sequence E .

The words “column” and “row” in the following definition refer to the I × G
cross-Grammian matrix [〈fi, ej〉]i∈I,j∈G. We think of the elements in locations
(i, a(i)) as corresponding to the main diagonal of this matrix.

Definition 2.3 (Localization). Let F = {fi}i∈I and E = {ej}j∈G be sequences
in H .

(a) We say F is `p-localized with respect to the reference sequence E and the
map a, or simply (F , a, E) is `p-localized, if

∑

j∈G supi∈I |〈fi, ej+a(i)〉|
p <

∞. Equivalently, there must exist an r ∈ `p(G) such that

∀ i ∈ I, ∀ j ∈ G, |〈fi, ej〉| ≤ ra(i)−j .

(b) (F , a, E) has `p-column decay if for every ε > 0 there is an integer Nε > 0
so that

∀ j ∈ G,
∑

i∈I\INε (j)

|〈fi, ej〉|
p < ε.

(c) (F , a, E) has `p-row decay if for every ε > 0 there is an integer Nε > 0 so
that

∀ i ∈ I,
∑

j∈G\SNε (a(i))

|〈fi, ej〉|
p < ε.

2.3. The Approximation Properties. The following approximation properties
extract the essence of the Homogeneous Approximation Property that is satisfied
by Gabor frames (see [RS95], [GR96], [CDH99]), but without reference to the exact
structure of Gabor frames.

Definition 2.4 (Homogeneous Approximation Properties). Let F = {fi}i∈I be a

frame for H with canonical dual F̃ = {f̃i}i∈I , and let E = {ej}j∈G be a sequence
in H .
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(a) (F , a, E) has the weak HAP if for every ε > 0, there is an integer Nε > 0

so that for every j ∈ G we have dist
(

ej , span
{

f̃i : i ∈ INε
(j)

})

< ε.

(b) (F , a, E) has the strong HAP if for every ε > 0, there is an integer Nε > 0
so that for every j ∈ G we have

∥

∥

∥
ej −

∑

i∈INε (j)

〈ej , fi〉 f̃i

∥

∥

∥
< ε.

Definition 2.5 (Dual Homogeneous Approximation Properties). Let F = {fi}i∈I

be a sequence in H , and let E = {ej}j∈G be a frame for H with canonical dual

Ẽ = {ẽj}j∈G.

(a) (F , a, E) has the weak dual HAP if for every ε > 0, there is an integer Nε > 0
so that for every i ∈ I we have dist

(

fi, span
{

ẽj : j ∈ SNε
(a(i))

})

< ε.

(b) (F , a, E) has the strong dual HAP if for every ε > 0, there is an integer
Nε > 0 so that for every i ∈ I we have

∥

∥fi −
∑

j∈SNε (a(i))〈fi, ej〉 ẽj

∥

∥ < ε.

2.4. Relations Among the Localization and Approximation Properties.

The following theorem proved in [BCHL05b] summarizes the relationships that hold
among the localization and approximation properties. We exhibit counterexamples
in [BCHL05b] to most of the converse implications.

Theorem 2.6. If F = {fi}i∈I and E = {ej}j∈G are sequences in H then the
following statements hold.

(a) If F is a frame for H , then `2-column decay implies the strong HAP.
(b) If F is a frame for H and supj ‖ej‖ < ∞, then the strong HAP implies

`2-column decay.
(c) If E is a frame for H , then `2-row decay implies the strong dual HAP.
(d) If E is a frame for H and supi ‖fi‖ < ∞, then the strong dual HAP implies

`2-row decay.
(e) If F is a frame for H , then the strong HAP implies the weak HAP. If F is

a Riesz basis for H , then the weak HAP implies the strong HAP.
(f) If E is a frame for H , then the strong dual HAP implies the weak dual HAP.

If E is a Riesz basis for H , then the weak dual HAP implies the strong dual
HAP.

(g) If D+(I, a) < ∞ and 1 ≤ p < ∞, then `p-localization implies both `p-
column and `p-row decay.

For the case that F and E are both frames for H and the upper density D+(I, a)
is finite, these relations can be summarized in the diagram in Figure 1.

2.5. Self-Localization. It is also useful to consider localizations where the sys-
tem F = {fi}i∈I is compared to itself or to its canonical dual frame instead of
to a reference system E . An analogous polynomial or exponential “intrinsic local-
ization” was independently introduced by Gröchenig in [Grö03]; see also [For03],
[GF04]. Although there is no reference system, we still require a mapping a : I → G
associating I with a group G.

Definition 2.7 (Self-localization). Let F = {fi}i∈I be a sequence in H .

(a) (F , a) is `p-self-localized if there exists r ∈ `p(G) such that

∀ i, j ∈ I, |〈fi, fj〉| ≤ ra(i)−a(j).
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= l 2
 l 2

= l 2

Weak HAP Weak Dual HAP

Strong Dual HAP
Strong HAP

−column decay
−localized −row decay

Figure 1. Relations among the localization and approximation
properties for p = 2, under the assumptions that F , E are frames
and D+(I, a) < ∞.

(b) If F is a frame sequence, then (F , a) is `p-localized with respect to its canon-

ical dual frame sequence F̃ = {f̃i}i∈I if there exists r ∈ `p(G) such that

∀ i, j ∈ I, |〈fi, f̃j〉| ≤ ra(i)−a(j).

We show in [BCHL05b] that `1-localization with respect to the dual frame does
not imply `1-self-localization. However, the following result proved in [BCHL05a]
states that the converse is true. The proof relies on an application of a type of
noncommutative Wiener’s Lemma that was independently derived by Baskakov
[Bas90] and Sjöstrand [Sjö95].

Theorem 2.8. Let F = {fi}i∈I be a frame for H , and assume that D+(I, a) < ∞.

Let F̃ be the canonical dual frame and S−1/2(F) the canonical Parseval frame. If
(F , a) is `1-self-localized, then:

(a) (F , a) is `1-localized with respect to its canonical dual frame F̃ = {f̃i}i∈I ,

(b) (F̃ , a) is `1-self-localized, and
(c) (S−1/2(F), a) is `1-self-localized.

2.6. Relative Measure. We now define the relative measure of frame sequences.

Definition 2.9. (a) Let F = {fi}i∈I and E = {ej}j∈G be frame sequences in H .
Let PF , PE denote the orthogonal projections of H onto span(F) and span(E),
respectively. Then given a free ultrafilter p and a sequence of centers c = (cN )N∈N

in G, we define the relative measure of F with respect to E, p, and c to be

ME(F ; p, c) = p-lim
N∈N

1

|IN (cN )|

∑

i∈IN (cN )

〈PEfi, f̃i〉.

The relative measure of E with respect to F is

MF(E ; p, c) = p-lim
N∈N

1

|SN (cN )|

∑

j∈SN (cN )

〈PF ẽj , ej〉.

(b) If span(E) ⊃ span(F) then PE is the identity map and E plays no role in
determining the value of ME(F ; p, e). Therefore, in this case we define the measure
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of F with respect to p and c to be

M(F ; p, c) = p-lim
N∈N

1

|IN (cN )|

∑

i∈IN (cN )

〈fi, f̃i〉.

Since 0 ≤ 〈fi, f̃i〉 ≤ 1 for all i, it follows that 0 ≤ M(F ; p, c) ≤ 1.
We further define the lower and upper measures of F by

M−(F) = lim inf
N→∞

inf
j∈G

1

|IN (j)|

∑

i∈IN (j)

〈fi, f̃i〉,

M+(F) = lim sup
N→∞

sup
j∈G

1

|IN (j)|

∑

i∈IN (j)

〈fi, f̃i〉.

(c) When span(F) ⊃ span(E), we define the measures M(E ; p, c) and M±(E) in
an analogous manner.

Example 2.10. If span(E) ⊃ span(F) and F is a Riesz sequence then 〈fi, f̃i〉 = 1
for every i ∈ I , so M(F ; p, c) = M+(F) = M−(F) = 1.

Likewise, if span(F) ⊃ span(E) and E is a Riesz sequence then 〈ẽj , ej〉 = 1 for
every j ∈ G, so M(E ; p, c) = M+(E) = M−(E) = 1.

3. Density and Overcompleteness

3.1. Necessary Density Conditions. Following are two necessary conditions on
the density of localized frames proved in [BCHL05a].

Theorem 3.1 (Necessary Density Bounds).

(a) Assume F = {fi}i∈I is a frame for H and E = {ej}j∈G is a Riesz sequence
in H . If (F , a, E) has the weak HAP, then

1 ≤ D−(I, a) ≤ D+(I, a) ≤ ∞.

(b) Assume F = {fi}i∈I is a Riesz sequence in H and E = {ej}j∈G is a frame
for H . If (F , a, E) has the weak dual HAP, then

0 ≤ D−(I, a) ≤ D+(I, a) ≤ 1.

Theorem 3.2 (Necessary Finite Density Condition). Let F = {fi}i∈I be a Bessel
sequence in H , and suppose inf i∈I ‖fi‖ > 0. Assume E = {ej}j∈G is a frame for H .
If (F , a, E) has `2-row decay, then D+(I, a) < ∞.

3.2. The Connection Between Density and Relative Measure. The follow-
ing theorem proved in [BCHL05a] presents the fundamental relationship between
density and relative measure for localized frames.

Theorem 3.3 (Density–Relative Measure). Let F = {fi}i∈I and E = {ej}j∈G be
frame sequences in H . If D+(I, a) < ∞ and (F , a, E) has both `2-column decay
and `2-row decay, then for every sequence of centers c = (cN )N∈N in G and any
free ultrafilter p,

MF (E ; p, c) = D(p, c) · ME(F ; p, c).

Specializing to the case where F and E are both frames for H yields the following
result [BCHL05a].
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Theorem 3.4 (Abstract Density Theorem). Let F = {fi}i∈I and E = {ej}j∈G

be frames for H , and suppose that D+(I, a) < ∞. If (F , a, E) has both `2-column
decay and `2-row decay, then the following statements hold.

(a) For each free ultrafilter p and sequence of centers c = (cN )N∈N in G, we
have M(E ; p, c) = D(p, c) · M(F ; p, c). Consequently,

M−(E) ≤ D+(I, a) ·M−(F) ≤ M+(E),

M−(E) ≤ D−(I, a) · M+(F) ≤ M+(E).

(b) If D+(I, a) > M+(E), then there exists an infinite set J ⊂ I such that
{fi}i∈I\J is still a frame for H .

If E is a Riesz basis for H then the following additional statements hold.

(c) For each free ultrafilter p and sequence of centers c = (cN )N∈N in G, we
have

M(F ; p, c) =
1

D(p, c)
, M−(F) =

1

D+(I, a)
, M+(F) =

1

D−(I, a)
.

(d) D−(I, a) ≥ 1.

(e) If D+(I, a) > 1, then there exists an infinite subset J ⊂ I such that
{fi}i∈I\J is still a frame for H .

(f) If F is also a Riesz basis for H , then for each free ultrafilter p and sequence
of centers c = (cN )N∈N in G, we have

D−(I, a) = D(p, c) = D+(I, a) = 1,

M−(F) = M(F ; p, c) = M+(F) = 1.

Next we derive new relationships among the density, frame bounds, and norms
of the frame elements for localized frames [BCHL05a]. In particular, if F and E are
both tight uniform norm frames, then the index set I must have uniform density.

Theorem 3.5 (Density–Frame Bounds). Let F = {fi}i∈I be a frame for H with
frame bounds A, B, and let E = {ej}j∈G be a frame for H with frame bounds
E, F . If D+(I, a) < ∞ and (F , a, E) has both `2-column decay and `2-row decay,
then the following statements hold.

(a) For each free ultrafilter p and sequence of centers c = (cN )N∈N in G,

1

F
p-lim
N∈N

1

|SN (cN )|

∑

j∈SN (cN )

‖ej‖
2 ≤

D(p, c)

A
p-lim
N∈N

1

|IN (cN )|

∑

i∈IN (cN )

‖fi‖
2,

1

E
p-lim
N∈N

1

|SN (cN )|

∑

j∈SN (cN )

‖ej‖
2 ≥

D(p, c)

B
p-lim
N∈N

1

|IN (cN )|

∑

i∈IN (cN )

‖fi‖
2.

(b)
A

F

lim infj ‖ej‖2

lim supi ‖fi‖2
≤ D−(I, a) ≤ D+(I, a) ≤

B

E

lim supj ‖ej‖2

lim inf i ‖fi‖2
.

(c) If F and E are both uniform norm frames, with ‖fi‖2 = NF for i ∈ I and
‖ej‖2 = NE for j ∈ G, then

ANE

F NF
≤ D−(I, a) ≤ D+(I, a) ≤

B NE

E NF
.
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Consequently, if F and E are both tight uniform norm frames, then I has
uniform density, with D−(I, a) = D+(I, a) = (ANE)/(E NF ).

3.3. Removing Sets of Positive Measure. The following result states that in
any sufficiently localized overcomplete frame, there is a subset of positive measure
may be removed yet still leave a frame [BCHL05a].

Theorem 3.6 (Positive Uniform Density Removal). Let F = {fi}i∈I be a frame
sequence with frame bounds A, B, and assume that the following statements hold:

(a) 0 < D−(I, a) ≤ D+(I, a) < ∞,
(b) (F , a) is `1-localized with respect to its canonical dual frame, and
(c) M+(F) < 1.

Then there exists a subset J ⊂ I such that D+(J, a) = D−(J, a) > 0 and FI\J =
{fi}i∈I\J is a frame for span(F).

3.4. Localized Frames and ε-Riesz sequences. Feichtinger has conjectured
that every frame that is norm-bounded below can be written as a union of a fi-
nite number of Riesz sequences (systems that are Riesz bases for their closed linear
spans). It is shown in [CCLV03], [CV03], [CT05] that Feichtinger’s conjecture equiv-
alent to the celebrated Kadison–Singer (paving) conjecture, and that both of these
are equivalent to a conjectured generalization of the Bourgain–Tzafriri restricted
invertibility theorem.

The following result [BCHL05a] states that every norm-bounded frame that is
`1-self-localized is a finite union of ε-Riesz sequences. A Riesz sequence {fi}i∈I is
an ε-Riesz sequence if there exists a constant A > 0 such that for every sequence
(ci)i∈I ∈ `2(I) we have

(1 − ε)A
∑

i∈I

|ci|
2 ≤

∥

∥

∥

∑

i∈I

cifi

∥

∥

∥

2

≤ (1 + ε)A
∑

i∈I

|ci|
2.

Theorem 3.7. Let F = {fi}i∈I be a sequence in H . If

(a) (F , a) is `1-self-localized,
(b) D+(I, a) < ∞, and
(c) inf i ‖fi‖ > 0,

then for each 0 < ε < inf i ‖fi‖, F can be written as a finite union of ε-Riesz
sequences.

4. Applications to Gabor Systems

In this section we present new results on the properties of arbitrary or “irregular”
Gabor systems.

For simplicity of presentation, most of our results will be stated for the case
of Gabor frames for all of L2(Rd), but most can be extended to the case of Ga-
bor frame sequences, or to Gabor frames with multiple generators, by making use
of the machinery developed in [BCHL05a], [BCHL05b]. Moreover, as shown in
[BCHL05b], most of the results stated here can be extended from Gabor frames to
more general frames of Gabor molecules (see Definition 4.8).

4.1. Gabor systems and the reference system. A generic Gabor system gen-
erated by a function g ∈ L2(Rd) and a sequence Λ ⊂ R2d will be written in any of
the following forms:

G(g, Λ) = {MωTxg}(x,ω)∈Λ = {e2πiω·tg(t − x)}(x,ω)∈Λ = {gλ}λ∈Λ.
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In the case that G(g, Λ) is a frame sequence we let

G̃ = {g̃λ}λ∈Λ

denote the canonical dual frame sequence, but it is important to note that while
gλ is a time-frequency shift of g, it need not be the case that the functions g̃λ are
time-frequency shifts of a single function. We address the question of the structure
of the dual frame in more detail in Section 4.6.

Our reference systems will be lattice Gabor systems indexed by the group

G = αZd × βZd,

where α, β > 0 are fixed scalars. That is, our reference systems have the form

G(φ, G) = G(φ, αZd × βZd) = {MηTuφ}(η,u)∈G = {MβnTαkφ}k,n∈Zd .

The canonical dual frame of a lattice Gabor frame sequence is another lattice Gabor
frame sequence G(φ̃, G), generated by some dual window φ̃ ∈ L2(Rd). Usually the
reference system makes an appearance only during the course of a proof, and does
not appear in the statement of most of the theorems.

4.2. Cubes and the a mapping. A natural map a : Λ → G is rounding to a near
element of G, i.e.,

a(x, ω) =
(

α Int
(

x
α

)

, β Int
(

ω
β

))

, (x, ω) ∈ Λ,

where Int(x) = (bx1c, . . . , bxdc).
Given z = (x, y) ∈ R2d, let Qr(z) = Qr(x, y) denote the closed cube in R2d

centered at z with side length r. Then given j ∈ G = αZd × βZd, we have

SN (j) = G ∩ QN(j) and IN (j) = a−1(G ∩ QN (j)).

Note that IN (j) is very nearly Λ∩QN (j), except for the effect of rounding off points
via the a map. Thus

(4.1)
|SN (j)| = |G ∩ QN (j)| ≈ (αβ)−d N2d,

|IN (j)| = |a−1(G ∩ QN (j))| ≈ |Λ ∩ QN(j)|.

4.3. Density and Measure. Let D+
B(Λ) denote the standard upper Beurling den-

sity of Λ. Then this is related to our definition of the upper density of Λ with respect
to a as follows:

D+
B(Λ) = lim sup

N→∞
sup

j∈R2d

|Λ ∩ QN(j)|

N2d

=
1

(αβ)d
lim sup
N→∞

sup
j∈αZd×βZd

|IN (j)|

|SN (j)|
=

1

(αβ)d
D+(Λ, a).

Similarly the lower Beurling density of Λ is D−
B(Λ) = (αβ)−d D−(Λ, a). In light of

this, we define the Beurling density of Λ with respect to a free ultrafilter p and a
sequence of centers c = (cN )N∈N in R2d to be

DB(Λ; p, c) = (αβ)−d D(Λ, a; p, c) = (αβ)−d p-lim
N∈N

|a−1(G ∩ QN (cN ))|

|G ∩ QN(cN )|
.

Our results for Gabor systems will all be stated in terms of these Beurling densities.



12 R. BALAN, P. G. CASAZZA, C. HEIL, AND Z. LANDAU

The measure of a Gabor frame sequence G(g, Λ) with respect to a free ultrafilter p
and a sequence of centers c = (cN )N∈N in R2d is

M(G(g, Λ); p, c) = p-lim
N∈N

1

|a−1(G ∩ QN (cN ))|

∑

a−1(G∩QN (cN ))

〈gλ, g̃λ〉.

By making the approximations in (4.1) precise, we can reformulate the above
quantities so that it is clear that the density and measure do not depend on the
choice of α, β (analogous reformulations of the upper and lower density and mea-
sures also hold under the same hypotheses).

Lemma 4.1. Let Λ ⊂ R2d be given.

(a) If D+
B(Λ) < ∞, then for any ultrafilter p and any sequence of centers

c = (cN )N∈N in R2d,

DB(Λ; p, c) = p-lim
N∈N

|Λ ∩ QN(cN )|

N2d
.

(b) Let g ∈ L2(Rd) be given. If 0 < D−
B(Λ) ≤ D+

B(Λ) < ∞, then for any
ultrafilter p and any sequence of centers c = (cN )N∈N in R2d,

M(G(g, Λ); p, c) = p-lim
N∈N

1

|Λ ∩ QN(cN )|

∑

λ∈Λ∩QN (cN )

〈gλ, g̃λ〉.

4.4. Localization of Gabor Systems. For most applications in time-frequency
analysis, the generator of a Gabor system must possess some amount of joint con-
centration in both time and frequency. Concentration is quantified by the norms of
the modulation spaces, which are the Banach function spaces naturally associated
to time-frequency analysis. The modulation spaces were introduced and extensively
studied by Feichtinger, e.g., [Fei81], [FG89a], [FG89b]. We refer to [Grö01] for de-
tailed discussion of the modulation spaces and references to the original literature.
For our purposes, the following special case of unweighted modulation spaces will
be sufficient.

Definition 4.2.

(a) The Short-Time Fourier Transform (STFT) of a tempered distribution
g ∈ S ′(Rd) with respect to a window function φ ∈ S(Rd) is

Vφg(x, ω) = 〈g, MωTxφ〉, (x, ω) ∈ R2d.

(b) Let γ(x) = 2d/4e−πx·x be the Gaussian function. Then for 1 ≤ p ≤ ∞, the
modulation space Mp(Rd) consists of all tempered distributions f ∈ S ′(Rd)
such that

(4.2) ‖f‖Mp = ‖Vγf‖Lp =

(
∫∫

R2d

|〈f, MωTxγ〉|p dx dω

)1/p

< ∞.

Mp is a Banach space for each 1 ≤ p ≤ ∞, and any nonzero function g ∈ M 1

can be substituted for γ in (4.2) to define an equivalent norm for M p. We have
M2 = L2, and S ( Mp ( M q ( S ′ for 1 ≤ p < q ≤ ∞, where S is the Schwartz
class. The box function χ[0,1] lies in Mp for p > 1, but is not in M1.

In addition to the modulation spaces, we will also need the following special case
of the Wiener amalgam spaces on R2d. A comprehensive theory of amalgam spaces
on locally compact groups was introduced by Feichtinger, starting with [Fei80]. We
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refer to [Hei03] for an introduction to Wiener amalgams on Euclidean space, with
extensive references to the original literature.

Definition 4.3. Given 1 ≤ p ≤ ∞, the Wiener amalgam W (C, `p) consists of all
continuous functions F on R2d for which

‖F‖W (C,`p) =

(

∑

(k,n)∈Z2d

sup
(u,η)∈Qα,β(αk,βn)

|F (u, η)|p
)1/p

< ∞,

where Qα,β(x, y) = [0, α)d × [0, β)d + (x, y).

W (C, `p) is a Banach space, and its definition is independent of the values of α
and β in the sense that each choice of α, β yields an equivalent norm for W (C, `p).

The next result shows that if the generator of our reference system is an M 1

function φ, then (G(g, Λ), a, G(φ, G)) is `p-localized whenever g ∈ Mp [BCHL05b].

Theorem 4.4. Let g ∈ L2(Rd) and Λ ⊂ R2d be given. Let φ ∈ L2(Rd) and α,
β > 0 be given, and fix 1 ≤ p ≤ 2. Then the following statements hold.

(a) If g ∈ Mp and φ ∈ M1 then (G(g, Λ), a, G(φ, G)) is `p-localized.
(b) Suppose φ ∈ M1 and α, β > 0 are such that G(φ, G) is a frame for L2(Rd).

If (G(g, Λ), a, G(φ, G)) is `p-localized, then g ∈ Mp.
(c) If g ∈ M1 and φ ∈ Mp then (G(g, Λ), a, G(φ, G)) is `p-localized.
(d) If g ∈ M1 then (G(g, Λ), a) is `1-self-localized.

4.5. Density and Overcompleteness for Gabor Systems. Parts (b) and (c)
of the following theorem are new results for Gabor frames and give a new interpre-
tation of the density in terms of the measure of the frame [BCHL05b]. Parts (a)
and (d) recover the known density facts for irregular Gabor frames. Part (e) is
the special case of lattice systems, and is related to the Wexler–Raz conditions for
lattice Gabor frames [Jan95], [DLL95].

Theorem 4.5. Let g ∈ L2(Rd) and Λ ⊂ R2d be such that G(g, Λ) is a Gabor
frame for L2(Rd). Then the following statements hold.

(a) 1 ≤ D−
B(Λ) ≤ D+

B(Λ) < ∞.

(b) For any free ultrafilter p and any sequence of centers c = (cN )N∈N in Rd,

M(G(g, Λ); p, c) =
1

DB(Λ; p, c)
.

(c) M−(G(g, Λ)) =
1

D+
B(Λ)

and M+(G(g, Λ)) =
1

D−
B(Λ)

.

(d) If G(g, Λ) is a Riesz basis, then D−
B(Λ) = D+

B(Λ) = 1.

(e) If Λ = αZd × βZd then 0 < αβ ≤ 1 and 〈g, g̃〉 = (αβ)d.

The following result derives new relationships between the density, frame bounds,
and norm of the generator of an arbitrary Gabor frame [BCHL05b]. The special
case of lattice systems was proved by Daubechies [Dau90, Eq. 2.2.9].

Theorem 4.6. Let g ∈ L2(Rd) and Λ ⊂ R2d be such that G(g, Λ) is a Gabor
frame for L2(Rd), with frame bounds A, B. Then the following statements hold.

(a) A ≤ D−
B(Λ) ‖g‖2

2 ≤ D+
B(Λ) ‖g‖2

2 ≤ B.

(b) If G(g, Λ) is a tight frame, then Λ has uniform Beurling density, that is,
D−

B(Λ) = D+
B(Λ), and furthermore A = D±

B(Λ) ‖g‖2
2.
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(c) If Λ = αZd × βZd, then A ≤
‖g‖2

2

(αβ)d
≤ B.

The following result states that subsets with positive density may be removed
from an overcomplete Gabor frame yet still leave a frame [BCHL05b].

Theorem 4.7. Let g ∈ L2(Rd) and Λ ⊂ R2d be such that G(g, Λ) is a Gabor
frame for L2(Rd). If g ∈ M1 and D−

B(Λ) > 1, then there exists J ⊂ Λ with

D+
B(J) = D−

B(J) > 0 such that G(g, Λ \ J) is a frame for L2(Rd).

4.6. Localization and Structure of the Canonical Dual Frame. The term
“molecule” in the following definition arises from the convention that the generator
g of a Gabor system G(g, Λ) is often referred to as an “atom.”

Definition 4.8. Let Λ ⊂ R2d and fλ ∈ L2(Rd) for λ ∈ Λ be given. Then F =
{fλ}λ∈Λ is a set of Gabor molecules if there exists an envelope function Γ ∈ W (C, `2)
such that for every λ ∈ Λ and z ∈ R2d we have |Vγfλ(z)| ≤ Γ(z − λ).

Thus, if Γ is concentrated around the origin in R2d, then the STFT of fλ is
concentrated around the point λ. Every Gabor system G(g, Λ) is a set of Gabor
molecules, as |Vγgλ(z)| = |Vγg(z − λ)| for every z, λ. It can be shown that the
definition of Gabor molecules is unchanged if we replace the Gaussian window by
any window function φ ∈ M1.

Gröchenig and Leinert [GL04] proved that if Λ is a lattice then the canonical
dual frame of a lattice Gabor frame generated by a function g ∈ M 1 is generated
by a dual window that also lies in M 1 (they also obtained weighted versions of
this result). Their proof relied on deep results about symmetric Banach algebras.
The following result proved in [BCHL05b] holds in the general setting of irregular
Gabor frame sequences. Note in particular that this result also applies to Gabor
Riesz sequences.

Theorem 4.9. Let g ∈ M1 and Λ ⊂ R2d be such that G(g, Λ) is a Gabor frame

sequence in L2(Rd), with canonical dual frame sequence G̃ = {g̃λ}λ∈Λ. Then the
following statements hold:

(a) g̃λ ∈ M1 for all λ ∈ Λ,
(b) supλ ‖g̃λ‖M1 < ∞, and

(c) G̃ is a set of Gabor molecules with respect to an envelope Γ ∈ W (C, `1).

Furthermore, the same conclusions hold when G̃ is replaced by the canonical Par-
seval frame S−1/2(G(g, Λ)).

Acknowledgments

We gratefully acknowledge conversations with Karlheinz Gröchenig, Massimo
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[Grö04] K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the

frame operator, J. Fourier Anal. Appl., 10 (2004), 105–132.
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