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Working jointly at MIT, IS1 Logic, and Sun Microsystems, designers created the Sparcle pro- 
cessing chip by evolving an existing RISC architecture toward a processor suited for large- 
scale multiprocessors. This chip supports three multiprocessor mechanisms: fast context 
switching, fast, user-level message handling, and fme-grain synchronization. The Sparcle ef- 
fort demonstrates that RISC architectures coupled with a communications and memory man- 
agement unit do not require major architectud changes to support multiprocessing efficiently. 

he Sparcle chip clocks at no more than 
40 MHz, has no more than 200,000 
transistors, does not use the latest tech- 
nologies, and dissipates a paltry 2 

watts. It has no on-chip cache, no Fancy pads, 
and only 207 pins. It does not even support mul- 
tiple-instruction issue. Then why do we think this 
chip is interesting? 

Sparcle is a processor chip designed to sup- 
port large-scale multiprocessing. We designed its 
mechanisms and interfaces to provide fast mes- 
sage handling, latency tolerance, and fine-grain 
synchronization. Specifically, Sparcle implements 

Mechanism to tolerate memo y and commu- 
nication latencies, as well as spcbmniza- 
tion latencies. Long latencies are inevitable 
in large-scale multiprocessors, but current 
microprocessor designs are ill-suited to 
handle such latencies. 
Mechanisms to support fine-grain synchro- 
nization. Modem microprocessors pay scant 
attention to this aspect of multiprocessing, 
usually providing just a test-and-set instnic- 
tion, and in some cases, not even that. 
Mechanisms to initiate communication ac- 
tions to remoteprocesson- acmss the commu- 
nications network, and to respond rapidly to 
asyncbmnous euentssuch assynchronization 

faults and message arrivals. Current micro- 
processor designs do not support a clean com- 
munications interface between the processor 
and the communications network. Further- 
more, traps and other asynchronous event- 
handlers are inefficient on many current 
microprocessors, often requiring tens of cycles 
to reach the appropriate trap service routine. 

The impetus for the Sparcle chip project was 
our belief that we could implement a processor 
that provides interfaces for the above mechanisms 
by making small modifications to an existing mi- 
croprocessor. Indeed, we derived Sparcle from 
Sparc' (scalable programmable architecture from 
Sun Microsystems), and we integrated it into Ale- 
wife,2 a large-scale multiprocessor system being 
developed at MIT. 

Sparcle tolerates long communication and syn- 
chronization latencies by rapidly switching to 
other threads of computation. The current imple- 
mentation of Sparcle can switch to another thread 
of computation in 14 cycles. Slightly more ag- 
gressive modifications could reduce this number 
to four cycles. Sparcle switches to another thread 
when a cache miss that requires service over the 
communications network occurs, or when a syn- 
chronization fault occurs. Such a processor re- 
quires a pipelined memory and communications 
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system. In our  system. a separate coiiimLinir.ations ancl nieiiioq 
management chip (CMML;) interfaces to Slxircle t o  provicle 
the desired pipelined system intertiice. Our system also pro- 
vides a software prefetch instruction. For a description o f  the 
modifications t o  a modern RISC microprocessor needed to 
achieve fast context switching. see our  cliscussion under x- 
chitecture and implementation of  Sparcle later in the article. 

Sparcle supports fine-grain data-level synchronization 
through the use o f  fiill/empty bits, ;IS in the HEI-’ computer,’ 
With fiilVempty bits, a lock and access oftlie data word proteaed 
by the lock can tx prolxd in one operation. If the synchroniz- 
tion attempt fails. the synchoni7;ltion trap invokes a fault han- 
dler. In our system, the external communications chip detects 
synchronization faults and alerts Sparcle I>y raising a trap 
line. The system then handles the fault in software trap code. 

Finally, Sparcle supports a highly streamlined network in- 
terface with the ability to launch and receive interconnection 
network messages. While this design implements the con-  
niunications interface with the interconnection network in a 
separate chip, the CMMU, future implementations can inte- 
grate this functionality into the processor chip. Sparcle sup- 
ports rapid response to asynchronous events by streamlining 
Sparc’s trap interface and by supporting rapid dispatch to the 
appropriate trap handler. To achieve this, Sparcle provides 
two special trap lines for the most common types of events- 
cache misses to remote nodes and synchronization faults. 
Sparcle uses a third trap line for all other types of events. 
Also, this chip has an increased number of instructions in 
each trap dispatch entry so that vital trap codes can be put in 
line at the dispatch points. 

Sparcle’s design process was unusual in that it did not 
involve developing a completely new architecture. Rather, 
we implemented Sparcle with the help of LSI Logic and Sun 
Microsystems by slightly modifying the existing Sparc 
architecture. At MIT, we received working Sparcle chips from 
LSI Logic on March 11, 1992. These chips have already un- 
dergone complete functional testing. We are currently con- 
tinuing to implement the Alewife multiprocessor so that we 
can thoroughly evaluate our ideas and subject the Sparcle 
chips to full-speed testing. Figure 1 shows an Alewife node 
with the Sparcle chip. 

Mechanisms for multiprocessors 
By supporting the widely used shared-memory and mes- 

sage-passing programming models, Sparcle eases the 
programmer’s job and enhances parallel program perfor- 
mance. We have implemented programming constructs in 
parallel versions of Lisp and C that use these features. Sparcle’s 
features fall into three areas, the first two of which support 
the shared-memory model: 

Fine-grain computation. Efficient support of fine-grain 
expression of parallelism and synchronization can en- 

Figure 1. An Alewife node. 

liance performance i q  increasing parallelism and reduc- 
ing coininmication overhead. This enhancement relieves 
the programmer of undue effort in partitioning data and 
controlling flo\\,  into coarser chunks to increase 
performance. 
Memory latency tolerance. Context switching and data 
prefetching can reduce communication overhead intro- 
duced by nethvork delays. For shared-memory programs, 
the smirch must be very fast and occur automatically 
when a remote cache miss occurs. 
Efficient message interface. The ability to send and 
receive messages is needed to support message-passing 
programs. Such interfacing can also improve the perfor- 
inance of shared-memory programs in some common 
situations. 

Before we can examine the implementation of these fea- 
tures in Sparcle, we need to consider each of these areas in 
turn, and discuss why they are useful for large-scale 
multiprocessing. 

Fine-grain computation. As multiprocessors become 
larger, the grain size of parallel computations decreases to 
satisfy higher parallelism requirements. Computational grain 
size refers to the amount of computation between synchroni- 
zation operations. Given a fixed problem size, the overhead 
of parallel and synchronization operations limits the ability 
to use a larger number of  processors to speed up a program. 
Systems supporting fine-grain parallelism and synchroniza- 
tion attempt to minimize this overhead so that parallel pro- 
grams can achieve better performance. 

The challenge of supporting fine-grain computation is in 
implementing efficient parallelism and synchronization con- 
structs without incurring extensive hardware cost, and with- 
out reducing coarse-grain performance. By taking an 
evolutionary approach in designing Sparcle, we have at- 
tempted to satisfy these requirements. 
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Figure 2. J-structures. 

We can express fine-grain parallelism and synchronization 
at the data level (data-level parallelism) or at the thread level 
(control-level parallelism). 

Duta-levt.lparallt.lism. I>ata-level parallelism and synchro- 
nization allows the program t o  synchronize at the level of the 
smallest possible unit-a memory word. At the programming 
language level, we provide parallel do-loops t o  express data- 
level parallelism, and J-structure and L-structure arrays to 
express fine-grain data-level synchronization. 

Inspired by the I-structures of h i n d ,  Nikhil, and Pingali,i 
the J-structure is a data structure for producer-consumer style 
synchronization. It is like an array, but each element has an 
additional state-full or empty. The initial state of a J-struc- 
ture element is empty. A reader o f  an element waits until the 
element's state is full before returning the value. A writer of 
an element writes a value, sets the state to full, and signals 
waiting readers to proceed. A write to a full element signals 
an error. For efficient memory allocation and cache perfor- 
mance, J-structure elements can be reset to an empty state. 
Figure 2 illustrates how J-structures can be used for data- 
level synchronization. 

In the example of Figure 2, producer P is sequentially fill- 
ing in the elements of a J-structure. Consumer C1 reads an 
element that is already filled and immediately gets its value. 
Consumer C2 reads an empty element and thus has to wait 
for P to write the element. Since we are synchronizing at the 
level of individual elements, both C1 and C2 can access the 
elements of the J-structure without waiting for P to com- 
pletely fill all the elements of the J-structure. 

L-structures are similar to J-structures but support three 
operations: a locking read, a nonlocking read, and a syn- 
chronizing write. A locking read waits until the element is 
full before emptying it (that is, locking it) and returning the 
value. A nonlocking read operation also waits until the ele- 
ment is full, but returns the value without emptying the ele- 

ment. A synchronizing write stores a value to an empty ele- 
ment and sets it to f ~ i l l ,  releasing any waiters. An L-structure 
thus allows mutually exclusive ;~ccess to each of its elements 
:incl allows multiple nonlocking rcaders. 

Sparcle supports J- and L-structures, as well as other types 
of  fine-grain data-level synchronization, with per-word, full/ 
empt) hits in memory.' Sparcle provides new load/store in- 
structions that interact with the full/empty bits. The design 
also includes an extra synchronous trap line to deliver the 
fdl/empty trap. This extra line allows Sparcle to immediately 
identify the trap. 

Coiitrol-letel parallelism. Control-level parallelism niay be 
expressed by wrappingfuturearound an expression or state- 
ment X .  Thefuture keyword declares that Xand the continu- 
ation of the future expression niay be evaluated concurrently. 
Fine-grain support allows the amount of computation needed 
for evaluating X to be small without severely affecting 
performance. 

If the compiler or runtime system chooses to create a new 
task to evaluate X ,  it also creates an object known as a place- 
holder that is returned as the value of the future expression. 
The placeholder is created in an undetermined state. Evalua- 
tion of X yields its value and determines the placeholder. 
Any task that attempts to use the value of X before X has 
heen completely evaluated will encounter the undetermined 
placeholder and will suspend operation until the placeholder 
is determined. 

This functionality is implemented using (by software con- 
vention) the low bit of a data value as a placeholder tag; that 
is, a pointer to a placeholder has the low bit set and all other 
values have the low bit clear. New add, subtract, and com- 
pare instructions in Sparcle trap if the low bit of any operand 
is set. Likewise, dereferencing a pointer with the low bit set 
will cause an address alignment trap to a similar routine. If 
the trap handler can determine the value at the placeholders, 
it places this value in the target register, and normal execu- 
tion resumes. Otherwise, the trapping task waits until the 
value of the placeholder becomes available. 

With this support, a compiler can generate code without 
knowing which data values may be computed concurrently. 
Consequently, Sparcle incurs no runtime overhead to ensure 
the detection of placeholders. 

Memory latency tolerance. Since memory in large-scale 
multiprocessors is distributed, cache misses to remote loca- 
tions will incur long latencies and potentially reduce proces- 
sor use. Figure 3 illustrates this problem by depicting processor 
and network activity when a single thread executes on the 
processor. When the thread suffers a long-latency cache miss, 
the processor waits for the miss to be satisfied before it can 
proceed. While waiting, both the processor and the network 
suffer idle time, thereby reducing their effective usage. Using 
latency tolerance mechanisms alleviates this problem and helps 
improve processor and network usage. 

50 IEEE Micro 

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore.  Restrictions apply.



The general class of  latency tolerance solutions all implc- 
ment mechanisms that allow multiple outstanding mcmory 
transactions and can lie viewed as a way of  pipelining the 
processor and the network. The key difference Ixtween this 
pipeline into the network and the processor's execution pipe- 
line is that the latency associated with the communication 
pipeline cannot be predicted easily at compile time. A com- 
piler then has difficulty scheduling operations for maximal 
resource use. Systems must implement dynamic pipelines 
into the network in which the hardware ensures that mu-  
tiple, previously issued memory operations have completed 
before issuing operations that depend on their completion. 
Context switching is one mechanism for dynamic pipelining. 
Other methods include prefetching and weak ordering."x 

Sparcle implements fast context switching as its primary 
mechanism for dynamic latency tolerance. (Sparcle and its 
memory controller provide nonbinding prefetch instructions 
as well.) As illustrated in Figure 4, the basic idea is to overlap 
the latency of a memory request from a given thread of com- 
putation with the execution of a different thread. In the fig- 
ure, when thread 1 suffers a cache miss, the processor switches 
to thread 2,  thereby overlapping the cache miss latency of 
thread 1 with useful computation from thread 2. 

In Alewife, when a thread issues a remote transaction or 
suffers an unsuccessful synchronization attempt, the Alewife 
CMMU traps the processor. If the trap resulted from a cache 
miss to a remote node, the trap handler forces a context 
switch to a different thread. Otherwise, if the trap resulted 
from a synchronization fault, the trap handling routine can 
switch to a different thread of computation. For synchroniza- 
tion faults, the trap handler might also choose to retry the 
request immediately (spin). 

Processors that switch rapidly between multiple threads of 
computation are called multithreaded architectures. The pro- 
totypical multithreaded machine is the HEP. In the HEP, the 
processor switches every cycle between eight processor-resident 
threads. Cycle-by-cycle interleaving of threads is termed fine 
multithreading. Although fine multithreading offers the po- 
tential for high processor usage, it results in relatively poor 
single-thread performance and low 
processor use when there is not enough 
parallelism to fill all the hardware 
contexts. 

In contrast, Sparcle employs block 
multithreading or coarse multithreading. 
That is, context switches occur only 
when a thread executes a memory re- 
quest that must be serviced by a remote 
node in the multiprocessor, or on a failed 
synchronization request. Thus, a given 
thread continues to execute as long as 
its memory requests hit in the cache or 
can be serviced by a local memory mod- 

ulc. ancl as long as synchronization attempts are s~iccessful. 
Block multithreading thus allows 21 single thread to Iienefit 
from the maximcini performance o f  the processor. For 
multithreading to l ie useful in tolerating latency, however, 
the time required to switch to another thread must be shorter 
than the time t o  service a remote request. This requires m u -  
tiple register sets o r  some other hardware-supported 
mechanism. 

Efficient message interface. An efficient message inter- 
face that allows the processor to access the interconnection 
network directly makes some parallel operations significantly 
more efficient than if they were implemented solely with 
shared-memory operations. Examples include remote thread 
creation and harrier synchronization. With a fast message in 
Alewife, we can create a thread on a remote processor in 7 
p. Restricting ourselves to shared-memory operations, re- 
mote thread creation takes 24 p. Kranz and associates" have 
studied the importance of an efficient message interface in a 
shared-memory setting. 

In Sparcle, we accomplish a fast message send operation 
by using the cache bus and coprocessor interface to store 
data in registers directly into the network, and to load data 
from the network directly into registers. Two new load/store 
instructions handle the loading and storing. Sparcle also sup- 
ports direct memory access for larger messages. 

Network 
busy Network activity 

Data arrives Time -b Cache miss 

Useful Network or 
computation synchronization 

delay 

Figure 3. Processor and network activity when a single 
thread executes on the processor and no latency tolerance 
mechanisms are employed. 

Network activity 

Thread 1 Thread 2 Thread 3 Processor activity 

Data arrives 

Figure 4. Processor and network activity when multiple threads execute on 
the processor and fast context switching is used for latency tolerance. 
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Figure 5. Structure of the Alewife machine. 

External condition 

Access typehodifier 
Address bus 

Figure 6. Interface between the processor pipeline and 
memory controller. 

Alewife machine interfaces 
The Sparcle chip is pan of a complete multiprocessing sys- 

tem. It serves as the CPU for the Alewife machine'-a distrib- 
uted shared-memory multiprocessor with up to 512 nodes and 
h-ardware-supported cache coherence. Figure 5 depicts the 
Alewife machine as a set of processing nodes connected in a 
mesh topology. Each Alewife node consists of a processor, a 
64-Kbyte cache, a 4-Mbyte portion of globally-shared distrib- 
uted memory, a CMMU, a floating-point coprocessor, and a 
network switch. An additional 4 Mbytes of local memory holds 

the coherence directory, code, and local data. The network 
switch chip is an Elko-series mesh routing chip (EMRC) from 
Caltech that has %bit channels. The network operates asyn- 
chronously with a switching delay of 30 ns per hop and bo 
Mbytes/s through bidirectional channels. 

The single-chip CMMU performs a number of tasks, in- 
cluding cache management, DRAM refresh and control, mes- 
sage queuing, remote memory access, and direct memory 
access. It also supports the LimitLESS cache-coherence pro- 
tocol,'" which maintains a few pointers per memory block in 
hardware (up to five in Alewife) and emulates additional 
pointers in software when needed. Through this protocol, all 
the caches in the system maintain a coherent view of global 
memory. 

Spdrck implements a powerful and flexible interface to 
the CMMU. As depicted in Figure 6, this interface couples the 
processor pipeline with the CMMU. The interface can be di- 
vided into two general classes of signals: flexible data access 
mechanisms and flexible instruction extension mechanisms. 

Together, the Access Type, Address Bus, Data Bus, and 
Hold Access line form the nucleus of data access mecha- 
nisms and comprise a standard external cache interface. To 
permit the construction of other types of data accesses for 
synchronization, we have supplemented this basic interface 
with three classes of signals: 

A Modfier that is part of the operation code for load/ 
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store instructions and that is not in- 
terpreted by the core processor pipe- 
line. The modifier provides several 
“flavors” of loadstore instructions. 
Two External Conditions that return 
information about the last access. 
They can affect the flow of control 
through special branch instructions. 
Several vectored memory exception 
signals (denoted Trap Access in the 
figure). These synchronous trap lines 
can abort active loadhtore opera- 
tions and can invoke function- 
specific trap handlers. 

These mechanisms permit us to extend 
the loadstore architecture of a simple 
RISC pipeline with a powerful set of 
operations. 
An instruction extension mechanism 

permits us to augment the basic instruc- 
tion set with external functional units. In- 
structions that are added in this way can 
be pipelined in the same fashion as stan- 
dard instructions. To make this work, 
Sparcle reserves a special range of 
opcodes for external instructions. Also, 
the memory controller fetches new in- 
structions from the cache bus at the same 
time that the processor does. Conse- 

PC and PSR 
frames 

Processor state 

m 0:RO I 

Memory 

Ready Suspended 
queue queue 

Global register 
frame 

Register 
frames 

Loaded thread 

U ”-------.I - 

Figure 7. Block multithreading and virtual threads. 

quently, when the processor decodes an instruction in this 
range, it asserts the Launch Extemal Inst signal, telling the 
CMMU to begin execution of the last fetched instruction. Note 
that the coprocessor interfaces of several microprocessors 
already provide this functionality. 

We contend that we can design such a powerful interface 
between the processor pipeline and the communications and 
memory management hardware without significantly modi- 
fying the core RISC pipeline of contemporary processors. 
With this interface in mind, we first discuss several efficient 
multiprocessor mechanisms that are provided by the Sparcle 
processor. Later we touch upon the support which the memory 
controller must provide for these mechanisms. 

Sparcle architecture and implementation 
Sparcle is best described as a conventional RISC micropro- 

cessor with a few additional features to support multipro- 
cessing. These features include support for latency tolerance, 
support for fine-grain synchronization, and support for fast 
message handling. Before we describe how we implemented 
them in the Sparc processor, we need to discuss these fea- 
tures. Then we can indicate how they can also be imple- 
mented in other RISC microprocessors. 

Mechanisms for latency tolerance. Figure 7 illustrates 
fast context switching on a generic processor. This diagram 
shows four separate register sets with associated program 
counters and status registers. Each register set represents a 
context. A hardware register called the context pointer or CP 
points to the active context. Consequently, a hardware con- 
text switch requires only that the context pointer be altered 
to point to another context. (Depending on details of the 
implementation, some number of cycles may be needed to 
flush the pipeline before executing a new context.) This fig- 
ure also shows four threads actively loaded in the processor. 
These four threads are part of a much larger set of runnable 
and suspended threads that the runtime system maintains. 

Implementation offast context switching in Sparc. In a simi- 
lar fashion, Sparcle uses multiple register sets to implement 
fast context switching. The particular Sparc design that we 
modified has eight overlapping register windows. Rather than 
using the register windows as a register stack, we used them 
in pairs to represent four independent, nonoverlapping con- 
texts. We use one as a context for trap and message han- 
dlers, as described by Dally et al.” and Seitz et al.,’’ and the 
other three for user threads. The Sparc current window pointer 
(CWF’) serves as the context pointer. Further, the window 
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Large-scale multiprocessors 

like the Sparc SAVE instruction except that the window 
pointer is advanced to the next active context as indi- RDPSR R16 ; Save PSR in reserved register. 

NEXTF RO, RO, RO ; Move to next active context. 
rated by the window invalid mask register. If no addi- WRPSR R16 

JMPL R17, RO ; Restore PC tional contexts are active, it leaves the window pointer 
R E T  R18, RO : Restore nPC and return from trap. unchanged. 

; Restore PSR from oher context. 

We increased the number of instructions for each entry 
in the Sparc trap vector from 4 to 16. This allows the 
context switch and other sinal1 trap handlers to execute Figure 8. Context switch trap code for Sparcle 

Cycle Operation 

0 
1 
2 
3 

-14 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 

Fetch of data instruction (load or store) 
Decode of data instruction (load or store) 
Execute instruction (compute address) 
Data cycle (which will fail) 
Pipeline freeze, indicate exception to processor 
Pipeline flush (save PC) 
Pipeline flush (save nPC, decrease CWP) 
Fetch: RDPSR PSRREG (save PSR in reserved register) 
Fetch: NEXTF (advance CWP to next active context using WIM) 
Fetch: WRPSR PSRREG (restore PSR for new context) 
Fetch: JMPL R17 (load PC, return from trap and) 
Fetch: RETT R18 (reexecute trapping instruction) 
Dead cycle from JMPL 
First fetch of new instruction 
Dead cycle from RETf (folded into switch time) 

Figure 9. Anatomy of a context switch in Sparcle. 

invalid mask (WIM) indicates which contexts are disabled 
and which are active. This particular use of register windows 
does not involve any modifications, just a change in software 
conventions. 

Unfortunately, the Sparc processor does not have four sets 
of program counters and status registers. Since adding such 
facilities would impact the pipeline significantly, we imple- 
mented rapid context switching via a special trap with an 
extremely short trap handler. Thus, when the processor at- 
tempts to access a remote memory location that is not in the 
local cache, the CMMU causes a synchronous memory fault 
to Sparcle, while simultaneously sending a request for data 
to the remote node. The trap handler then saves the old 
program counter and status register, switches to a new con- 
text, restores a new program counter and status register, re- 
turns from the trap to begin execution in the new context. 

With the goal of shortening this trap handler as much as 
possible, we made the following modifications to the Sparc 
architecture: 

So that the processor traps immediately to the context- 
switch code without having to decode the trap type, we 
added an extra synchronous trap line (with correspond- 
ing trap vector). 
We added a new instruction called NEXTF. It is much 

in the trap vector directly. 
We made the value of the current window 
pointer available on extemal pins. Among other 
things, this permits the emulation of multiple 
hardware contexts in the Sparc floating-point 
unit by modifying floating-point instructions in 
a context-dependent fashion as they are loaded 
into the FPU and by maintaining four different 
sets of condition bits. Consequently, the 
context-switch trap handler does not have to 
worry about the FPIT. 

Figure 8 shows the context-switch trap handler 
with these changes. When the trap occurs, Sparcle 
switches one window backward (as does a nomial 
Sparc). This switch places the window pointer be- 
tween active contexts, where the Alewife runtime 
system reserves a few registers for the context state. 
As with normal Sparc trapping behavior, the hard- 
ware writes the PC and nPC to registers R17 and 

R18. This trap code places the processor status register (PSR) 
in register R 1 6  

As depicted in Figure 9, the net effect is that a Sparcle 
context switch takes 14 cycles. This illustrates the total pen- 
alty for a context-switch on a data instruction. Note that, while 
this diagram shows 15 cycles, one of them is the fetch of the 
first instruction from the next context. 

By maintaining a separate PC and processor status register 
for each context, a more aggressive processor design could 
switch contexts much faster. However, even with 14 cycles of 
overhead and four processor-resident contexts, multithreading 
can significantly improve system 

Support for fine-grain synchronization. As discussed 
earlier, fine-grain data-level synchronization is expressed with 
J- and L-structures and implemented using new instructions 
that interact with full/empty bits in memory. Sparc imple- 
ments the new load, store, and swap instructions using the 
Sparc alternate address space instructions. We have modified 
these instructions in two ways: 

1. The load, store, and swap alternate space instructions in 
Sparcle are unprivileged for AS1 values in the range 0 x 80 
to 0 x FF. They remain privileged for AS1 values less than 
0 X 80. The CMMU uses the AS1 value as an extended 
opcode; that is, AS1 0 X 84 corresponds to the load and 
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trap if empty operation. This allows user code 
to interact directly with fulVempty bits. 

2. We have used several new opcodes to pro- 
duce specific ASIs on the Sparcle output pins 
while allowing the register + offset address- 
ing mode. The normal load/store AS1 instruc- 
tions only allow register + register addressing. 

101 0 1 Wait queue locked 

STN cqueue ptr>, ( R l )  

101 cqueue ptrz I Empty, waiter(s) present 
J-structure MOVE $0, R2 
write occurs SWAPT ~ 2 ,  (RI) 

A new dedicated synchronous trap line carries 
full/empty trap signals. J- and L-structure opera- 
tions are implemented with the following special 
load/store instructions: 

LDN 
LDEN 
LDT 
LDET 

STN 
STFN 
S7T 
STFT 

Read location 
Read location and set to empty 
Read location if full, else trap 
Read location and set to empty if full, 
else trap 
Write location 
Write location and set to full 
Write location if empty, else trap 
Write location and set to full if empty, 
else trap 

In addition to possible trapping behavior, each 
of these instructions sets a coprocessor condition 
code to the state of the fulVempty bit at the time 
the instruction starts execution. Either trapping or 
an explicit test of this condition code will detect a 

MOVE $0, R3 ; set up swap register. 
SWAPT R3, (Rl)  
CMP $-I, R3 ; check if queue IS empty. 
BEG, a %done 
STFT 

; swap zero with J-structure location, trap if full. 

; branch if no waiters to wake up. 
; write value and set to full (delay slot). R2, ( R l )  

. 
<wake up waiters and store value> . 

%done 

Figure 10. Machine code implementing a J-structure write. 

Time 

synchronization failure. When a trap occurs, the trap han- 
dling software decides what action to take. 

Implementation of J-structures. To demonstrate how the 
special load/store instructions can be used, we will describe 
how we implement J-structures and present the cycle counts 
for various synchronizing operations. Sparcle implements a 
J-structure allocation by allocating a block of memory with 
the full/empty bit for each word set to empty. Resetting a J- 
structure element involves setting the full/empty bit for that 
element to empty. Implementing a J-structure read operation 
is also straightforward: it is a memory redd that traps if the 
fulVempty bit is empty. Sparcle implements it with a single 
instruction: 

LDT (Rl),R2 ; R1 points to J-structure location 

If the full/empty bit is empty, the reading thread may need 
to suspend execution and queue itself on a wait queue asso- 
ciated with the empty element. To minimize memory usage, 
we use a single memory location to represent both the value 
of the J-structure element and the wait queue. This implies 
that we need to associate two bits of state with each J-struc- 
ture element: whether the element is full or empty and whether 
the wait queue is locked or not. 

Figure 11. Reading and writing a J-structure slot. 

Other architectures implement these two state bits directly 
in hardware by having multiple state bits per memory loca- 
tion.'i,'6 Instead of providing an additional hardware bit, we 
take advantage of Spdrc's atomic register-memory swap op- 
eration. Since the writer of a J-structure element knows that 
the element is empty before it does the write operation, it 
can use the atomic swap to synchronize access to the wait 
queue. With this approach, a single fulVempty bit is suffi- 
cient for each J-structure element. A writer needs to check 
explicitly for waiters before undertaking the write operation. 

Using atomic swap and full/empty bits, the machine code 
in Figure 10 implements a J-structure write. In this figure, R1 
contains the address of the J-structure location to be written 
to, and R2 contains the value to be written. Also, -1 is the 
end of the queue marker, and 0 in an empty location means 
that the queue is locked. Compared with the hardware ap- 
proach, this implementation costs an extra move, swap, com- 
pare, and branch to check for waiters. However, we believe 
that the reduction in hardware complexity is worth the extra 
instructions. 

Figure 11 gives a scenario of accesses to a J-structure loca- 
tion under this implementation and illustrates the possible 
states of a J-structure slot. Here, R1 contains a pointer to the 
J-structure slot. 
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Table 1. Summary of fast-path costs of 
J-structure and L-structure operations, 

compared with normal array operations. 

Element Action Instructions Cycles 

Array Read 
Write 

J-structure Read 
Write 
Reset 

L-structure Read 
Write 
Peek 

1 2 
1 3 
1 2 
5 10 
1 3 
2 5 
5 10 
1 2 

STlO R2. $ipioutO ; Store header. 
STlO R3, $ipioutl ; Store data word. 
STlO R4, $ipiout2 ; Store address of data. 
STlO R5, $ipiout3 ; Store length of data. 
IPILAUNCH 2, 1 ; Launch message. Descriptor is 2 double- 

; words long and contains I double-word 
: of explicit data (from R2 and R3). 

Figure 12. Machine code implementing a message send. 

Table 1 summarizes the instruction and cycle counts of J- 
structure and L-structure operations for the case where no 
waiting is needed on read operations and no waiters are 
present on write operations. In Sparcle, as in the LSI Logic 
Sparc, normal read operations take two cycles and normal 
write operations take three cycles, assuming cache hits. A 
locking read is considered a write and thus takes three cycles. 

Support for futures and placeholders. To support futures 
and placeholders, Sparcle provides automatic and efficient 
detection and handling of placeholders via traps. Two Sparcle 
modifications are involved. 

First, to detect placeholders, Sparcle adds two new instruc- 
tions called NTADD and NTSUB. These instructions cause 
tag overflow traps whenever the low bit of either of their 
operands is set. (NTADD and NTSUB are modifications of 
the Sparc tagged instructions TADDCCTV and TSUBCCTV 
that trap whenever the low two bits of either of their oper- 
ands are set.) As discussed earlier, only pointers to place- 
holders have the low bit set. With tag overflow traps, NTADD 
and NTSUB automatically detect placeholders in add, sub- 
tract, and compare operations. The address alignment trap in 
Sparcle detects placeholders in pointer dereferencing 
operations. 

Second, to efficiently handle traps caused by placeholders, 
the trap vector number that is generated by tag overflow and 

address alignment traps depends on the register containing 
the placeholder. This feature saves the trap handler from 
having to waste cycles decoding the trapping instruction to 
find out which register contains the offending placeholder. 
Johnson” and Ungar et al .LH have proposed similar 
mechanisms. 

Fast message handling. Most distributed shared-memory 
machines are built on top of an underlying message-passing 
substrate. Traditional shared-memory machines provide a layer 
of hardware that implements some coherence protocol be- 
tween the processor and the interconnection network. It is 
natural, then, to provide the processor with direct access to 
the network in addition to the shared-memory interface be- 
cause many operations benefit greatly from direct network 
access. Sparcle supports sending and receiving messages via 
a memory-mapped interface to the interconnection network. 

Send. Sparcle sends messages through a two-phase pro- 
cess: first describe, then launch. Sparcle composes a message 
by writing directly to the interconnection network queue us- 
ing a special store instruction called STIO (for store IO). The 
queues are memory mapped as an array of network registers 
in the CMMU, called the output descriptor array. In terms of 
performance, write operations into this array incur the same 
cost as write hits into the cache. 

The first word of the message must be a header indicating 
a message opcode and the destination node. Sparcle reserves 
a range of opcodes for privileged use by the operating sys- 
tem. The rest of the message can contain immediate values 
from registers, or address and length pairs which invoke DMA 
on blocks from memory. 

After the message is composed, a coprocessor instruction 
launches the message. Figure 12 illustrates the sending of a 
single message with one data word and one block of data 
from memory. In addition to the required header, this mes- 
sage includes one explicit data word and one block of data 
from memory. On entry to this code sequence, register R2 
contains the header, R3 contains the data word, R4 the ad- 
dress of the data block, and R5 the length of the data block. 
If Sparcle is in the user mode and the header is privileged, an 
exception will occur. The CMMU maintains the atomicity of 
messages as described in the next section. 

Receive. A message arrival causes a trap. The trap handler 
can either load words directly from the incoming message 
into registers using a special load instruction called LDIO (for 
load IO) or initiate a DMA sequence to store the message 
into memory. If the latter option is chosen, the processor can 
direct the CMMU to generate an interrupt after the storeback 
is complete. 

Support for message handling. The following features 
of Sparcle support messaging: 

Special user-level load/store instructions allow fast com- 
position of outgoing messages and fast examination of 
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incoming messages. An AS1 value is reserved for the 
transferring of data to and from message register values. 
This AS1 is produced by two new Sparcle instructions, 
STIO and LDIO. Although these instructions support a 
memory-mapped interface to the network registers, ad- 
dresses for the message queues fit completely into the 
address offset field. Consequently, the compiler can gen- 
erate instructions that perform direct register-to-register 
moves between the processor and the network queues. 
Register windows permit fast processing of message in- 
terrupts. One of the four hardware contexts is reserved 
for message processing. Consequently, the message in- 
terrupt handler needs only to alter the current window 
pointer so that this special context is active. N o  registers 
need to be saved and restored. 
Coprocessor instructions for message launch and dis- 
posal permit pipelining of network operations. Further, 
opcode bits in the launch and disposal instructions con- 
tain information about the format of messages that are 
about to be sent or received into memory. Thus, mes- 
sage format is completely under control of the compiler. 
Finally, the coprocessor interface permits a precise iden- 
tification of the commit point for launch instructions, 
ensuring that message launches are atomic. 
Fast interrupt operations allow rapid entry into message 
handler code on the arrival of a message. In our current 
implementation, because intempts always force the pro- 
cessor into the supervisor mode, user-level receipt of 
messages requires a few extra cycles for the processor 
to transfer control to user code. In a more aggressive 
implementation, the processor would support a user- 
level return from trap. 

The CMMU interface 
From this discussion we can clearly see that the Sparcle 

processor is part of a complete system. Consequently, sev- 
eral of the mechanisms that were included in Sparcle are 
incomplete without the support of the CMMU. Here we briefly 
discuss the Alewife CMMU and how it interfaces to Sparcle. 
Although the Alewife CMMU provides a number of features, 
we focus on the cache controller and message interface. 

Earlier, under Alewife machine interfaces, we discussed 
two categories of signals in the interface between processor 
and CMMU: flexible data access mechanisms and flexible 
instruction extension mechanisms. Figure 13 makes this in- 
terface more concrete by showing Sparcle equivalent names 
for all of the signals. Each signal in this figure corresponds 
directly to signals in Figure 6. 

A few of the data access mechanisms require further dis- 
cussion. The modifier is implemented with the Sparc AS1 
field. Again, Sparcle contains a number of new load/store 
instructions that differ only by the values that they place on 
the AS1 pins during data cycles. These new load/store in- 

CCC (2 bits) 

/ MEXC (3 bits) \ \  
MHOLD 

ss type (7 bits) /AS1 (8 
Addr (32 bits) 

( Sparcle ) [ CMMU ) 
Data (32 bits) 

CINS (2 bits) 

\ IRL (4 bits) / 

Figure 13. Sparcle signal names. 

structions are important to the implementation of full/empty 
bit synchronization and fast messages. The trap access sig- 
nals are new versions of the Sparc memory exception signal 
MEXC, which have distinct trap vectors. These invoke context- 
switch and synchronization traps. The external condition bits 
are implemented through the Sparc coprocessor condition 
codes (CCC); consequently, “branch on condition-code” in- 
structions in Sparc can be used to examine them. 

Finally, the external instruction interface is implemented 
directly through a Sparc coprocessor interface. Sparcle as- 
serts one of the CINS signals to indicate that a coprocessor 
instruction has been decoded by the processor and should 
be executed by the coprocessor. Two CINS signals are re- 
quired because pipeline interlocks can occasionally cause 
the instruction fetch unit to get ahead of the rest of the pipeline. 
Latency tolerance. We already discussed rapid context 

switching for latency tolerance from the standpoint of the 
Sparcle processor. In addition to those Sparcle mechanisms, 
the cache controller must be able to handle multiple out- 
standing requests. This involves the ability to handle split- 
phase memory transactions (separating the request for data 
from the response) and to place returning data into the cache 
while the processor is performing some other task. Conse- 
quently, when the processor requests a data item that is not 
in the local cache, the cache controller asserts the appropri- 
ate trap line to initiate execution of the context-switch trap 
handler. At the same time, it sends a request message to the 
particular node that contains the requested data. Note that 
the mechanisms required to handle context switching differ 
little from those required for software prefetching. (How- 
ever, see Kubiatowicz, Chaiken, and Agarwal” for some in- 
teresting forward-progress issues.) 

FWempty-bit synchronization. FulVempty-bit synchro- 
nization, as implemented in Alewife, requires support from 
the cache controller. Since full/empty-bit synchronization 
employs one synchronization bit for each data word, extra 
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tion instructions that are sandwiched be- STlO Header, NO 
STIO Data, N1 tween Alpha-stylezo load-locked/store- 
IPILAUNCH 1, 1 conditional synchronization instructions. 

Fast message handling. Fast messag- 
ing in Alewife relies on a number of fea- 
tures in the CMMU. All of the network 
queuing and DMA mechanisms are a part 
of this chip. Sparcle interfaces with these 
mechanisms through both the external 
instruction interface and through special 

Cachebus: I I 1 I 1 I lNOlNOl I IN11NlI I 1 -  
Figure 14. Pipelining for transmission of a message with a single data word. 

storage must be reserved for these bits in the cache system. 
While these bits logically belong with the cache data, the 
Alewife CMMU implements them with the cache tags. This 
has a number of advantages. It eliminates a need for an odd 
number of bits in the physical memory used for cache data. It 
also makes access to the tags file much faster than access to 
the cache data, both because the tags file is smaller and be- 
cause no chip crossings are required. This permits synchro- 
nization operations to occur in parallel with processing of 
the cache tags. 

Of the Sparcle mechanisms, those important to full/empty 
synchronization are the external condition code, the access 
modifier (ASI), and one of the extra trap lines. All of the new 
synchronizing load/store instructions mentioned earlier are 
distinguished by the value of the AS1 field that they generate 
(and whether they are read or write operations). For each 
data access, the Alewife CMMU takes the proffered AS1 value 
along with the address and type of access. The CMMU uses 
the address to index into the tags file, retrieving both the tag 
and the appropriate fulVempty bit. Simultaneously, it decodes 
the AS1 value to produce two different actions, one which 
will be taken if the full/empty bit is full, and one if the full/ 
empty bit is empty. When the tag lookup is completed, the 
CMMU completes both tags match and fiill/empty-bit opera- 
tions simultaneously, either flagging a context-switch (on cache 
miss), a synchronization fault, o r  successful completion of 
the access. In all cases, the CMMU places the full/empty bit 
that was first retrieved from the tags file in one of the exter- 
nal condition codes for future examination by the processor. 

The support that Alewife provides for full/empty-bit syn- 
chronization is external to the processor pipeline: that is, it 
occurs at the first-level cache. Consequently, full/empty bits 
never enter the processor core. Further, individual load/store 
instructions have varied semantics with respect to the full/ 
empty bit: some cause test-and-set-like operations; others 
invoke traps. This places some data processing logic within 
the first-level cache. For modern processors that have one 
level of on-chip caching, a closer integration between the 
processor pipeline and full/empty bit synchronization might 
be desirable. This could include widening of internal proces- 
sor registers and use of special full/empty-bit synchroniza- 

loads and stores. As we discussed, Sparcle 
reserves one special load/store instruc- 

tion (and corresponding ASI) for rapid descriptions of outgo- 
ing messages and rapid examination of incoming messages. 
The cache controller recognizes accesses with this AS1 and 
causes data transfer to and from message queues instead of 
the cache. Message data thus transfers between the proces- 
sor and network at the same speed as cached accesses. 

Alewife uses the external instruction interface to imple- 
ment the message launch mechanism. Consequently, mes- 
sage launches can be pipelined. Figure 14 gives a simple 
pipeline example. Here, the two-cycle latency for stores and 
the lack of an instruction cache limit the message through- 
put. More aggressive processor implementations would not 
suffer from this limitation. In this figure, Sparcle pipeline stages 
are Instruction fetch, decode, execute, memdry, and writeback. 
Network messages are committed in the writeback stage. 
Stages Q1 and Q2 are network queuing cycles. The message 
data begins to appear in the network after stage 42.  Note 
that the use of DMA on message output adds additional cycles 
(not shown in the figure) to the network pipeline. 

The close coupling between the message launch mecha- 
nism and the processor pipeline allows us to identify a pre- 
cise launch completion point (corresponding to the writeback 
stage of the launch instruction). As a result, message launches 
are atomic. Before the launch instruction commits, no data is 
placed into the network. After the launch commits, Alewife 
sends a complete output packet to the network. These atomic 
semantics allow multiple levels of user and interrupt code to 
share a single network output port without requiring that the 
user disable interrupts before beginning to describe a message. 

THE SPARCLE CHIP INCORpORATES MECHANISMS required 
for massively parallel systems in a Sparc RISC core. Coupled 
with a CMMU, Sparcle allows a fast, 14-cycle context switch, 
an 8-cycle user-level message send, and fine-grain full/empty- 
bit synchronization. 
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Figure 15. Sparcle's test system. 
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Before we received working Sparcle chips from LSI in the 
spring of 1992, we used an operating single-node test sys- 
tem. Also operational for several months was a compiler and 
a runtime system for our parallel versions of C and Lisp. The 
test system shown in Figure 15 comprises 256 Kbytes of static 
RAM memory, an I/O interface to the VMEbus for download- 
ing programs and monitoring execution, and control logic to 
exercise the fuWempty bit and context switching functional- 
ity. We had debugged the test system using Sparcs in place 
of Sparcles; it operated at a maximum clock frequency of 
about 25 MHz. (Sparc and Sparcle have only a few differing 
pins, and Sparcle even provides an input signal Mode pin 
that allows switching between Sparc and Sparcle modes.) 

We have been running several parallel programs, includ- 
ing Sparcle's runtime system, to exercise all of Sparcle's func- 
tionality, at the maximum speed of the test bed. Scope 
measurements of critical signal timings on the chip's pins 
suggest we will be able to run the chips in an Alewife node 
board at roughly the same speed as the original, unmodified 
Sparcs. 

Implementation of the Sparcle development relied on 
modifying an existing design through a unique collaboration 
with industry. Although we had our moments of trepidation. 
given the number of participants and the multiple failure 
modes (both technical and political), we believe this model 
of experimentation has been very successful. This implemen- 
tation strategy not only allowed us, at a university, to experi- 
ment with architectural ideas in a real, contemporary processor 
design, it also significantly reduced the design effort from the 
concept stage to working chip. 

Figure 16 depicts the resulting project schedule for Sparcle. 
We defined Sparcle's early architecture in April 1989. At MIT 
we also wrote a Sparcle compiler for a version of Lisp and 
implemented a cycle-by-cycle simulator. Later, we also de- 
veloped a compiler for a parallel version o f  C. By March 
1990, we had developed a detailed specification o f  the modi- 

Sparcle architecture outlined, 
instruction-level simulator written, 

-+ MuI-T compiler operational 

-+ Sparcle design using Sparc begun 

--+ to implement Sparcle 
MIT, LSI, Sun collaboration set up 

Sparcle architecture defined, and 
--+ modifications to Sparc specified 

Sparcle implemented, first program 
+ compliled and run on Sparcle netlists 

--+ Parallel C compiler operational 

-+ Sparcle testbed implemented 

-+ Sparcle begun 
Layout and fabrication of 

Functional Sparcle back 
--+ from fabrication 

April 1989 

July 1989 

Nov 1989 

March 1990 

March 1991 

July 1991 

Aug. 1991 

Sept. 1991 

March 1992 

Figure 16. Sparcle's implementation schedule. 

fications to Sparc required to implement Sparcle. Then, Sun 
rnade high-level changes to Sparc functional blocks, and LSI 
made lower gate-level changes. We tested these changes 
against Sparcle binaries produced at MIT. Then LSI synthe- 
sized netlists and MIT tested them against several hundred 
thousands of test vectors. The test vectors included both Sparc 
vectors provided by LSI and Sparcle vectors obtained from 
the MIT Sparcle simulator. The test setup included a netlist 
module for the floating-point coprocessor and a behavioral 
model for the rest of the memory and communication sys- 
tems. Finally, LSI undertook layout and fabrication, during 
which time we also implemented a test system for Sparcle. 

While the Sparcle chip project demonstrates that a con- 
temporary RISC microprocessor can readily incorporate fea- 
tures considered by many to be critical for massively parallel 
multiprocessing, the end systems benefit of these mecha- 
nisms can only be evaluated in the context of a complete 
multiprocessor system. We are in the final stages of imple- 
menting the Sparcle-based Alewife multiprocessor system. 
Figure 1 shows an Alewife node board with the Sparcle and 
FPU. Figure 17 shows a 16-node Alewife system package 
developed by the Advanced Production Technology group 
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Figure 17. The 16-node Alewife package. 

at the Information Sciences Institute in Los Angeles. The CMMU 
chip has been implemented and tested. It is being imple- 
mented in LSI Logic's LEA 300K process, and we expect to 
begin its fabrication shortly. C 
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