
Sparcle: An Evolutionary Processor
Design for Large-scale Multiprocessors

Anant Agarwal

John Kubiatowicz

David Kranz

Beng-Hong l im

Donald Yeung

Massachusetts institute of
Technology

Godfrey D'Souza

LSI Logic

Mike Parkin

Sun Microsystems

Working jointly at MIT, IS1 Logic, and Sun Microsystems, designers created the Sparcle pro-
cessing chip by evolving an existing RISC architecture toward a processor suited for large-
scale multiprocessors. This chip supports three multiprocessor mechanisms: fast context
switching, fast, user-level message handling, and fme-grain synchronization. The Sparcle ef-
fort demonstrates that RISC architectures coupled with a communications and memory man-
agement unit do not require major architectud changes to support multiprocessing efficiently.

he Sparcle chip clocks at no more than
40 MHz, has no more than 200,000
transistors, does not use the latest tech-
nologies, and dissipates a paltry 2

watts. It has no on-chip cache, no Fancy pads,
and only 207 pins. It does not even support mul-
tiple-instruction issue. Then why do we think this
chip is interesting?

Sparcle is a processor chip designed to sup-
port large-scale multiprocessing. We designed its
mechanisms and interfaces to provide fast mes-
sage handling, latency tolerance, and fine-grain
synchronization. Specifically, Sparcle implements

Mechanism to tolerate memo y and commu-
nication latencies, as well as spcbmniza-
tion latencies. Long latencies are inevitable
in large-scale multiprocessors, but current
microprocessor designs are ill-suited to
handle such latencies.
Mechanisms to support fine-grain synchro-
nization. Modem microprocessors pay scant
attention to this aspect of multiprocessing,
usually providing just a test-and-set instnic-
tion, and in some cases, not even that.
Mechanisms to initiate communication ac-
tions to remoteprocesson- acmss the commu-
nications network, and to respond rapidly to
asyncbmnous euentssuch assynchronization

faults and message arrivals. Current micro-
processor designs do not support a clean com-
munications interface between the processor
and the communications network. Further-
more, traps and other asynchronous event-
handlers are inefficient on many current
microprocessors, often requiring tens of cycles
to reach the appropriate trap service routine.

The impetus for the Sparcle chip project was
our belief that we could implement a processor
that provides interfaces for the above mechanisms
by making small modifications to an existing mi-
croprocessor. Indeed, we derived Sparcle from
Sparc' (scalable programmable architecture from
Sun Microsystems), and we integrated it into Ale-
wife,2 a large-scale multiprocessor system being
developed at MIT.

Sparcle tolerates long communication and syn-
chronization latencies by rapidly switching to
other threads of computation. The current imple-
mentation of Sparcle can switch to another thread
of computation in 14 cycles. Slightly more ag-
gressive modifications could reduce this number
to four cycles. Sparcle switches to another thread
when a cache miss that requires service over the
communications network occurs, or when a syn-
chronization fault occurs. Such a processor re-
quires a pipelined memory and communications

4% /€€€Micro 0272-1732/93/0600-0048$03.00 0 1993 IEEE

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

system. In our system. a separate coiiimLinir.ations ancl nieiiioq
management chip (CMML;) interfaces to Slxircle t o provicle
the desired pipelined system intertiice. Our system also pro-
vides a software prefetch instruction. For a description o f the
modifications t o a modern RISC microprocessor needed to
achieve fast context switching. see our cliscussion under x-
chitecture and implementation of Sparcle later in the article.

Sparcle supports fine-grain data-level synchronization
through the use o f fiill/empty bits, ;IS in the HEI-’ computer,’
With fiilVempty bits, a lock and access oftlie data word proteaed
by the lock can tx prolxd in one operation. If the synchroniz-
tion attempt fails. the synchoni7;ltion trap invokes a fault han-
dler. In our system, the external communications chip detects
synchronization faults and alerts Sparcle I>y raising a trap
line. The system then handles the fault in software trap code.

Finally, Sparcle supports a highly streamlined network in-
terface with the ability to launch and receive interconnection
network messages. While this design implements the con-
niunications interface with the interconnection network in a
separate chip, the CMMU, future implementations can inte-
grate this functionality into the processor chip. Sparcle sup-
ports rapid response to asynchronous events by streamlining
Sparc’s trap interface and by supporting rapid dispatch to the
appropriate trap handler. To achieve this, Sparcle provides
two special trap lines for the most common types of events-
cache misses to remote nodes and synchronization faults.
Sparcle uses a third trap line for all other types of events.
Also, this chip has an increased number of instructions in
each trap dispatch entry so that vital trap codes can be put in
line at the dispatch points.

Sparcle’s design process was unusual in that it did not
involve developing a completely new architecture. Rather,
we implemented Sparcle with the help of LSI Logic and Sun
Microsystems by slightly modifying the existing Sparc
architecture. At MIT, we received working Sparcle chips from
LSI Logic on March 11, 1992. These chips have already un-
dergone complete functional testing. We are currently con-
tinuing to implement the Alewife multiprocessor so that we
can thoroughly evaluate our ideas and subject the Sparcle
chips to full-speed testing. Figure 1 shows an Alewife node
with the Sparcle chip.

Mechanisms for multiprocessors
By supporting the widely used shared-memory and mes-

sage-passing programming models, Sparcle eases the
programmer’s job and enhances parallel program perfor-
mance. We have implemented programming constructs in
parallel versions of Lisp and C that use these features. Sparcle’s
features fall into three areas, the first two of which support
the shared-memory model:

Fine-grain computation. Efficient support of fine-grain
expression of parallelism and synchronization can en-

Figure 1. An Alewife node.

liance performance i q increasing parallelism and reduc-
ing coininmication overhead. This enhancement relieves
the programmer of undue effort in partitioning data and
controlling flo\\, into coarser chunks to increase
performance.
Memory latency tolerance. Context switching and data
prefetching can reduce communication overhead intro-
duced by nethvork delays. For shared-memory programs,
the smirch must be very fast and occur automatically
when a remote cache miss occurs.
Efficient message interface. The ability to send and
receive messages is needed to support message-passing
programs. Such interfacing can also improve the perfor-
inance of shared-memory programs in some common
situations.

Before we can examine the implementation of these fea-
tures in Sparcle, we need to consider each of these areas in
turn, and discuss why they are useful for large-scale
multiprocessing.

Fine-grain computation. As multiprocessors become
larger, the grain size of parallel computations decreases to
satisfy higher parallelism requirements. Computational grain
size refers to the amount of computation between synchroni-
zation operations. Given a fixed problem size, the overhead
of parallel and synchronization operations limits the ability
to use a larger number of processors to speed up a program.
Systems supporting fine-grain parallelism and synchroniza-
tion attempt to minimize this overhead so that parallel pro-
grams can achieve better performance.

The challenge of supporting fine-grain computation is in
implementing efficient parallelism and synchronization con-
structs without incurring extensive hardware cost, and with-
out reducing coarse-grain performance. By taking an
evolutionary approach in designing Sparcle, we have at-
tempted to satisfy these requirements.

June 1993 49

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

Larue-scale multiprocessors

1

1
1

State Value

111164

111134 Consumer
290267

11 I 234982 I
]Read n 1 1 234233

29001 2
7 7 R e a d 361 992 @

Producer (Blocked)
Consumer -

-

Figure 2. J-structures.

We can express fine-grain parallelism and synchronization
at the data level (data-level parallelism) or at the thread level
(control-level parallelism).

Duta-levt.lparallt.lism. I>ata-level parallelism and synchro-
nization allows the program t o synchronize at the level of the
smallest possible unit-a memory word. At the programming
language level, we provide parallel do-loops t o express data-
level parallelism, and J-structure and L-structure arrays to
express fine-grain data-level synchronization.

Inspired by the I-structures of h i n d , Nikhil, and Pingali,i
the J-structure is a data structure for producer-consumer style
synchronization. It is like an array, but each element has an
additional state-full or empty. The initial state of a J-struc-
ture element is empty. A reader o f an element waits until the
element's state is full before returning the value. A writer of
an element writes a value, sets the state to full, and signals
waiting readers to proceed. A write to a full element signals
an error. For efficient memory allocation and cache perfor-
mance, J-structure elements can be reset to an empty state.
Figure 2 illustrates how J-structures can be used for data-
level synchronization.

In the example of Figure 2, producer P is sequentially fill-
ing in the elements of a J-structure. Consumer C1 reads an
element that is already filled and immediately gets its value.
Consumer C2 reads an empty element and thus has to wait
for P to write the element. Since we are synchronizing at the
level of individual elements, both C1 and C2 can access the
elements of the J-structure without waiting for P to com-
pletely fill all the elements of the J-structure.

L-structures are similar to J-structures but support three
operations: a locking read, a nonlocking read, and a syn-
chronizing write. A locking read waits until the element is
full before emptying it (that is, locking it) and returning the
value. A nonlocking read operation also waits until the ele-
ment is full, but returns the value without emptying the ele-

ment. A synchronizing write stores a value to an empty ele-
ment and sets it to f ~ i l l , releasing any waiters. An L-structure
thus allows mutually exclusive ;~ccess to each of its elements
:incl allows multiple nonlocking rcaders.

Sparcle supports J- and L-structures, as well as other types
of fine-grain data-level synchronization, with per-word, full/
empt) hits in memory.' Sparcle provides new load/store in-
structions that interact with the full/empty bits. The design
also includes an extra synchronous trap line to deliver the
fdl/empty trap. This extra line allows Sparcle to immediately
identify the trap.

Coiitrol-letel parallelism. Control-level parallelism niay be
expressed by wrappingfuturearound an expression or state-
ment X . Thefuture keyword declares that Xand the continu-
ation of the future expression niay be evaluated concurrently.
Fine-grain support allows the amount of computation needed
for evaluating X to be small without severely affecting
performance.

If the compiler or runtime system chooses to create a new
task to evaluate X , it also creates an object known as a place-
holder that is returned as the value of the future expression.
The placeholder is created in an undetermined state. Evalua-
tion of X yields its value and determines the placeholder.
Any task that attempts to use the value of X before X has
heen completely evaluated will encounter the undetermined
placeholder and will suspend operation until the placeholder
is determined.

This functionality is implemented using (by software con-
vention) the low bit of a data value as a placeholder tag; that
is, a pointer to a placeholder has the low bit set and all other
values have the low bit clear. New add, subtract, and com-
pare instructions in Sparcle trap if the low bit of any operand
is set. Likewise, dereferencing a pointer with the low bit set
will cause an address alignment trap to a similar routine. If
the trap handler can determine the value at the placeholders,
it places this value in the target register, and normal execu-
tion resumes. Otherwise, the trapping task waits until the
value of the placeholder becomes available.

With this support, a compiler can generate code without
knowing which data values may be computed concurrently.
Consequently, Sparcle incurs no runtime overhead to ensure
the detection of placeholders.

Memory latency tolerance. Since memory in large-scale
multiprocessors is distributed, cache misses to remote loca-
tions will incur long latencies and potentially reduce proces-
sor use. Figure 3 illustrates this problem by depicting processor
and network activity when a single thread executes on the
processor. When the thread suffers a long-latency cache miss,
the processor waits for the miss to be satisfied before it can
proceed. While waiting, both the processor and the network
suffer idle time, thereby reducing their effective usage. Using
latency tolerance mechanisms alleviates this problem and helps
improve processor and network usage.

50 IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

The general class of latency tolerance solutions all implc-
ment mechanisms that allow multiple outstanding mcmory
transactions and can lie viewed as a way of pipelining the
processor and the network. The key difference Ixtween this
pipeline into the network and the processor's execution pipe-
line is that the latency associated with the communication
pipeline cannot be predicted easily at compile time. A com-
piler then has difficulty scheduling operations for maximal
resource use. Systems must implement dynamic pipelines
into the network in which the hardware ensures that mu-
tiple, previously issued memory operations have completed
before issuing operations that depend on their completion.
Context switching is one mechanism for dynamic pipelining.
Other methods include prefetching and weak ordering."x

Sparcle implements fast context switching as its primary
mechanism for dynamic latency tolerance. (Sparcle and its
memory controller provide nonbinding prefetch instructions
as well.) As illustrated in Figure 4, the basic idea is to overlap
the latency of a memory request from a given thread of com-
putation with the execution of a different thread. In the fig-
ure, when thread 1 suffers a cache miss, the processor switches
to thread 2, thereby overlapping the cache miss latency of
thread 1 with useful computation from thread 2.

In Alewife, when a thread issues a remote transaction or
suffers an unsuccessful synchronization attempt, the Alewife
CMMU traps the processor. If the trap resulted from a cache
miss to a remote node, the trap handler forces a context
switch to a different thread. Otherwise, if the trap resulted
from a synchronization fault, the trap handling routine can
switch to a different thread of computation. For synchroniza-
tion faults, the trap handler might also choose to retry the
request immediately (spin).

Processors that switch rapidly between multiple threads of
computation are called multithreaded architectures. The pro-
totypical multithreaded machine is the HEP. In the HEP, the
processor switches every cycle between eight processor-resident
threads. Cycle-by-cycle interleaving of threads is termed fine
multithreading. Although fine multithreading offers the po-
tential for high processor usage, it results in relatively poor
single-thread performance and low
processor use when there is not enough
parallelism to fill all the hardware
contexts.

In contrast, Sparcle employs block
multithreading or coarse multithreading.
That is, context switches occur only
when a thread executes a memory re-
quest that must be serviced by a remote
node in the multiprocessor, or on a failed
synchronization request. Thus, a given
thread continues to execute as long as
its memory requests hit in the cache or
can be serviced by a local memory mod-

ulc. ancl as long as synchronization attempts are s~iccessful.
Block multithreading thus allows 21 single thread to Iienefit
from the maximcini performance o f the processor. For
multithreading to l ie useful in tolerating latency, however,
the time required to switch to another thread must be shorter
than the time t o service a remote request. This requires m u -
tiple register sets o r some other hardware-supported
mechanism.

Efficient message interface. An efficient message inter-
face that allows the processor to access the interconnection
network directly makes some parallel operations significantly
more efficient than if they were implemented solely with
shared-memory operations. Examples include remote thread
creation and harrier synchronization. With a fast message in
Alewife, we can create a thread on a remote processor in 7
p. Restricting ourselves to shared-memory operations, re-
mote thread creation takes 24 p. Kranz and associates" have
studied the importance of an efficient message interface in a
shared-memory setting.

In Sparcle, we accomplish a fast message send operation
by using the cache bus and coprocessor interface to store
data in registers directly into the network, and to load data
from the network directly into registers. Two new load/store
instructions handle the loading and storing. Sparcle also sup-
ports direct memory access for larger messages.

Network
busy Network activity

Data arrives Time -b Cache miss

Useful Network or
computation synchronization

delay

Figure 3. Processor and network activity when a single
thread executes on the processor and no latency tolerance
mechanisms are employed.

Network activity

Thread 1 Thread 2 Thread 3 Processor activity

Data arrives

Figure 4. Processor and network activity when multiple threads execute on
the processor and fast context switching is used for latency tolerance.

June 1993 51

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

Lame-scale multimocessors

Figure 5. Structure of the Alewife machine.

External condition

Access typehodifier
Address bus

Figure 6. Interface between the processor pipeline and
memory controller.

Alewife machine interfaces
The Sparcle chip is pan of a complete multiprocessing sys-

tem. It serves as the CPU for the Alewife machine'-a distrib-
uted shared-memory multiprocessor with up to 512 nodes and
h-ardware-supported cache coherence. Figure 5 depicts the
Alewife machine as a set of processing nodes connected in a
mesh topology. Each Alewife node consists of a processor, a
64-Kbyte cache, a 4-Mbyte portion of globally-shared distrib-
uted memory, a CMMU, a floating-point coprocessor, and a
network switch. An additional 4 Mbytes of local memory holds

the coherence directory, code, and local data. The network
switch chip is an Elko-series mesh routing chip (EMRC) from
Caltech that has %bit channels. The network operates asyn-
chronously with a switching delay of 30 ns per hop and bo
Mbytes/s through bidirectional channels.

The single-chip CMMU performs a number of tasks, in-
cluding cache management, DRAM refresh and control, mes-
sage queuing, remote memory access, and direct memory
access. It also supports the LimitLESS cache-coherence pro-
tocol,'" which maintains a few pointers per memory block in
hardware (up to five in Alewife) and emulates additional
pointers in software when needed. Through this protocol, all
the caches in the system maintain a coherent view of global
memory.

Spdrck implements a powerful and flexible interface to
the CMMU. As depicted in Figure 6, this interface couples the
processor pipeline with the CMMU. The interface can be di-
vided into two general classes of signals: flexible data access
mechanisms and flexible instruction extension mechanisms.

Together, the Access Type, Address Bus, Data Bus, and
Hold Access line form the nucleus of data access mecha-
nisms and comprise a standard external cache interface. To
permit the construction of other types of data accesses for
synchronization, we have supplemented this basic interface
with three classes of signals:

A Modfier that is part of the operation code for load/

52 IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

store instructions and that is not in-
terpreted by the core processor pipe-
line. The modifier provides several
“flavors” of loadstore instructions.
Two External Conditions that return
information about the last access.
They can affect the flow of control
through special branch instructions.
Several vectored memory exception
signals (denoted Trap Access in the
figure). These synchronous trap lines
can abort active loadhtore opera-
tions and can invoke function-
specific trap handlers.

These mechanisms permit us to extend
the loadstore architecture of a simple
RISC pipeline with a powerful set of
operations.
An instruction extension mechanism

permits us to augment the basic instruc-
tion set with external functional units. In-
structions that are added in this way can
be pipelined in the same fashion as stan-
dard instructions. To make this work,
Sparcle reserves a special range of
opcodes for external instructions. Also,
the memory controller fetches new in-
structions from the cache bus at the same
time that the processor does. Conse-

PC and PSR
frames

Processor state

m 0:RO I

Memory

Ready Suspended
queue queue

Global register
frame

Register
frames

Loaded thread

U ”-------.I -

Figure 7. Block multithreading and virtual threads.

quently, when the processor decodes an instruction in this
range, it asserts the Launch Extemal Inst signal, telling the
CMMU to begin execution of the last fetched instruction. Note
that the coprocessor interfaces of several microprocessors
already provide this functionality.

We contend that we can design such a powerful interface
between the processor pipeline and the communications and
memory management hardware without significantly modi-
fying the core RISC pipeline of contemporary processors.
With this interface in mind, we first discuss several efficient
multiprocessor mechanisms that are provided by the Sparcle
processor. Later we touch upon the support which the memory
controller must provide for these mechanisms.

Sparcle architecture and implementation
Sparcle is best described as a conventional RISC micropro-

cessor with a few additional features to support multipro-
cessing. These features include support for latency tolerance,
support for fine-grain synchronization, and support for fast
message handling. Before we describe how we implemented
them in the Sparc processor, we need to discuss these fea-
tures. Then we can indicate how they can also be imple-
mented in other RISC microprocessors.

Mechanisms for latency tolerance. Figure 7 illustrates
fast context switching on a generic processor. This diagram
shows four separate register sets with associated program
counters and status registers. Each register set represents a
context. A hardware register called the context pointer or CP
points to the active context. Consequently, a hardware con-
text switch requires only that the context pointer be altered
to point to another context. (Depending on details of the
implementation, some number of cycles may be needed to
flush the pipeline before executing a new context.) This fig-
ure also shows four threads actively loaded in the processor.
These four threads are part of a much larger set of runnable
and suspended threads that the runtime system maintains.

Implementation offast context switching in Sparc. In a simi-
lar fashion, Sparcle uses multiple register sets to implement
fast context switching. The particular Sparc design that we
modified has eight overlapping register windows. Rather than
using the register windows as a register stack, we used them
in pairs to represent four independent, nonoverlapping con-
texts. We use one as a context for trap and message han-
dlers, as described by Dally et al.” and Seitz et al.,’’ and the
other three for user threads. The Sparc current window pointer
(CWF’) serves as the context pointer. Further, the window

June 1993 53

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

Large-scale multiprocessors

like the Sparc SAVE instruction except that the window
pointer is advanced to the next active context as indi- RDPSR R16 ; Save PSR in reserved register.

NEXTF RO, RO, RO ; Move to next active context.
rated by the window invalid mask register. If no addi- WRPSR R16

JMPL R17, RO ; Restore PC tional contexts are active, it leaves the window pointer
R E T R18, RO : Restore nPC and return from trap. unchanged.

; Restore PSR from oher context.

We increased the number of instructions for each entry
in the Sparc trap vector from 4 to 16. This allows the
context switch and other sinal1 trap handlers to execute Figure 8. Context switch trap code for Sparcle

Cycle Operation

0
1
2
3

-14
5
6
7
8
9

10
1 1
12
13
14

Fetch of data instruction (load or store)
Decode of data instruction (load or store)
Execute instruction (compute address)
Data cycle (which will fail)
Pipeline freeze, indicate exception to processor
Pipeline flush (save PC)
Pipeline flush (save nPC, decrease CWP)
Fetch: RDPSR PSRREG (save PSR in reserved register)
Fetch: NEXTF (advance CWP to next active context using WIM)
Fetch: WRPSR PSRREG (restore PSR for new context)
Fetch: JMPL R17 (load PC, return from trap and)
Fetch: RETT R18 (reexecute trapping instruction)
Dead cycle from JMPL
First fetch of new instruction
Dead cycle from RETf (folded into switch time)

Figure 9. Anatomy of a context switch in Sparcle.

invalid mask (WIM) indicates which contexts are disabled
and which are active. This particular use of register windows
does not involve any modifications, just a change in software
conventions.

Unfortunately, the Sparc processor does not have four sets
of program counters and status registers. Since adding such
facilities would impact the pipeline significantly, we imple-
mented rapid context switching via a special trap with an
extremely short trap handler. Thus, when the processor at-
tempts to access a remote memory location that is not in the
local cache, the CMMU causes a synchronous memory fault
to Sparcle, while simultaneously sending a request for data
to the remote node. The trap handler then saves the old
program counter and status register, switches to a new con-
text, restores a new program counter and status register, re-
turns from the trap to begin execution in the new context.

With the goal of shortening this trap handler as much as
possible, we made the following modifications to the Sparc
architecture:

So that the processor traps immediately to the context-
switch code without having to decode the trap type, we
added an extra synchronous trap line (with correspond-
ing trap vector).
We added a new instruction called NEXTF. It is much

in the trap vector directly.
We made the value of the current window
pointer available on extemal pins. Among other
things, this permits the emulation of multiple
hardware contexts in the Sparc floating-point
unit by modifying floating-point instructions in
a context-dependent fashion as they are loaded
into the FPU and by maintaining four different
sets of condition bits. Consequently, the
context-switch trap handler does not have to
worry about the FPIT.

Figure 8 shows the context-switch trap handler
with these changes. When the trap occurs, Sparcle
switches one window backward (as does a nomial
Sparc). This switch places the window pointer be-
tween active contexts, where the Alewife runtime
system reserves a few registers for the context state.
As with normal Sparc trapping behavior, the hard-
ware writes the PC and nPC to registers R17 and

R18. This trap code places the processor status register (PSR)
in register R 1 6

As depicted in Figure 9, the net effect is that a Sparcle
context switch takes 14 cycles. This illustrates the total pen-
alty for a context-switch on a data instruction. Note that, while
this diagram shows 15 cycles, one of them is the fetch of the
first instruction from the next context.

By maintaining a separate PC and processor status register
for each context, a more aggressive processor design could
switch contexts much faster. However, even with 14 cycles of
overhead and four processor-resident contexts, multithreading
can significantly improve system

Support for fine-grain synchronization. As discussed
earlier, fine-grain data-level synchronization is expressed with
J- and L-structures and implemented using new instructions
that interact with full/empty bits in memory. Sparc imple-
ments the new load, store, and swap instructions using the
Sparc alternate address space instructions. We have modified
these instructions in two ways:

1. The load, store, and swap alternate space instructions in
Sparcle are unprivileged for AS1 values in the range 0 x 80
to 0 x FF. They remain privileged for AS1 values less than
0 X 80. The CMMU uses the AS1 value as an extended
opcode; that is, AS1 0 X 84 corresponds to the load and

54 /€FE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

trap if empty operation. This allows user code
to interact directly with fulVempty bits.

2. We have used several new opcodes to pro-
duce specific ASIs on the Sparcle output pins
while allowing the register + offset address-
ing mode. The normal load/store AS1 instruc-
tions only allow register + register addressing.

101 0 1 Wait queue locked

STN cqueue ptr>, (R l)

101 cqueue ptrz I Empty, waiter(s) present
J-structure MOVE $0, R2
write occurs SWAPT ~ 2 , (RI)

A new dedicated synchronous trap line carries
full/empty trap signals. J- and L-structure opera-
tions are implemented with the following special
load/store instructions:

LDN
LDEN
LDT
LDET

STN
STFN
S7T
STFT

Read location
Read location and set to empty
Read location if full, else trap
Read location and set to empty if full,
else trap
Write location
Write location and set to full
Write location if empty, else trap
Write location and set to full if empty,
else trap

In addition to possible trapping behavior, each
of these instructions sets a coprocessor condition
code to the state of the fulVempty bit at the time
the instruction starts execution. Either trapping or
an explicit test of this condition code will detect a

MOVE $0, R3 ; set up swap register.
SWAPT R3, (Rl)
CMP $-I, R3 ; check if queue IS empty.
BEG, a %done
STFT

; swap zero with J-structure location, trap if full.

; branch if no waiters to wake up.
; write value and set to full (delay slot). R2, (R l)

.
<wake up waiters and store value> .

%done

Figure 10. Machine code implementing a J-structure write.

Time

synchronization failure. When a trap occurs, the trap han-
dling software decides what action to take.

Implementation of J-structures. To demonstrate how the
special load/store instructions can be used, we will describe
how we implement J-structures and present the cycle counts
for various synchronizing operations. Sparcle implements a
J-structure allocation by allocating a block of memory with
the full/empty bit for each word set to empty. Resetting a J-
structure element involves setting the full/empty bit for that
element to empty. Implementing a J-structure read operation
is also straightforward: it is a memory redd that traps if the
fulVempty bit is empty. Sparcle implements it with a single
instruction:

LDT (Rl),R2 ; R1 points to J-structure location

If the full/empty bit is empty, the reading thread may need
to suspend execution and queue itself on a wait queue asso-
ciated with the empty element. To minimize memory usage,
we use a single memory location to represent both the value
of the J-structure element and the wait queue. This implies
that we need to associate two bits of state with each J-struc-
ture element: whether the element is full or empty and whether
the wait queue is locked or not.

Figure 11. Reading and writing a J-structure slot.

Other architectures implement these two state bits directly
in hardware by having multiple state bits per memory loca-
tion.'i,'6 Instead of providing an additional hardware bit, we
take advantage of Spdrc's atomic register-memory swap op-
eration. Since the writer of a J-structure element knows that
the element is empty before it does the write operation, it
can use the atomic swap to synchronize access to the wait
queue. With this approach, a single fulVempty bit is suffi-
cient for each J-structure element. A writer needs to check
explicitly for waiters before undertaking the write operation.

Using atomic swap and full/empty bits, the machine code
in Figure 10 implements a J-structure write. In this figure, R1
contains the address of the J-structure location to be written
to, and R2 contains the value to be written. Also, -1 is the
end of the queue marker, and 0 in an empty location means
that the queue is locked. Compared with the hardware ap-
proach, this implementation costs an extra move, swap, com-
pare, and branch to check for waiters. However, we believe
that the reduction in hardware complexity is worth the extra
instructions.

Figure 11 gives a scenario of accesses to a J-structure loca-
tion under this implementation and illustrates the possible
states of a J-structure slot. Here, R1 contains a pointer to the
J-structure slot.

June 1993 55

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

Large-scale multiprocessors

Table 1. Summary of fast-path costs of
J-structure and L-structure operations,

compared with normal array operations.

Element Action Instructions Cycles

Array Read
Write

J-structure Read
Write
Reset

L-structure Read
Write
Peek

1 2
1 3
1 2
5 10
1 3
2 5
5 10
1 2

STlO R2. $ipioutO ; Store header.
STlO R3, $ipioutl ; Store data word.
STlO R4, $ipiout2 ; Store address of data.
STlO R5, $ipiout3 ; Store length of data.
IPILAUNCH 2, 1 ; Launch message. Descriptor is 2 double-

; words long and contains I double-word
: of explicit data (from R2 and R3).

Figure 12. Machine code implementing a message send.

Table 1 summarizes the instruction and cycle counts of J-
structure and L-structure operations for the case where no
waiting is needed on read operations and no waiters are
present on write operations. In Sparcle, as in the LSI Logic
Sparc, normal read operations take two cycles and normal
write operations take three cycles, assuming cache hits. A
locking read is considered a write and thus takes three cycles.

Support for futures and placeholders. To support futures
and placeholders, Sparcle provides automatic and efficient
detection and handling of placeholders via traps. Two Sparcle
modifications are involved.

First, to detect placeholders, Sparcle adds two new instruc-
tions called NTADD and NTSUB. These instructions cause
tag overflow traps whenever the low bit of either of their
operands is set. (NTADD and NTSUB are modifications of
the Sparc tagged instructions TADDCCTV and TSUBCCTV
that trap whenever the low two bits of either of their oper-
ands are set.) As discussed earlier, only pointers to place-
holders have the low bit set. With tag overflow traps, NTADD
and NTSUB automatically detect placeholders in add, sub-
tract, and compare operations. The address alignment trap in
Sparcle detects placeholders in pointer dereferencing
operations.

Second, to efficiently handle traps caused by placeholders,
the trap vector number that is generated by tag overflow and

address alignment traps depends on the register containing
the placeholder. This feature saves the trap handler from
having to waste cycles decoding the trapping instruction to
find out which register contains the offending placeholder.
Johnson” and Ungar et al .LH have proposed similar
mechanisms.

Fast message handling. Most distributed shared-memory
machines are built on top of an underlying message-passing
substrate. Traditional shared-memory machines provide a layer
of hardware that implements some coherence protocol be-
tween the processor and the interconnection network. It is
natural, then, to provide the processor with direct access to
the network in addition to the shared-memory interface be-
cause many operations benefit greatly from direct network
access. Sparcle supports sending and receiving messages via
a memory-mapped interface to the interconnection network.

Send. Sparcle sends messages through a two-phase pro-
cess: first describe, then launch. Sparcle composes a message
by writing directly to the interconnection network queue us-
ing a special store instruction called STIO (for store IO). The
queues are memory mapped as an array of network registers
in the CMMU, called the output descriptor array. In terms of
performance, write operations into this array incur the same
cost as write hits into the cache.

The first word of the message must be a header indicating
a message opcode and the destination node. Sparcle reserves
a range of opcodes for privileged use by the operating sys-
tem. The rest of the message can contain immediate values
from registers, or address and length pairs which invoke DMA
on blocks from memory.

After the message is composed, a coprocessor instruction
launches the message. Figure 12 illustrates the sending of a
single message with one data word and one block of data
from memory. In addition to the required header, this mes-
sage includes one explicit data word and one block of data
from memory. On entry to this code sequence, register R2
contains the header, R3 contains the data word, R4 the ad-
dress of the data block, and R5 the length of the data block.
If Sparcle is in the user mode and the header is privileged, an
exception will occur. The CMMU maintains the atomicity of
messages as described in the next section.

Receive. A message arrival causes a trap. The trap handler
can either load words directly from the incoming message
into registers using a special load instruction called LDIO (for
load IO) or initiate a DMA sequence to store the message
into memory. If the latter option is chosen, the processor can
direct the CMMU to generate an interrupt after the storeback
is complete.

Support for message handling. The following features
of Sparcle support messaging:

Special user-level load/store instructions allow fast com-
position of outgoing messages and fast examination of

56 IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

incoming messages. An AS1 value is reserved for the
transferring of data to and from message register values.
This AS1 is produced by two new Sparcle instructions,
STIO and LDIO. Although these instructions support a
memory-mapped interface to the network registers, ad-
dresses for the message queues fit completely into the
address offset field. Consequently, the compiler can gen-
erate instructions that perform direct register-to-register
moves between the processor and the network queues.
Register windows permit fast processing of message in-
terrupts. One of the four hardware contexts is reserved
for message processing. Consequently, the message in-
terrupt handler needs only to alter the current window
pointer so that this special context is active. N o registers
need to be saved and restored.
Coprocessor instructions for message launch and dis-
posal permit pipelining of network operations. Further,
opcode bits in the launch and disposal instructions con-
tain information about the format of messages that are
about to be sent or received into memory. Thus, mes-
sage format is completely under control of the compiler.
Finally, the coprocessor interface permits a precise iden-
tification of the commit point for launch instructions,
ensuring that message launches are atomic.
Fast interrupt operations allow rapid entry into message
handler code on the arrival of a message. In our current
implementation, because intempts always force the pro-
cessor into the supervisor mode, user-level receipt of
messages requires a few extra cycles for the processor
to transfer control to user code. In a more aggressive
implementation, the processor would support a user-
level return from trap.

The CMMU interface
From this discussion we can clearly see that the Sparcle

processor is part of a complete system. Consequently, sev-
eral of the mechanisms that were included in Sparcle are
incomplete without the support of the CMMU. Here we briefly
discuss the Alewife CMMU and how it interfaces to Sparcle.
Although the Alewife CMMU provides a number of features,
we focus on the cache controller and message interface.

Earlier, under Alewife machine interfaces, we discussed
two categories of signals in the interface between processor
and CMMU: flexible data access mechanisms and flexible
instruction extension mechanisms. Figure 13 makes this in-
terface more concrete by showing Sparcle equivalent names
for all of the signals. Each signal in this figure corresponds
directly to signals in Figure 6.

A few of the data access mechanisms require further dis-
cussion. The modifier is implemented with the Sparc AS1
field. Again, Sparcle contains a number of new load/store
instructions that differ only by the values that they place on
the AS1 pins during data cycles. These new load/store in-

CCC (2 bits)

/ MEXC (3 bits) \ \
MHOLD

ss type (7 bits) /AS1 (8
Addr (32 bits)

(Sparcle) [CMMU)
Data (32 bits)

CINS (2 bits)

\ IRL (4 bits) /

Figure 13. Sparcle signal names.

structions are important to the implementation of full/empty
bit synchronization and fast messages. The trap access sig-
nals are new versions of the Sparc memory exception signal
MEXC, which have distinct trap vectors. These invoke context-
switch and synchronization traps. The external condition bits
are implemented through the Sparc coprocessor condition
codes (CCC); consequently, “branch on condition-code” in-
structions in Sparc can be used to examine them.

Finally, the external instruction interface is implemented
directly through a Sparc coprocessor interface. Sparcle as-
serts one of the CINS signals to indicate that a coprocessor
instruction has been decoded by the processor and should
be executed by the coprocessor. Two CINS signals are re-
quired because pipeline interlocks can occasionally cause
the instruction fetch unit to get ahead of the rest of the pipeline.
Latency tolerance. We already discussed rapid context

switching for latency tolerance from the standpoint of the
Sparcle processor. In addition to those Sparcle mechanisms,
the cache controller must be able to handle multiple out-
standing requests. This involves the ability to handle split-
phase memory transactions (separating the request for data
from the response) and to place returning data into the cache
while the processor is performing some other task. Conse-
quently, when the processor requests a data item that is not
in the local cache, the cache controller asserts the appropri-
ate trap line to initiate execution of the context-switch trap
handler. At the same time, it sends a request message to the
particular node that contains the requested data. Note that
the mechanisms required to handle context switching differ
little from those required for software prefetching. (How-
ever, see Kubiatowicz, Chaiken, and Agarwal” for some in-
teresting forward-progress issues.)

FWempty-bit synchronization. FulVempty-bit synchro-
nization, as implemented in Alewife, requires support from
the cache controller. Since full/empty-bit synchronization
employs one synchronization bit for each data word, extra

June 1993 57

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

Lame-scale multivrocesson

tion instructions that are sandwiched be- STlO Header, NO
STIO Data, N1 tween Alpha-stylezo load-locked/store-
IPILAUNCH 1, 1 conditional synchronization instructions.

Fast message handling. Fast messag-
ing in Alewife relies on a number of fea-
tures in the CMMU. All of the network
queuing and DMA mechanisms are a part
of this chip. Sparcle interfaces with these
mechanisms through both the external
instruction interface and through special

Cachebus: I I 1 I 1 I lNOlNOl I IN11NlI I 1 -
Figure 14. Pipelining for transmission of a message with a single data word.

storage must be reserved for these bits in the cache system.
While these bits logically belong with the cache data, the
Alewife CMMU implements them with the cache tags. This
has a number of advantages. It eliminates a need for an odd
number of bits in the physical memory used for cache data. It
also makes access to the tags file much faster than access to
the cache data, both because the tags file is smaller and be-
cause no chip crossings are required. This permits synchro-
nization operations to occur in parallel with processing of
the cache tags.

Of the Sparcle mechanisms, those important to full/empty
synchronization are the external condition code, the access
modifier (ASI), and one of the extra trap lines. All of the new
synchronizing load/store instructions mentioned earlier are
distinguished by the value of the AS1 field that they generate
(and whether they are read or write operations). For each
data access, the Alewife CMMU takes the proffered AS1 value
along with the address and type of access. The CMMU uses
the address to index into the tags file, retrieving both the tag
and the appropriate fulVempty bit. Simultaneously, it decodes
the AS1 value to produce two different actions, one which
will be taken if the full/empty bit is full, and one if the full/
empty bit is empty. When the tag lookup is completed, the
CMMU completes both tags match and fiill/empty-bit opera-
tions simultaneously, either flagging a context-switch (on cache
miss), a synchronization fault, o r successful completion of
the access. In all cases, the CMMU places the full/empty bit
that was first retrieved from the tags file in one of the exter-
nal condition codes for future examination by the processor.

The support that Alewife provides for full/empty-bit syn-
chronization is external to the processor pipeline: that is, it
occurs at the first-level cache. Consequently, full/empty bits
never enter the processor core. Further, individual load/store
instructions have varied semantics with respect to the full/
empty bit: some cause test-and-set-like operations; others
invoke traps. This places some data processing logic within
the first-level cache. For modern processors that have one
level of on-chip caching, a closer integration between the
processor pipeline and full/empty bit synchronization might
be desirable. This could include widening of internal proces-
sor registers and use of special full/empty-bit synchroniza-

loads and stores. As we discussed, Sparcle
reserves one special load/store instruc-

tion (and corresponding ASI) for rapid descriptions of outgo-
ing messages and rapid examination of incoming messages.
The cache controller recognizes accesses with this AS1 and
causes data transfer to and from message queues instead of
the cache. Message data thus transfers between the proces-
sor and network at the same speed as cached accesses.

Alewife uses the external instruction interface to imple-
ment the message launch mechanism. Consequently, mes-
sage launches can be pipelined. Figure 14 gives a simple
pipeline example. Here, the two-cycle latency for stores and
the lack of an instruction cache limit the message through-
put. More aggressive processor implementations would not
suffer from this limitation. In this figure, Sparcle pipeline stages
are Instruction fetch, decode, execute, memdry, and writeback.
Network messages are committed in the writeback stage.
Stages Q1 and Q2 are network queuing cycles. The message
data begins to appear in the network after stage 42. Note
that the use of DMA on message output adds additional cycles
(not shown in the figure) to the network pipeline.

The close coupling between the message launch mecha-
nism and the processor pipeline allows us to identify a pre-
cise launch completion point (corresponding to the writeback
stage of the launch instruction). As a result, message launches
are atomic. Before the launch instruction commits, no data is
placed into the network. After the launch commits, Alewife
sends a complete output packet to the network. These atomic
semantics allow multiple levels of user and interrupt code to
share a single network output port without requiring that the
user disable interrupts before beginning to describe a message.

THE SPARCLE CHIP INCORpORATES MECHANISMS required
for massively parallel systems in a Sparc RISC core. Coupled
with a CMMU, Sparcle allows a fast, 14-cycle context switch,
an 8-cycle user-level message send, and fine-grain full/empty-
bit synchronization.

58 IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

Figure 15. Sparcle's test system.

-

-
-

-

-

-

-

-

-

-

Before we received working Sparcle chips from LSI in the
spring of 1992, we used an operating single-node test sys-
tem. Also operational for several months was a compiler and
a runtime system for our parallel versions of C and Lisp. The
test system shown in Figure 15 comprises 256 Kbytes of static
RAM memory, an I/O interface to the VMEbus for download-
ing programs and monitoring execution, and control logic to
exercise the fuWempty bit and context switching functional-
ity. We had debugged the test system using Sparcs in place
of Sparcles; it operated at a maximum clock frequency of
about 25 MHz. (Sparc and Sparcle have only a few differing
pins, and Sparcle even provides an input signal Mode pin
that allows switching between Sparc and Sparcle modes.)

We have been running several parallel programs, includ-
ing Sparcle's runtime system, to exercise all of Sparcle's func-
tionality, at the maximum speed of the test bed. Scope
measurements of critical signal timings on the chip's pins
suggest we will be able to run the chips in an Alewife node
board at roughly the same speed as the original, unmodified
Sparcs.

Implementation of the Sparcle development relied on
modifying an existing design through a unique collaboration
with industry. Although we had our moments of trepidation.
given the number of participants and the multiple failure
modes (both technical and political), we believe this model
of experimentation has been very successful. This implemen-
tation strategy not only allowed us, at a university, to experi-
ment with architectural ideas in a real, contemporary processor
design, it also significantly reduced the design effort from the
concept stage to working chip.

Figure 16 depicts the resulting project schedule for Sparcle.
We defined Sparcle's early architecture in April 1989. At MIT
we also wrote a Sparcle compiler for a version of Lisp and
implemented a cycle-by-cycle simulator. Later, we also de-
veloped a compiler for a parallel version o f C. By March
1990, we had developed a detailed specification o f the modi-

Sparcle architecture outlined,
instruction-level simulator written,

-+ MuI-T compiler operational

-+ Sparcle design using Sparc begun

--+ to implement Sparcle
MIT, LSI, Sun collaboration set up

Sparcle architecture defined, and
--+ modifications to Sparc specified

Sparcle implemented, first program
+ compliled and run on Sparcle netlists

--+ Parallel C compiler operational

-+ Sparcle testbed implemented

-+ Sparcle begun
Layout and fabrication of

Functional Sparcle back
--+ from fabrication

April 1989

July 1989

Nov 1989

March 1990

March 1991

July 1991

Aug. 1991

Sept. 1991

March 1992

Figure 16. Sparcle's implementation schedule.

fications to Sparc required to implement Sparcle. Then, Sun
rnade high-level changes to Sparc functional blocks, and LSI
made lower gate-level changes. We tested these changes
against Sparcle binaries produced at MIT. Then LSI synthe-
sized netlists and MIT tested them against several hundred
thousands of test vectors. The test vectors included both Sparc
vectors provided by LSI and Sparcle vectors obtained from
the MIT Sparcle simulator. The test setup included a netlist
module for the floating-point coprocessor and a behavioral
model for the rest of the memory and communication sys-
tems. Finally, LSI undertook layout and fabrication, during
which time we also implemented a test system for Sparcle.

While the Sparcle chip project demonstrates that a con-
temporary RISC microprocessor can readily incorporate fea-
tures considered by many to be critical for massively parallel
multiprocessing, the end systems benefit of these mecha-
nisms can only be evaluated in the context of a complete
multiprocessor system. We are in the final stages of imple-
menting the Sparcle-based Alewife multiprocessor system.
Figure 1 shows an Alewife node board with the Sparcle and
FPU. Figure 17 shows a 16-node Alewife system package
developed by the Advanced Production Technology group

June 1993 59

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

Large-scale multiprocessors

Figure 17. The 16-node Alewife package.

at the Information Sciences Institute in Los Angeles. The CMMU
chip has been implemented and tested. It is being imple-
mented in LSI Logic's LEA 300K process, and we expect to
begin its fabrication shortly. C

Acknowledgments
The Sparcle project is funded in part by DARPA contract

N00014-87-K-0825 and in part by National Science Founda-
tion grant MIP-9012773. LSI Logic and Sun Microsystems
helped implement Sparcle, and LSI Logic supported the fab-
rication of Sparcle. We acknowledge the contributions of Dan
Nussbaum, who was partly responsible for the processor simu-
lator and runtime system, and was the source of several ideas.
Halsteads work on multithreaded processors influenced our
design. Our research also benefited significantly from discus-
sions with Bert Halstead, Tom Knight, Greg Papadopoulos,
Juan Loaiza, Bill Dally, Steve Ward, Rishiyur Nikhil, Arvind,
and John Hennessy.

References
1. Sparc Architecture Manual, Sun Microsystems, Mountain View,

Calif., 1988.
2. A. Agarwal et al., "The MIT Alewife Machine: A Large-scale

Distri buted-Memory Multiprocessor, " Proc. Workshop on Scalable
Shared Memory Multiprocessors. Kluwer Academic Publishers,
Boston, 1991. An extended version of this paper has been
submitted for publication and appearsas MIT/LCS MemoTM-454,
1991.

3. A. Agarwal et al., "APRIL: A Processor Architecture for
Multiprocessing," t 7 ~ . 17thAnn. lnt'/Symp. ComputerArchitecture,
IEEE CS Press, Los Alamitos, Calif., June 1990, pp. 104-1 14.

4. B.J. Smith, "Architectureand Applicationsofthe HEPMultiprocessor
Computer System, " Soc. ofPhotoopt ical lentat ion hginex,
Bellingham, Wash., Vol. 298, 1981, pp 241-248.

5. Arvind, R.S. Nikhil, and K.K. Pingali, "I-Structures: Data Structures
for Parallel Computing," Trans. on Programming Languages and
Systems, Vol. 11, No. 4, Oct. 1989, ACM Press, pp. 598-632.

6. M. Dubois, C. Scheurich, and F.A. Briggs, "Synchronization,
Coherence, and Event Ordering in Multiprocessors," Computer,
Vol. 2 1, No. 2 , Feb. 1988, pp. 9-2 1 .

7. S. V. Adve and M.D. Hill. "Weak Ordering-A New Definition,"
Proc. 17thAnn. Int'lSymp. ComputerArchitecture, IEEE CS Press,
June 1990, pp2-14.

8. D. Lenoski et al., "The Directory-Based Cache Coherence Protocol
fortheDASH Multiprocessor," Prm. 17thAnn. Int'lSymp. Computer
Architecture, IEEE CS Press, June 1990, pp. 148-1 59.

9. D. Kranzetal., "Integrating Message-passing and Shared-Memory;
Early Experience," to be published in Conf. Principlesand Practice
of Parallel Programming, ACM, May 1993, and appears as MIT/
LCS Memo TM-478, 1993.

10. D. Chaiken, J. Kubiatowicz, andA.Agarwal, "LimitLESS Directories:
A Scalable Cache Coherence Scheme," Proc. Fourth lnt'l Conf
ArchitecturalSupport for Programming Languagesand Operating
Sptems (ASPLOS lv), ACM, Apr. 1991, pp. 224-234.

1 1 . W.J. Dallyet al. "TheJ-Machine: AFine-Grain Concurrent Computer,"
Proc. lnt'l Federation for Information Processing (lFlF? 1 1 th World
Congress, Elsevier Scientific Publishing, New York, 1989, pp.

1 2. C. L. Seitzet al., "The Design of the Caltech MosaicC Multicomputer, "
Proc. 1993Symp. ResearchonlntegratedSystems, G. Borrielloand
C. Ebeling, eds., MIT Press, Cambridge, Mass., 1993, pp. 1-22.

13. W-D. Weber and A. Gupta, "Exploring the Benefits of Multiple
Hardware Contexts in a Multiprocessor Architecture: Preliminary
Results," Proc. 16thAnn. Int'lSymp. ComputerArchitecture, IEEE
CS Press, June 1989, pp. 273-280.

14. K. Kurihara, D. Chaiken, and A. Agatwal, "Latency Tolerance
Through Multithreading in Large-scale Multiprocessors," Proc.
Int'lSymp. SharedMemory Multiprocessing, IPS Press, Japan, Apr.
1991, pp. 91-101.

15. G.Alverson, R.Alverson,and D. Callahan, "Exploiting Heterogeneous
Parallelism on a Multithreaded Multiprocessor," Workshop on
MultithreadedComputers, Proc. Supercomputing , ACM Sigraph,
Nov. 1991.

16. G.M. Papadopoulos and D.E. Culler, "Monsoon: An Explicit
Token-Store Architecture," Proc. 17thAnn. Int'lSymp. Computer
Architecture, IEEE CS Press, June 1990, pp. 82-91.

17. D. Johnson, "Trap Architecturesfor Lisp Systems," Prm. 1990ACM
Conf on Lisp and Functional Programming, 1990, pp. 79-96.

18. D. Ungaretal., "Architectureof SOAR: Smalltalkona RISC," Proc.
1984 lnt7Symp. on ComputerArchitecture, 1984, pp. 188-197.

19. J. Kubiatowicz, D. Chaiken, and A. Agarwal, "Closing the Window

1 147-1 153.

60 IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

of Vulnerability in Multiphase Memory Transactions," Fifth lnt'l
Conf Architectural Support for Programming Languages and
Operating Systems (ASPLOS V) ACM. Oct 1992, pp 274-284

20 Alpha Architecture Reference Manual, Digital Press, Maynard,
Mass, 1992

Anant Agarwal serves at the Laboratory
for Computer Science at MIT where he is
an associate professor of electrical engineer-
ing and computer science. His current re-
search interests include the design of
scalable multiprocessor systems, VLSI prc-
cessors, compilation and nintime technolo-

gies for parallel processing, and performance evaluation. At
Stanford University, he participated in the MIPS and MIPS-X
projects. He initiated the Alewife project at MIT, which is aimed
at the design and implementation of a large-scale cachecoherent
multiprocessor.

Agarwal received a B Tech in electrical engineering from
the Indian Institute of Technology, Madras, India, and an MS
and PhD in electrical engineering from Stanford. He is a
member of the ACM and IEEE Computer Society.

John Kubhtowicz is a doctoral candi-
date in the Department of Electrical and
Computer Science at MIT. His current re-
search interests include parallel computer
architecture, high-performance micropro-
cessor design, and high-energy particle
physics.

Kubiatowicz received BS degrees in electrical engineering
and physics and an MS in electrical engineering from MIT.

David Kranz has been a research associ-
ate in the MIT Laboratory for Computer
Science since 1987. His research interests
are in programming language design and
implementation for parallel computing.

Kranz received a BA from Swarthmore.
While earning a PhD at Yale, he worked

on high-performance compilers for Scheme and applicative
languages.

Beng-Hong Lim is currently a doctoral
candidate in MITs Department of Electri-
cal Engineering and Computer Science. His
research interests include parallel comput-
ing and computer architecture. He received
a BS and an MS in electrical engineering
and computer science from MIT.

Donald Yeung is a PhD candidate at MIT.
His research interests are in the area of
multiprocessor design, including efficient
hardware and software mechanisms for syn-
chronization and latency tolerance.

Yeung received a BS from Stanford in
computer systems engineering, and re-

cently completed an MS in electrical engineering and com-
puter science at MIT.

Godfrey DSouza has been with the Sparc
Systems Division and the CoreWare Group
at LSI Logic where he is a senior design
engineer involved with aspects of micro-
processor and system level design.

D'Souza received a BS in electronics and
communications engineering from the Uni-

versity of Baroda, India, and an MS in electrical engineering
from the University of Washington, Seattle. He is a member
of the IEEE Computer Society.

Mike Parkin is a staff engineer at Sun
Microsystems, where he is currently part
of a research team that is building a Sparc-
based scalable multiprocessor system.

Parkin received a BSEE from Iowa State
University and an MSEE from Stanford.

Direct questions concerning this article to David Kranz,
MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, or via e-mail at kranz@lcs.mit.edu.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 162 Medium 163 High 164

June 1993 61

-

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 17, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

mailto:kranz@lcs.mit.edu

