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Abstract

To characterize future performance limitations of superscalar processors, the delays of key pipeline

structures in superscalar processors are studied. First, a generic superscalar pipeline is defined. Then the

specific areas of register renaming, instruction window wakeup and selection logic, and operand bypass-

ing are analyzed. Each is modeled and Spice simulated for feature sizes of ��� ���
	 , ��� ����
	 , and ���������
	 .

Performance (delay) results and trends are expressed in terms of issue width and window size. This anal-

ysis indicates that window (wakeup and select) logic and operand bypass logic are likely to be the most

critical in the future.

1 Introduction

The current trend in the microprocessor industry is towards increasingly complex out-of-order microarchi-

tectures. The intention is to exploit larger amounts of instruction level parallelism. There is an important

tradeoff, however. More complex hardware tends to limit the clock speed of a microarchitecture by length-

ening critical paths. Because performance is proportional to ��������������� ��!#"%$'&)(�*,+.-��/*,01��&)(324��+5�768�9�:�
microarchitects need to study techniques that maximize the product rather than those that push the limits

of each term independently. We are interested in exploring such complexity-effective microarchitectures. I.e

those that optimize the product of complexity (as measured by the clock cycle) and effectiveness (instructions

per cycle). It must be emphasized here that while complexity can be variously quantified in terms such as

number of transistors, die area, clock-speed/cycle-time, and power dissipated, in this paper we measure com-

plexity as the critical path through a piece of logic, and the longest critical path through any of the pipeline

stages determines the clock speed.

It is relatively straightforward to measure the effectiveness of a microarchitecture, e.g. via trace driven

simulation based on clock cycles. Such simulations count clock cycles and can provide instructions per cy-

cle in a straightforward manner. However, the complexity of a microarchitecture is much more difficult to

determine – to be very accurate, it would require a full implementation in a specific technology. What is very
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much needed are fairly straightforward measures, possibly only relative measures, of complexity that can be

used by microarchitects at a fairly early stage of the design process. Such methods would allow the deter-

mination of complexity-effectiveness. This report represents an effort in that direction. In the next section

we describe those portions of a microarchitecture that tend to have a complexity that grows with increas-

ing instruction-level parallelism. Of these, we focus on instruction dispatch and issue logic, and data bypass

logic. We analyze potential critical paths in these structures and develop models for quantifying their delays.

We study the ways these delays vary with microarchitectural parameters like window size (the number of

waiting instructions from which ready instructions are selected for issue) and the issue width (the number of

instructions that can be issued in a cycle). We also study the impact of technology trends towards smaller

feature sizes.

In addition to delays, another important consideration is the pipelineability of each of these structures.

Even if the delay of a structure is relatively large it might not increase the complexity of the design if the

structure can be pipelined i.e. the operation of the structure can be spread over multiple pipestages. How-

ever, this is likely to affect the effectiveness by reducing the instructions per cycle by increasing latencies

of functional operations or by increasing the penalty of mispredicted branches and instruction cache misses

when the pipeline has to be re-filled in these cases. We study the pipelineability of critical structures and

identify certain operations that have to be atomic i.e. performed in a single cycle for dependent instructions

to execute in consecutive cycles.

Our delay analysis shows that logic associated with the issue window in a superscalar processor can be a

key limiter of clock speed as we move towards wider issue widths, larger windows, and advanced technolo-

gies in which wire delays dominate overall delay. We split the issue window logic into two basic functions:

wakeup and selection. At the time an instruction is ready to complete, the tag of the result is broadcast to

all waiting instructions in the window so they can update their dependence information. This broadcast and

the determination that an instruction has all its dependences resolved constitutes the wakeup function. The

selection function is required to select a maximum of � ready instructions every cycle from the window of

instructions where � is the number of functional units in the microarchitecture. In order to be able to exe-

cute dependent instructions back-to-back (in consecutive cycles) the wakeup and selection function have to

be completed in a single cycle. Furthermore, the wakeup function involves broadcasting result tags on a set

of wires that span the window. In advanced technologies wire delays will increasingly dominate the total

delay and hence delay of the wakeup logic is likely to become a bottleneck in the future.

Another structure that can potentially limit clock speed especially in future technologies is the bypass

logic. The result wires that are used to bypass operand values increase in length as the number of functional

units is increased. These wire delays could ultimately dominate and force architects to choose in favor of

more decentralized microarchitectures.

The rest of this report is organized as follows. Section 2 describes the sources of complexity in a baseline

microarchitecture. Section 3 describes the methodology we use to study the critical structures identified in

Section 2. Section 4 discusses technology trends and why wires are becoming more important than gates as

feature sizes shrink. Section 5 presents a detailed analysis of each of the structures and shows how their delays

vary with microarchitectural parameters and technology parameters. Section 6 discusses overall results and

2



pipelineability of each of the structures. Finally, conclusions are in Section 7.

2 Sources of Complexity

Before delving into specific sources of complexity we describe the baseline superscalar model assumed for

the study. We then list and discuss the basic structures that are the primary sources of complexity. Finally,

we show how these basic structures are present in one form or another in most current implementations even

though these implementations might appear to be different superficially. On the other hand, we realize that

it is impossible to capture all possible microarchitectures in a single model and any results we provide have

some obvious limitations. We can only hope to provide a fairly straightforward model that is typical of most

current superscalar processors, and suggest that techniques similar to those used here can be extended for

other, more advanced models as they are developed.
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Figure 1: Baseline superscalar model

Figure 1 shows the baseline model and the associated pipeline. The fetch unit fetches multiple instruc-

tions every cycle from the instruction cache. Branches encountered by the fetch unit are predicted. Follow-

ing instruction fetch, instructions are decoded and their register operands are renamed. Register renaming

involves mapping the logical register operands of an instruction to the appropriate physical registers. This

step eliminates write-after-read and write-after-write conflicts by converting the instructions into the single

assignment form. Renamed instructions are dispatched to the issue window, where they wait for their source

operands and the appropriate functional unit to become available. As soon as this condition is satisfied, the

instruction is issued and executes on one of the functional units. The operand values of the instruction are

either fetched from the register file or are bypassed from earlier instructions in the pipeline. The data cache

provides low latency access to memory operands via loads and stores.

2.1 Basic Structures

As mentioned earlier, probably the best way to identify the primary sources of complexity in a microarchi-

tecture is to implement the microarchitecture in a specific technology. However, this is extremely time con-

suming and costly. Our approach instead is to first identify those structures whose delay is a function of
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issue window size and issue width. Then, we select some of these for additional study and develop relatively

simple delay models that can be applied in a straightforward manner without relying on detailed design.

For example, we include register renaming logic in the list of structures because its delay depends on the

issue width in the following way. The number of read ports into the rename table is
�
& -�� ����!�" $���� where

& -�� ����! is the number of read operands per instruction and $�� is the issue width. For example, assuming

2-operand instructions, a 4-way machine would require as many as 8 read ports into the rename table whereas

a 2-way machine would only require 4 read ports. On the other hand we do not include any of the functional

units because their delay is independent of both the issue width and the window size.

In addition to the above criterion, our decision to study a particular structure was based on a number of

other considerations. First, we are primarily interested in dispatch and issue-related structures because these

structures form the core of a microarchitecture and largely determine the amount of parallelism that can be

exploited. Second, some of these structures tend to rely on broadcast operations on long wires and hence

their delays might not scale as well as logic-intensive structures in future technologies with smaller feature

sizes. Third, in most cases the delay of these structures may potentially grow quadratically with issue width.

Hence, we believe that these structures will become potential cycle-time determinants in future wide-issue

designs in advanced technologies.

The structures we consider are:

	 Register rename logic

Register rename logic translates logical register designators into physical register designators. The

translation is accomplished by accessing a map table with the logical register designator as the index.

Each instruction is renamed as follows. The physical registers corresponding to the operand registers

are read from the map table. If the instruction produces a result, the logical destination register is as-

signed a physical register from the pool of free registers and the map table is updated to reflect this

new mapping.

In addition to reading mappings from the map table the rename logic also has to detect true dependences

between instructions being renamed in parallel. This involves comparing each logical source register

to the logical destination register of earlier instructions in the current rename group. The dependence

check logic is responsible for performing this task.

From the above discussion it is obvious that the delay of rename logic is a function of the issue width

because the issue width determines the number of ports into the map table and the width of the depen-

dence check logic.

	 Wakeup logic

This logic is part of the issue window and is responsible for waking up instructions waiting in the issue

window for their source operands to become available. Once an instruction is issued for execution, the

tag corresponding to its result is broadcast to all the instructions in the window. Each instruction in the

window compares the tag with its source operand tags. Once all the source operands of an instruction

are available the instruction is flagged ready for execution.

The delay of the wakeup logic is a function of the window size and the issue width. The window size
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determines the fanout of the broadcast; the larger the window size the greater is the length of the wires

used for broadcasting. Similarly, increasing the issue width also increases the delay of the wakeup

logic because the size of each window entry increases with issue width.

	 Selection logic

The selection logic is part of the issue window and is responsible for selecting instructions for execution

from the pool of ready instructions. An instruction is said to be ready if all of its source operands are

available. A typical policy used by the selection logic is oldest ready first.

The delay of this logic is a function of the window size, the number of functional units, and the selection

policy.

	 Data bypass logic

The data bypass logic is responsible for bypassing operand values from instructions that have com-

pleted execution but have not yet written their results to the register file, to subsequent instructions.

The bypass logic is implemented as a set of wires, called the result wires, that carry the result (by-

passed) values from each source to all possible destinations. MUXes, called operand MUXes, are used

to select the appropriate result to gate into the operand ports of functional units.

The delay of this logic is a function of the number of functional units and the depth of the pipeline.

The delay of the bypass logic depends on the length of the result wires and the load on these wires.

Increasing the number of functional units increases the length of the result wires. It also increases the

fan-in of the operand MUXes. Making the pipeline deeper might increase the number of sources and

hence the number of result wires. Again, this also increases the fan-in of the operand MUXes.

There are other important pieces of logic that we do not consider in this report, even though their delay

is a function of dispatch/issue width.

	 Register file

The register file provides low latency access to register operands. The access time of the register file

is a function of the number of physical registers and the number of read and write ports. Farkas et. al.

[11] study how the access time of the register file varies with the number of registers and the number

of ports. Because it is studied elsewhere, we do not include it here.

	 Caches

The instruction and data caches provide low latency access to instructions and memory operands re-

spectively. In order to provide the necessary load/store bandwidth in a superscalar processor, the cache

has to be banked or duplicated. The access time of a cache is a function of the size of the cache and

the associativity of the cache. Wada et. al. [31] and Wilton and Jouppi [33] have developed detailed

models that estimate the access time of a cache given its size and associativity. Again, because it is

studied elsewhere, we do not consider cache logic in this report.

	 Instruction fetch logic

Instruction caches are discussed above. However, there are other important parts of fetch logic whose
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complexity varies with instruction dispatch/issue width. First of all, as instruction issue widths grow

beyond the size of a single basic block, it will become necessary to predict multiple branches per cy-

cle. Then, non-contiguous blocks of instructions will have to be fetched from the instruction cache

and compacted into a contiguous block prior to renaming. The logic required for these operations are

described in some detail in [26]. However, delay models remain to be developed. And, although they

are important, we chose not to consider them here.

Finally, we must point out once again that in real designs there may be structures not listed above that

may influence the overall delay of the critical path. However, our realistic aim is not to study all of them but

to analyze in detail some important ones that have been reported in the literature. We believe that our basic

techniques can be applied to others, however.

2.2 Current Implementations

The structures identified above were presented in the context of the baseline superscalar model shown in

Figure 1. The MIPS R10000 [34], the HP PA-8000 [19], and the DEC 21264 [18] are three implementations

of this model. Hence, the structures identified above apply to these three processors.
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Figure 2: Reservation station model

On the other hand, the Intel Pentium Pro [13], the PowerPC 604 [7], and the HAL SPARC64 [12] are

based on the reservation station model shown in Figure 2. There are two main differences between the two

models. First, in the baseline model all the register values, both speculative and non-speculative, reside in

the physical register file. In the reservation station model, the reorder buffer holds speculative values and

the register file holds only committed, non-speculative data. Second, operand values are not broadcast to the

window entries in the baseline model – only their tags are broadcast; data values go to the physical register

file. In the reservation station model completing instructions broadcast operand values to the reservation

station. Issuing instructions read their operand values from the reservation station.

The point to be noted is that the basic structures identified earlier are also present in the reservation station

model and are as critical as in the baseline model. The only notable difference is that the reservation station
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model has a smaller physical register file (equal to the number of architected registers) and might not demand

as much bandwidth (as many ports) as the register file as the baseline model, because in this case some of

the operands come from the reorder buffer and the reservation station.

While the discussion about potential sources of complexity is in the context of a baseline superscalar

model that is out-of-order, it must be pointed out that some of the critical structures identified apply to in-

order processors too. For example, the dependence check and bypass logic are present in in-order superscalar

processors.

3 Methodology

We studied each structure in two phases. In the first phase, we selected a representative CMOS circuit. This

was done by studying designs published in the literature (mainly proceedings of the ISSCC - International

Solid-State and Circuits Conference) and by collaborating with engineers at Digital Equipment Corporation.

In cases where there was more than one possible design, we did a preliminary study of the designs to se-

lect one that was most promising. In one case, register renaming, we had to study (simulate) two different

schemes whose performance was similar.

In the second phase we implemented the circuit and optimized the circuit for speed. We used the HSPICE

circuit simulator [22] from MetaSoftware to simulate the circuits. We mostly used static logic. However, in

situations where dynamic logic helped in boosting the performance significantly, we used dynamic logic. For

example, in the wakeup logic, we used a dynamic 7-input NOR gate for comparisons instead of a static gate.

A number of optimizations were applied to improve the speed of the circuits. First, all the transistors in the

circuit were manually sized so that overall delay improved. Second, we applied logic optimizations like two-

level decomposition to reduce fan-in requirements. We avoided using static gates with a fan-in greater than

four. Third, in some cases we had to modify the transistor ordering to shorten the critical path. Some of the

optimization sites will be pointed out when the individual circuits are described.

In order to simulate the effect of wire parasitics, we added these parasitics at appropriate nodes in the

Hspice model of the circuit. These parasitics were computed by calculating the length of the wires based on

the layout of the circuit and using the values of
���������
	

and � �������
	 - the resistance and parasitic capacitance

of metal wires per unit length.

To study the effect of reducing the feature size on the delays of the structures, we simulated the circuits

for three different feature sizes: ������ � , �������� � , and �������� � respectively. The process parameters for the

������ � CMOS process were taken from [16]. These parameters were used by Wilton and Jouppi in their study

of cache access times [33]. Because process parameters are proprietary information, we had to use extrap-

olation to come up with process parameters for the �������� � and �������� � technologies. We used the ������ �
process parameters, ������ � process parameters from MOSIS, and process parameters used in the literature

as inputs. The process parameters assumed for the three technologies are listed in Appendix A. Layouts for

the �������� � and �������� � technologies were obtained by appropriately shrinking the layout for the ������ �
technology.

Finally, we used basic RC circuit analysis to develop simple analytical models that captured the depen-
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Symbol Represents
���

Issue width
���������
	��

Window size
��������

Number of virtual registers
���������

Number of physical registers
������������������

Number of bits in virtual register designators
�������������������

Number of bits in physical register designators
�! #"$�&%('

Resistance of metal wire per unit length
)  #"$�&%*'

Parasitic capacitance of metal wire per unit length

Table 1: Terminology

dence of the delays on microarchitectural parameters like issue width and window size. We compared the

relationships predicted by the Hspice simulations against those predicted by our model. In most of the cases,

our models were accurate in identifying the relationships.

3.1 Caveats

The above methodology does not address the issue of how well the assumed circuits reflect real circuits for

the structures. However, by basing our circuits on designs published by microprocessor vendors, we believe

that the assumed circuits are close enough to real circuits. In practice, many circuit tricks could be employed

to optimize the critical path for speed. However, we believe that the relative delay times between different

configurations should be more accurate than the absolute delay times. Because we are mainly interested in

finding trends as to how the delays of the structures vary with microarchitectural parameters like window

size and issue width, and how the delays scale as the feature size is reduced, we believe that our results are

valid.

3.2 Terminology

Table 1 defines some of the common terms used in the report. The remaining terms will be defined when

they are introduced.

4 Technology Trends

Feature sizes of MOS devices have been steadily decreasing. This trend towards smaller devices is likely

to continue at least for the next decade [3]. In this section, we briefly discuss the effect of shrinking feature

sizes on circuit delays. The effect of scaling feature sizes on circuit performance is an active area of research

[8, 21]. We are only interested in illustrating the trends in this section.

Circuit delays consist of logic delays and wire delays. Logic delays are delays resulting from gates that

are driving other gates. The delay of a decoder that consists of NAND gates feeding NOR gates is an exam-

ple of logic delay. Wire delays are the delays resulting from driving values on wires.
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Logic delays

The delay of a logic gate can be written as

� ����� 6�� � ����� �
��� "
	 ����$

where ��� is the load capacitance at the output of the gate, 	 is the supply voltage, and $ is the average charg-

ing/discharging current. $ is a function of $��� � � - the saturation drain current of the devices forming the gate.

As the feature size is reduced, the supply voltage has to be scaled down to keep the power consumption at

manageable levels. Because voltages cannot be scaled arbitrarily they follow a different scaling curve from

feature sizes. From [24], for submicron devices, if � is the scaling factor for feature sizes, and � is the scal-

ing factor for supply voltages, then ��� , 	 , and $ scale by factors of ��� � , ����� , and ����� respectively. Hence,

the overall gate delay scales by a factor of ��� � . Therefore, gate delays decrease uniformly as the feature size

is reduced.

Wire delays

If � is the length of a wire, then the intrinsic RC delay of the wire is given by

� ����� 6������ ��� ���� " � �������
	 " � �������
	 "����
where

� � � ��� 	
, � �������
	 are the resistance and parasitic capacitance of metal wires per unit length respectively

and � is the length of the wire. The factor ���� is introduced because we use the first order approximation that

the delay at the end of a distributed RC line is RC/2 (we assume the resistance and capacitance are distributed

uniformly over the length of the wire).

In order to study the impact of shrinking feature sizes on wire delays we first have to analyze how the

resistance,
� �������
	

, and the parasitic capacitance, � �������
	
, of metal wires vary with feature size. We use the

simple model presented by Bohr in [4] to estimate how
��� � ��� 	

and � � � ��� 	 scale with feature size. Note that

both these quantities are per unit length measures. From [4],

� � � ��� 	 � � � � � 01!'* �"! *��
0 �9�8&)�(( �
� � � ��� 	 � ��# �$��%&� �(' �() � � �
	 	�� 	+* ) 	 � ���� , !�-.!�-�/�! * � 01���8&)� (�(&� � 01!�*�� ' , !�-.!�-0/�! � 01!�*����*��
01���8&)�((

where � 01!�*�� is the width of the wire, *��
01���8&)�(( is the thickness of the wire,
�

is the resistivity of metal, and

- and - / are permittivity constants.

The average metal thickness has remained constant for the last few generations while the width has been

decreasing in proportion to the feature size. Hence, if � is the technology scaling factor, the scaling factor

for
� � � ��� 	

is � . The metal capacitance consists of two components: fringe capacitance and parallel-plate

capacitance. Fringe capacitance is the result of capacitance between the side-walls of adjacent wires and ca-

pacitance between the side-walls of the wires and the substrate. Parallel-plate capacitance is the result of

capacitance between the bottom-wall of the wires and the substrate. Assuming that the thickness remains

constant, it can be seen from the equation for � � � ��� 	
that the fringe component becomes the dominant com-

ponent as we move towards smaller feature sizes. In [25], the authors show that as features sizes are reduced,
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the fringe capacitance will be responsible for an increasingly larger fraction of the total capacitance. For ex-

ample, they show that for feature sizes less than ���� � � , the fringe capacitance contributes 90% of the total

capacitance. In order to accentuate the effect of wire delays and to be able to identify their effects, we assume

that the metal capacitance is largely determined by the fringe capacitance and therefore the scaling factor for

� �������
	 is also � .

Using the above scaling factors in the equation for the wire delay we can compute the scaling factor for

wire delays as

� � �8� 0 & ��� �8��* ��+ � � " � "
� ��� � �$�� �

Note that the length scales as ��� � for local interconnects. In this study we are only interested in local inter-

connects. This might not be true for global interconnects like the clock because their length also depends on

the die size.

Hence, as feature sizes are reduced, the wire delays remain constant. This coupled with the fact that logic

delays decrease uniformly with feature size implies that wire delays will dominate logic delays in future. In

reality the situation is further aggravated for two reasons. First, not all wires reduce in length perfectly (by a

factor of � ). Second, some of the global wires, like the clock, actually increase in length due to bigger dice

that are made possible with each generation.

McFarland and Flynn [21] studied various scaling schemes for local interconnects and conclude that

quasi-ideal scaling scheme as the one that closely tracks future deep submicron technologies. Quasi-ideal

scaling performs ideal scaling of the horizontal dimensions but scales the thickness more slowly. The scal-

ing factor for RC delay per unit length for their scaling model is
� ���� " ����� 	 ' �����" � � � 	 � . In comparison,

for our scaling model, the scaling factor for RC delay per unit length is simply � � . Even though our model

overestimates the RC delay as compared to the quasi-ideal model of McFarland and Flynn, we use it in order

to emphasize wire delays and study their effects.

5 Complexity Analysis

In this section we discuss the critical pipeline structures in detail. The presentation for each structure is or-

ganized as follows. First, we describe the logical function implemented by the structure. Then, we present

possible schemes for implementing the structure and describe one of the schemes in detail. Next we analyze

the overall delay of the structure in terms of microarchitectural parameters like issue width and window size

using simple delay models. Finally, we present Spice results, identify trends in the results and discuss how

the results conform to the delay analysis performed earlier.

5.1 Register Rename Logic

The register rename logic is used to translate logical register designators into physical register designators.

Logically, this is accomplished by accessing a map table with the logical register designator as the index.

Because multiple instructions, each with multiple register operands, need to be renamed every cycle, the
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map table has to be multi-ported. For example, a 4-wide issue machine with two read operands and one

write operand per instruction requires 8 read ports and 4 write ports to the mapping table. The high level

block diagram of the rename logic is shown in Figure 3. The map table holds the current logical to physical

mappings. In addition to the map table, dependence check logic is required to detect cases where the logical

register being renamed is written by an earlier instruction in the current group of instructions being renamed.

An example of this is shown in Figure 4. The dependence check logic detects such dependences and sets up

the output MUXes so that the appropriate physical register designators are generated. The shadow table is

used to checkpoint old mappings so that the processor can quickly recover to a precise state [27] from branch

mispredictions � . At the end of every rename operation, the map table is updated to reflect the new logical

to physical mappings created for the result registers written by the current rename group.
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Figure 3: Register Rename Logic

5.1.1 Structure

The mapping and checkpointing functions of the rename logic can be implemented in at least two ways.

These two schemes, called the RAM scheme and the CAM scheme, are described next.

RAM scheme

In the RAM scheme, as implemented in the MIPS R10000 [34], the map table is a register file where each

entry contains the physical register that is mapped to the logical register whose designator is used to index

the table. The number of entries in the map table is equal to the number of logical registers. A single cell of

the table is shown in Figure 5. A shift register, present in every cell, is used for checkpointing old mappings.
�

This mechanism can be used to recover from exceptions other than branch mispredicts. However, because they occur less fre-

quently and checkpoint space is limited, we assume that checkpointing is used only for predicted branches. Other exceptions are

recovered from by unwinding the reorder buffer.
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The map table works like a register file. The bits of the physical register designators are stored in the

cross-coupled inverters in each cell. A read operation starts with the logical register designator being ap-

plied to the decoder. The decoder decodes the logical register designator and raises one of the word lines.

This triggers bit line changes which are sensed by a sense amplifier and the appropriate output is generated.

Precharged bit lines are used to improve the speed of read operations. Single-ended read and write ports are

used to minimize the increase in width of each cell as the number of ports is increased because the width of

each cell determines the length of the wordlines and hence the time taken to drive the wordlines.

Mappings are checkpointed by copying the current contents of each cell into the shift register. Recovery

is performed by writing the bit in the appropriate shift register cell back into the main cell.

CAM scheme

An alternative scheme for register renaming uses a CAM (content-addressable memory [32]) to store the cur-

rent mappings. Such a scheme is implemented in the HAL SPARC [2] and the DEC 21264 [18]. The number

of entries in the CAM is equal to the number of physical registers. Each entry contains two fields. The first

field stores the logical register designator that is mapped to the physical register represented by the entry. The

second field contains a valid bit that is set if the current mapping is valid. The valid bit is required because a

single logical register might map to more than one physical register. When a mapping is changed, the logical

register designator is written into the entry corresponding to a free physical register and the valid bit of the

entry is set. At the same time, the valid bit of the mapping used for the previous mapping is located through

an associative search and cleared.

The rename operation in this scheme proceeds as follows. The CAM is associatively searched with the

logical register designator. If there is a match and the valid bit is set, a read enable word line corresponding to

the CAM entry is activated. An encoder (ROM) is used to encode the read enable word lines (one per physical

register) into a physical register designator. Old mappings are checkpointed by storing the valid bits from the

CAM into a checkpoint RAM. To recover from an exception, the valid bits corresponding to the old mapping

are loaded into the CAM from the checkpoint RAM. In the HAL design, up to 16 old mappings can be saved.

The CAM scheme is less scalable than the RAM scheme because the number of CAM entries, which

is equal to the number of physical registers, tends to increase with issue width � . In order to support such

a large number of physical registers, the CAM will have to be appropriately banked. On the other hand, in

the RAM scheme, the number of entries in the map table is independent of the number of physical registers.

However, the CAM scheme has an advantage with respect to checkpointing. In order to checkpoint in the

CAM scheme, only the valid bits have to be saved. This is easily implemented by having a RAM adjacent to

the column of valid bits in the CAM. In other words, the dimensions of individual CAM cells is independent

of the number of checkpoints. On the other hand, in the RAM scheme, the width of individual cells is a

function of the number of checkpoints because this number determines the length of the shift register in each

cell.

The dependence check logic, shown in Figure 4, proceeds in parallel with the map table access. Every
�

Farkas et. al. [11] have shown that for significant performance up to 80 physical registers are required for a 4-wide issue machine

and up to 120 physical registers are required for a 8-wide issue machine.
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logical register designator being renamed is compared against the destination register designators (logical) of

earlier instructions in the current rename group. If there is a match, then the tag corresponding to the physical

register assigned to the earlier instruction is used instead of the tag read from the map table. For example, in

the case shown in Figure 4, the last instruction’s operand register r4 is mapped to p7 and not p2. In the case of

more than one match, the tag corresponding to the latest (in dynamic order) match is used. We implemented

the dependence check logic for issue widths of 2, 4, and 8. We found that for these issue widths, the delay of

the dependence check logic is less than the delay of the map table, and hence the check can be hidden behind

the map table access.

5.1.2 Delay Analysis

We implemented both the RAM scheme and the CAM scheme. We found the performance of the two schemes

to be comparable for the design space we explored. To keep the analysis short, we will only discuss the RAM

scheme here.

A single cell of the map table is shown in Figure 5. The critical path for the rename logic is the time it

takes for the bits of the physical register designator to be output after the logical register designator is applied

to the address decoder. The delay of the critical path consists of four components: the time taken to decode

the logical register designator, the time taken to drive the wordline, the time taken by an access stack to pull

the bitline low, and the time taken by the sense amplifier to detect the change in the bitline and produce the

corresponding output. The time taken for the output of the map table to pass through the output MUX is

ignored because this is small compared to the rest of the rename logic and, more importantly, the control

input of the MUX is available in advance because the dependence check logic is faster than the map table.

Hence, the overall delay is given by,

� ����� 6 � �  �����  �.' � � � �  	 ��% � ' ��� � ��	 ��% �.' � � � % � � � � )
Each of the components is analyzed next.
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Decoder delay

The structure of the decoder is shown in Figure 6. We use predecoding [32] to improve the speed of decod-

ing. A 3-bit predecode field generates 8 predecode lines, each of which is fed to 4 row decode gates. The

predecode gates are 3-input NAND gates and the row decode gates are 3-input NOR gates. The fan-in of the

NAND and NOR gates are determined by the number of bits in the logical register designator. The output

of the NAND gates is connected to the input of the NOR gates by the predecode lines. The length of these

lines is given by

2�+ � ! � �/� 0 &)��� ��& � * � � �
��� � � ����0 � � * ' � " $�� " � ��+ !'� 0 &)� � ) � � ��% � � " � 	 �����

where ������� � ��0 � � * is the height of a single cell excluding the wordlines, $�� is the issue width, � �+ ! � 01&)� � ) � � ��% �
is the spacing between wordlines, and

� 	 �����
is the number of logical registers. The factor 3 in the equa-

tion results from the assumption of 3-operand instructions (2 read operands and 1 write operand), and single-

ended read/write ports. With these assumptions, 3 ports (1 write port and 2 read ports) are required per cell

for each instruction being renamed. Hence, for a $�� -wide issue machine, a total of � " $�� wordlines are

required for each cell.

The decoder delay is the time it takes to decode the logical register designator i.e. the time it takes for

the output of the NOR gate to rise after the input to the NAND gate has been applied. Hence, the decoder

delay can be written as
�  �����  � � � % � %  ' � % � �

where
� % � %  is the fall delay of the NAND gate and

� % � � is the rise delay of the NOR gate. From the equiv-

alent circuit of the NAND gate shown in Figure 6
� % � %  � � /7" � ��� " � ��� �
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� ���
consists of two components: the resistance of the NAND pull-down and the metal resistance of the pre-

decode line connecting the NAND gate to the NOR gates. Hence,

� ����� � % � %  )  ' ���� " 27+�� ! ���9� 0 &)��� ��& � * � " � �������
	

Note that we have divided the resistance of the predecode line by two; the first order approximation for the

delay at the end of a distributed RC line is RC/2 (we assume the resistance and capacitance are distributed

evenly over the length of the wire).

� ��� consists of three components: the diffusion capacitance of the NAND gate, the gate capacitance of

the NOR gate, and the metal capacitance of the line connecting the line connecting the NAND gate to the

NOR gate. Hence,

� ����� �� � # # � � ) * % � %  ' ��� �
��� � � ) * % � � ' 27+�� ! ���9� 0 &)��� ��& � * � " � � � ��� 	

Substituting the above equations into the overall decoder delay and simplifying, we get

�  �����  � � � / ' � � " $�� ' � � " $�� �
where � / , � � , � � are constants. The quadratic component results from the intrinsic RC delay of the predecode

lines connecting the NAND gates to the NOR gates. We found that, at least for the design space and tech-

nologies we explored, the quadratic component is very small relative to the other components. Hence, the

delay of the decoder is linearly dependent on the issue width.

Wordline delay

The wordline delay is defined as the time taken to turn on all the access transistors (denoted by N1 in Figure 5)

connected to the wordline after the logical register designator has been decoded. From the circuit shown in
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Figure 7, the wordline delay is the sum of the fall delay of the inverter wlinv and the rise delay of the wordline

driver. Hence,

� � � �  	 ��% � � � � 	 ��% � ' � � 	  � � � � �
From the equivalent circuit of the wordline driver shown in Figure 7, the wordline driver delay can be written

as

� � 	  � � � � � � � /7"
� � � 	  � � � � � ' � � 	 � � � � " � � 	 � � )

where
� � 	  � � � � � is the effective resistance of the pull-up (p-transistor) of the driver,

� � 	 � � � is the resistance of

the wordline, and � � 	 � � ) is the amount of capacitance on the wordline. The total capacitance on the wordline

consists of two components: the gate capacitance of the access transistors and the metal capacitance of the

wordline wire. The resistance of the wordline is determined by the length of the wordline. Symbolically,

� ��+ !'� 0 &)��� ��& � * � � �
������� � 01!'* � ' � " $�� " � 0 * � 01&)� � ) � � ��%&� '�� " ( � 0 � *,+ � � � �  ��� � " 2 ����� ���  ���

� � 	 � � ) � 2 ��� � � �  ��� " ��� � ����� � ) *�� � ' � ��+ !'� 0 &)��� ��& � * � " � �������
	

� � 	 � � � � ���� " � ��+ !'� 0 &)��� ��& � * � " � �������
	

where 2 ��� � � �  ��� is the number of bits in the physical register designator, ��� � ����� � ) *�� � is the gate capac-

itance of the access transistor N1 in each cell, ������� � 01!'* � is the width of a single RAM cell excluding the

bitlines,
� 0 *,� 0 &)� � ) � � ��% � is the spacing between bitlines,

�
is the maximum number of shadow mappings that

can be checkpointed, and ( � 0 � *,+ � � � �  ��� is the width of a single bit of the shift register in each cell.

Factoring the above equations into the wordline delay equation and simplifying we get

� � � �  	 ��% � � � / ' � � " $�� ' � � " $�� �
16



where � / , � � , and � � are constants. Again, the quadratic component results from the intrinsic RC delay of

the wordline wire and we found that the quadratic component is very small relative to the other components.

Hence, the overall wordline delay is linearly dependent on the issue width.
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Bitline delay

The bitline delay is defined as the time between the wordline going high (turning on the access transistor N1)

and the bitline going low (reaching a voltage of 	 � � � � � % � � below its precharged value of 	�0 where 	 � � � � � % � �
is the threshold voltage of the sense amplifier.). This is the time it takes for one access stack to discharge the

bitline. From the equivalent circuit shown in Figure 8 we can see that the magnitude of the delay is given by

��� � ��	 ��% � � � /7"
� � � � ��� � �

' � � � ��	 ��% � � " � � � ��	 ��% �
where

� � � ��� � � is the effective resistance of the access stack (two pass transistors in series),
� � � ��	 � % � is the

resistance of the bitline, and � � � ��	 ��% � is the capacitance on the bitline. The bitline capacitance consists of two

components: the diffusion capacitance of the access transistors connected to the bitline and the metal capac-

itance of the bitline. The resistance of the bitline is determined by the length of the bitline. Symbolically,

� 0 * � 0 &)� � ��& � *�� � �
������� � ��0 � �
* ' � " $�� " � �+ ! � 01&)� � ) � � ��%&� � " � 	 ��� �

� � � ��	 � % � � � 	 ����� " �� � # # � � ) *�� �
' � 0 *,� 0 &)��� ��& � * � " � � � ��� 	

� � � ��	 ��% � � ���� " � 0 * � 01&)� � ��& � *�� " � � � ��� 	

where
� 	 �����

is the number of logical registers, �� � # # � � ) *�� � is the diffusion capacitance of the access

transistor N1 that connects to the bitline, ��� � � ����0 � � * is the height of a single RAM cell excluding the word-

lines, and � ��+ !'� 0 &)� � ) � � ��%&� is the spacing of wordlines.
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Factoring the above equations into the overall delay equation and simplifying we get

��� � ��	 ��% � � � / ' � � " $�� ' � � " $�� �
where � / , � � , and � � are constants. Again, we found that the quadratic component is very small relative to

the other components. Hence, the overall bitline delay is linearly dependent on the issue width.

Sense amplifier delay

We used Wada’s sense amplifier from [31]. Wada’s sense amplifier amplifies a voltage difference of
, "

	 � � � � � % � � to 	 0 . Because we assumed single-ended read lines, we tied one of the inputs of the sense ampli-

fier to a reference voltage 	 � � # . Even though the structural constitution of the sense amplifier is independent

of the issue width, we found that its delay varied with issue width because its delay is a function of the slope

of the input. Because the input here is the bitline voltage, the delay of the sense amplifier is a function of the

bitline delay. This in turn makes the delay of the sense amplifier a function of the issue width.

Overall delay

From the above analysis, the overall delay of the register rename logic can be summarized by the following

equation:

� ����� 6 � � / ' � � " $�� ' � � " $�� �
where � / , � � and � � are constants. However, the quadratic component is relatively small and hence, the re-

name delay is a linear function of the issue width for the design space we explored.

5.1.3 Spice Results

Figure 9 shows how the delay of the rename logic varies with the issue width i.e. the number of instructions

being renamed every cycle for the three technologies. The graph also shows the breakup of the delay into the

components discussed in the previous section. Detailed results for various configurations and technologies

are shown in tabular form in Appendix B.

A number of observations can be made from the graph. The total delay increases linearly with issue width

for all the technologies. This is in conformance with the analysis in the previous section. All the components

show a linear increase with issue width. The increase in the bitline delay is larger than the increase in the

wordline delay as issue width is increased because the bitlines are longer than the wordlines in our design.

The bitline length is proportional to the number of logical registers (32 in most cases) whereas the wordline

length is proportional to the width of the physical register designator (less than 8 for the design space we

explored).

Another important observation that can be made from the graph is that the relative increase in wordline

delay, bitline delay and hence, total delay with issue width only worsens as the feature size is reduced. For

example, as the issue width is increased from 2 to 8, the percentage increase in bitline delay shoots up from

37% to 53% as the feature size is reduced from ������ � to �������� � . This occurs because logic delays in the

various components are reduced in proportion to the feature size while the presence of wire delays in the
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Figure 9: Rename delay versus issue width

wordline and bitline components cause the wordline and bitline components to fall at a slower rate. In other

words, wire delays in the wordline and bitline structures will become increasingly important as feature sizes

are reduced.

5.2 Wakeup Logic

The wakeup logic is responsible for updating source dependencies of instructions in the issue window waiting

for their source operands to become available. Figure 10 illustrates the wakeup logic. Every time a result is

produced, the tag associated with the result is broadcast to all the instructions in the issue window. Each

instruction then compares the tag with the tags of its source operands. If there is a match, the operand is

marked as available by setting the rdyL or rdyR flag. Once all the operands of an instruction become available

(both rdyL and rdyR are set), the instruction is ready to execute and the rdy flag is set to indicate this. The

issue window is a CAM (content addressable memory [32]) array holding one instruction per entry. Buffers,

shown at the top of the figure, are used to drive the result tags *$� � � to *$� � � where � is the issue width.

Each entry of the CAM has
, " � comparators to compare each of the results tags against the two operand

tags of the entry. The OR logic ORs the comparator outputs and sets the rdyL/rdyR flags.

5.2.1 CAM Structure

Figure 11 shows a single cell of the CAM array. The cell shown in detail compares a single bit of the operand

tag with the corresponding bit of the result tag. The operand tag bit is stored in the RAM cell. The corre-

sponding bit of the result tag is driven on the tag lines. The match line is precharged high. If there is a

mismatch between the operand tag bit and the result tag bit, the match line is pulled low by one of the pull-

down stacks. For example, if * � � � � , and !�� *$� � � , then the pull-down stack on the left is turned on and
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it pulls the match line low. The pull-down stacks constitute the comparators shown in Figure 10. The match

line extends across all the bits of the tag i.e. a mismatch in any of the bit positions will pull it low. In other

words, the match line remains high only if the result tag matches the operand tag. The above operation is

repeated for each of the result tags by having multiple tag and match lines as shown in the figure. Finally, all

the match signals are ORed to produce the ready signal.

.
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.

matchW

rdyOR

tagW tag1 data data tag1 tagW

... ...

pchg

RAM cell

match1

APD2 PD1

pull-down stack

Figure 11: CAM cell

There are two of observations that can be drawn from the figure. First, there are as many match lines as

the issue width. Hence, increasing issue width increases the height of each CAM row. Second, increasing
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issue width also increases the number of inputs to the OR block.

5.2.2 Delay Analysis

Because the match lines are precharged high, the default value of the ready signal is high. Hence, the delay

of the critical path is the time it takes for a mismatch in a single bit position to pull the ready signal low. The

delay consists of three components: the time taken by the buffers to drive the tag bits, the time taken for the

pull-down stack corresponding to the bit position with the mismatch to pull the match line low
�
, and the

time taken to OR the individual match signals. Symbolically,
� ����� 6 � � ��� �  � � � � ' � ��� � ���
� � � ' � � � � � �����

Each of the components is analyzed next.

Tag drive time

The tag drive circuit is shown in Figure 12. The time taken to drive the tags depends on the length of the tag

lines. The length of the tag lines is given by
� � � � 0 &)��� ��& � * � � �

� � � � ��0 � �
* ' $�� " ��� *,� � � 0 &)� ( ���8�/0 & � � " � $ � � $ � �

where � � � � ��0 � �
* is the height of a single CAM cell excluding the matchlines, and ���'* � � � 0 &)� � ) � � ��% � is the

spacing between matchlines
�
, and � $ � � $ � � is the number of window entries.
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From the equivalent circuit shown in Figure 12, the time taken to drive the tags is given by
� ��� �  � � � � � � / "

� � ��� �  � � � � � * )���) ' � ��	 � � � � " � ��	 � � )
	
We assume that only one pull-down stack is turned on because we are interested in the worst-case delay.

To be precise ��������������������! �"�#%$'& is the height of a matchline and the associated pull-down stacks.
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where
� ��� �  � � � � � * )�� ) is the resistance of the pull-up of the tag driver,

����	 � � � is the metal resistance of the tag

line, and � ��	 � � ) is the total capacitance on the tag line.
� ��	 � � � is given by

� ��	 � � � � ���� " � � � � 0 &)� � ��& � *�� " � �������
	

� ��	 � � ) consists of three components: the metal capacitance determined by the length of the tag line, the gate

capacitances of the comparators, and the diffusion capacitance of the tag driver.

� ��	 � � ) � � � � � 0 &)� � ��& � *�� " � �������
	 ' � � � ����� � ) * ��� � ) " � $ � � $ � � ' �� � # # � � ) * ��� �  � � � � �
where � � � ����� � ) * � ��� ) is the gate capacitance of the pass transistor PD2 (shown in Figure 11) in the compara-

tor’s pull-down stack and �� � # # � � ) * ��� �  �$� � � � is the diffusion capacitance of the tag driver.

Substituting the above equations into the overall delay equation and simplifying we get

� ��� �  � � � � � � / ' �
� �

' � � " $���� " � $ � � $ � � ' �
� � ' � � " $�� ' � 	 " $�� � � " � $ � � $ � � �

Note that we used a fixed size tag driver in our studies. The tag driver was sized for the largest configu-

ration. Hence, in reality the increase in tag drive time with window size will be higher.

The above equation shows that the tag drive time increases with window size and issue width. For a given

issue width, the total delay is a quadratic function of the window size. The weighting factor of the quadratic

term is a function of the issue width. We found that the weighting factor becomes significant for issue widths

beyond 2. For a given window size, the tag drive time is also a quadratic function of the issue width. We

found that for current technologies ( �������� � and longer) the quadratic component is relatively small and the

tag drive time is largely a linear function of issue width. However, as the feature size is reduced to �������� �
the quadratic component also increases in significance. The quadratic component results from the intrinsic

RC delay of the tag lines.

In reality, both issue width and window size will be simultaneously increased because a larger window

is required for finding more independent instructions. Hence, we believe that the tag drive time can become

significant in future designs with wider issue widths, bigger windows, and smaller feature sizes.

Tag match time

This is the time taken for one of the pull-down stacks to pull the match line low. From the equivalent circuit

shown in Figure 13,

� ��� � ��� � � � � � / "
� � ) �� ��� � �

' � � 	 � � � � " � ��	 � � )
where

� )��� ��� � � is the effective resistance of the pull-down stack,
��� 	 � � � is the metal resistance of the match

line, and � � 	 � � ) is the total capacitance on the match line.
����	 � � � can be computed using

� � 	 � � � � ���� " � � *,� � � 0 &)��� ��& � * � " � � � ��� 	

where
� � * � � � 0 &)� � ��& � *�� is the length of the match line and is given by

� � *,� � � 0 &)��� ��& � * � � �
� � � � 01!'* � ' $�� " *$� � � 0 &)� � ) � � ��% � � " 2 ����� ���  ���
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� � � � 01!�*�� is the width of the CAM cell excluding the tag lines, * � � � 01&)� ( � � �/0 & � is the increase in the width

of the CAM cell for each extra port (tag and tagbar wires) added.

� � 	 � � ) consists of three components: the diffusion capacitances of all the pull-down stacks connected to

the match line, the metal capacitance of the match line, and the gate capacitance of the inverter at the end of

the match line. Hence,

� � 	 � � ) � , " 2 ����� � �  ��� " �� � # # � � ) * ��� �
' � � *,� � � 0 &)��� ��& � * � " � � � ��� 	 ' � � � ����� � ) ���
� � � ��% �

where 2 ����� ���  ��� is the width of the physical register designators, �� � #�# � � ) * ��� � is the diffusion capac-

itance of the pass transistor (marked as PD1 in Figure 11) in the pull-down stacks that is connected to the

match line, and � � �
��� � � ) ���
� � � ��% � is the gate capacitance of the inverter at the end of the match line.

Substituting the equations for
� � 	 � � � and � ��	 � � ) into the overall delay equation and simplifying we get

� ��� � ��� � � � � � / ' � � " $�� ' � � " $�� �
Again, we found that the quadratic component is relatively small and hence, the tag match time is a linear

function of the issue width.

A drawback of our model for the tag match time is that it does not model the dependence of the match

time on the slope of the tag line signal i.e. the tag drive delay. Our results, presented in the next section, show

that, as a result of this dependence, the tag match time is also a function of the window size. In other words,

larger windows will result in slower fanning out of the result tags to the comparators in the window entries,

thus increasing the compare time.

Match OR time

This is the time taken to OR the individual match lines to produce the ready signal. Because the number of
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Figure 14: Logic for ORing individual match signals

match lines is the same as the issue width, the magnitude of this delay term is a direct function of issue width.

Figure 14 shows the OR logic for result widths of 2, 4, and 8. For � � � , we use two 4-input NAND stacks

followed by a NOR gate because this is faster than using an 8-input NAND gate. Because the delay of a gate

is a quadratic function of the fan-in [32, 24] we can write the delay as

� ���
� � ��� � � � / ' � � " $�� ' � � " $�� �
For the design space we explored (issue widths of 2, 4, and 8), the quadratic component was relatively small.

Overall delay

The overall delay of the wakeup logic can be summarized by an equation similar to the tag drive time because

it includes all the relations exhibited by the tag match time and match OR time. Therefore,
� ����� 6 � � / ' �

� �
' � � " $���� " � $ � � $ � � ' �

� � ' � � " $�� ' � 	 " $�� � � " � $ � � $ � � �
5.3 Spice Results

The graph on the left in Figure 15 shows how the delay of the wakeup logic varies with window size and

issue width for �������� � technology. As expected, the delay increases as window size and issue width are

increased. The quadratic dependence of the total delay on the window size results from the quadratic increase

in tag drive time as discussed in the previous section. This effect is clearly visible for issue width of 8 and is

less significant for smaller issue widths. We found similar curves for ������ � and �������� � technologies. The

quadratic dependence of delay on window size was more prominent in the curves for �������� � technology

than in the case of the other two technologies.

Also, issue width has a greater impact on the delay than window size because increasing issue width

increases all the three components of the delay. On the other hand, increasing window size only lengthens
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Figure 15: Wakeup logic delay versus window size
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Figure 16: Wakeup delay versus feature size for an 8-way, 64-entry window processor

the tag drive time and to a small extent the tag match time. Overall, the results show that the delay increases

by almost 34% going from 2-way to 4-way and by 46% going from 4-way to 8-way for a window size of 64

instructions. In reality, the increase in delay is going to be even worse because in order to sustain a wider

issue width, a larger window is required to find independent instructions. We found similar curves for ������ �
and �������� � technologies. Detailed results for various configurations and technologies are shown in tabular

form in Appendix B.

The bar graph on the right in Figure 15 shows the detailed breakup of the total delay for various window

sizes for a 8-way processor in �������� � technology. The tag drive time increases rapidly with window size.

For example, the tag drive time and the tag match time increase by factors of 4.78 and 1.33 respectively when

the window size is increased from 8 to 64. The increase in tag drive time is higher than that of tag match time

because the tag drive time is a quadratic function of the window size. The increase in tag match time with the

window size is not taken into account by our simple model given above because the model does not take into

25



consideration the slope of the input signals (determined in this case by the tag drive delay). Also, as shown

by the graph, the time taken to OR the match signals only depends on the issue width and is independent of

the window size.

Figure 16 shows the effect of reducing feature sizes on the various components of the wakeup delay for

an 8-way, 64-entry window processor. The tag drive and tag match delays do not scale as well as the match

OR delay. This is expected because tag drive and tag match delays include wire delays whereas the match

OR delay only consists of logic delays. Quantitatively, the fraction of the total delay contributed by tag drive

and tag match delay increases from 52% to 65% as the feature size is reduced from ������ � to �������� � . This

shows that the performance of the broadcast operation will become more crucial in future technologies.

BANK0 BANK1

tag

Figure 17: Banking wakeup logic

In the above simulation results the window size was limited to a maximum of 64 instructions because

we found that for larger windows the intrinsic RC delay of the tag lines increases significantly. As discussed

previously, the intrinsic RC delay is proportional to the square of the window size. Therefore, for implement-

ing larger windows banking should be used as shown in Figure 17. Banking helps alleviate the intrinsic RC

delay by reducing the length of the tag lines. For example, the two-way banking shown below will improve

the intrinsic RC delay by a factor of four. At the same time it must be pointed out that banking will introduce

some extra delay due to extra inverter stages and the parasitics introduced by the extension to the tag lines.

5.4 Selection Logic

Selection logic is responsible for selecting instructions for execution from the pool of ready instructions in

the issue window. Some form of selection logic is required for two reasons. First, the number of ready in-

structions in the issue window can be greater than the number of functional units available. For example,

for a 4-way machine with a 32-entry issue window there could be as many as 32 ready instructions. Second,

some instructions can be executed only on a subset of the functional units. For example, if there is only one

integer multiplier, all multiply instructions will have to be steered to that functional unit.

The inputs to the selection logic are the request (REQ) signals, one per instruction in the issue window.

The request signal of an instruction is raised when all the operands of the instruction become available. As

discussed in the previous section, the wakeup logic is responsible for raising the REQ signals. The outputs of
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the selection logic are the grant (GRANT) signals, one per request signal. On receipt of the GRANT signal,

the associated instruction is issued to the functional unit and the issue window entry it occupied is freed for

later use 	 . A selection policy is used to decide which of the requesting instructions is granted the functional

unit. An example selection policy is oldest ready first - the ready instruction that occurs earliest in program

order is granted the functional unit. Butler and Patt [5] studied various policies for scheduling ready instruc-

tions and found that overall performance is largely independent of the selection policy. For example, the HP

PA-8000 [19] uses a selection policy that is based on the location of the instruction in the window. We assume

the same selection policy in our study.

gr
an

t0
re

q0

re
q0

gr
an

t0

anyreq enable

anyreq enable enableanyreq anyreq enable anyreq enable
re

q1
gr

an
t1

re
q2

gr
an

t2
re

q3
gr

an
t3

gr
an

t1
re

q2
gr

an
t2

re
q3

gr
an

t3

gr
an

t0
re

q0

from/to other subtrees

enable

ROOT cell

re
q1

anyreq enable

OR

re
q0

re
q1

re
q2

re
q3

gr
an

t0
gr

an
t1

gr
an

t2
gr

an
t3

Priority Encoder

ISSUE WINDOW

ARBITER CELL

Figure 18: Selection logic

5.4.1 Structure

The assumed structure of the selection logic is shown in Figure 18. The selection logic is used to select a

single instruction for execution on a functional unit. The modifications to this scheme for handling multiple

functional units is discussed in the next section. The selection logic consists of a tree of arbiters. Each arbiter

cell, shown in Figure 18, functions as follows. If the enable input is high, then the grant signal corresponding

to the highest-priority, active input is raised. For example, if ��& � � ��� � � , +�� � � � � , +�� � � � � , + � � ,"� � ,

and +�� � � � � , then � +��'& * � will be raised assuming priority reduces as we go from input + � � � to input +�� � � .

If the enable input is low, all the grant signals are set to low. In all cases, at most one of the grant signals is

high. The �'& 68+�� � output signal is raised if any of the input + � � signals is high.

The overall selection logic works in two phases. In the first phase, the request signals are propagated up

the tree. Each cell raises the �'& 68+�� � signal if any of its input request signals is high. This in turn raises the
�
In some designs, for example the HP PA-8000 [19], the entry is freed only after the instruction has been committed i.e. its result

value is made part of the architectural state.
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input request signal of its parent arbiter cell. Hence, at the root cell one or more of the input request signals

will be high if there are one or more instructions that are ready. The root cell then grants the functional unit

to one of its children by raising one of its grant outputs. This initiates the second phase. In this phase, the

grant signal is propagated down the tree to the instruction that is selected. At each level, the grant signal is

propagated down the subtree that contains the selected instruction.

The enable signal to the root cell is high whenever the functional unit is ready to execute an instruction.

For example, for single-cycle ALUs, the enable signal will be permanently tied to high.

The selection policy implemented by our assumed structure is static and is strictly based on location of

the instruction in the issue window. The leftmost entries in the window have the highest priority. The oldest

ready first policy can be implemented using our scheme by compacting the issue window to the left every

time instructions are issued and by inserting new instructions at the right end. This ensures that instructions

that occur earlier in program order occupy the leftmost entries in the window and hence have higher priority

than later instructions. However, it is possible that the complexity resulting from compaction could degrade

performance. We did not analyze the complexity of compacting in this study.

5.5 Handling Multiple Functional Units
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Figure 19: Handling multiple functional units

If there are multiple functional units of the same type, then the selection logic (shown in Figure 19) comprises

a number of blocks of the type studied in the previous section, stacked in series. The request signals to each

block are derived from the requests to the previous block by masking the request that was granted the previous

resource.

An alternative to the above scheme is to extend the arbiter cells so that the request and grant signals

encode the number of resources being requested and granted respectively. However, we believe that this

could considerably slow down the arbiter cells and hence would perform worse than the stacked design.

The stacked design might not be a feasible alternative beyond two functional units because the result-

ing delay can be significant. An alternative option is to statically partition the window entries among the

functional units. For example, in the MIPS R10000 [34], the window is partitioned into three sets called

the integer queue, floating-point queue, and the address queue. Only instructions in the integer queue are

monitored for execution on the two integer functional units. Similarly, in the HP PA-8000 [19], the window
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is partitioned into the ALU queue and the MEM queue. The ALU queue buffers integer and floating-point

instructions. Only instructions in the ALU queue are monitored for execution on the two integer functional

units and two floating-point functional units. The MEM queue buffers load/store instructions. The instruc-

tions in the MEM queue are monitored for execution on the load/store units.

5.5.1 Delay Analysis

The delay of the selection logic is the time it takes to generate the grant signal after the request signal has

been raised. This is equal to the sum of two terms: the time taken for the request signal to propagate to the

root of the tree and the time taken for the grant signal to propagate from the root to the selected instruction.

Symbolically,

� ����� 6 � � � � � � " � � ��� ) � � )� ' � � � � � ' � � � � � " � ��� � % � ) � � ) 
where � ������� � � � $ � � $ � � � is the height of the selection tree,

� � ��� ) � � )  is the time taken for the re-

quest signal to propagate through an arbiter cell,
� � ��� � is the delay of the � +�� & * output at the root cell, and

� �0� � % � ) � � )� is the time taken for the grant signal to propagate through an arbiter cell. Hence, the overall se-

lection delay can be written as

� ����� 6 � � / ' � � " � � � � � � $ � � $ � � �

where � / and � � are constants.

From the above equations we can see that the delay of the selection logic is proportional to the height

of the tree and the delay of the arbiter cells. The delay has a logarithmic relationship with the window size.

Increasing issue width can also increase the selection delay if a stacked scheme, as described in the previous

section, is used to handle multiple functional units. For the rest of the discussion, we will assume that a sin-

gle functional unit is being scheduled and hence no stacking is used. The delay for a stacked design can be

easily computed by multiplying our delay results by the stacking depth. One way to improve the delay of the

selection logic is to increase the radix of the selection tree. However, as we will see shortly, this increases

the delay of a single arbiter cell and could make the overall delay worse.

Arbiter logic

The circuit for generating the anyreq signal is shown in Figure 20. The anyreq signal is raised if one or more

of the input request signals is active. The circuit, implementing the OR function, consists of a dynamic NOR

gate followed by an inverter. The dynamic gate was chosen instead of a static OR gate for speed reasons.

The circuit operates as follows. The anyreqb node is precharged high. When one or more of the input re-

quest signals go high, the corresponding pull-downs pull the anyreqb node low. The inverter in turn raises

the anyreq signal high. The value of
� � ��� ) � � )  in the delay equation is the delay of the OR circuit.

The priority encoder in the arbiter cell is responsible for generating the grant signals. The logic equations

for the grant signals are:

� + � & * � � +�� � ��� ��& � � �:�
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� + � & * � � +�� � ��� +�� � � � ��& � � �:�
� + � & * , � +�� � ��� +�� � � � +�� � , � ��& � � ���
� + � & * � � +�� � ��� +�� � � � +�� � , � +�� � � � ��& � � �:�

For example, � +�� & * , is high only if the cell is enabled, the input requests +�� � � and +�� � � are low, and + � � ,
is

high. Because the request signals at each cell, except for the root cell, are available well in advance of the en-

able signal we use a two-level implementation for evaluating the grant signals. As an example, the circuit for

evaluating � +�� & * � is shown in Figure 20. The first stage evaluates the � +�� & * � signal (node � +�� & * �,� ) assum-

ing the ��& � � ��� signal is high. In the second stage, the � +�� & * �,� signal is ANDed with the ��& � � �:� to produce

the � +�� & * � signal. This two-level decomposition was chosen because it removes the logic for � +��'& * �,� from

the critical path. This optimization does not apply at the root cell because at the root cell the request signals

arrive after the enable signal.
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req1 req3

anyreqb
anyreq

req0 req2
precharge

precharge

Figure 20: Arbiter logic

The policy used by the selection logic is embedded in the above equations for the grant outputs of the

arbiter cell. For example, the design presented assumes static priority with + � � � having the highest priority.

Implementing an alternative policy would require appropriate modifications to these equations. Again, the

designer has to be careful while selecting a policy because using a complex policy can increase the delay of

the selection logic by slowing down individual arbiter cells.

Increasing the number of inputs to the arbiter cell slows down both the OR logic and the priority encoder

logic. The OR logic slows down because the load capacitance contributed by the diffusion capacitance of the

pull-downs increases linearly with the number of inputs. The priority logic slows down because the delay of

the logic used to compute priority increases due to the higher fan-in. We found the optimal number of inputs

to be four in our case. The selection logic in the MIPS R10000, described in [30], is also based on four-input

arbiter cells.
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5.5.2 Spice Results
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Figure 21: Selection delay versus window size

Figure 21 shows the delay of the selection logic for various window sizes in the three technologies assuming

a single functional unit is being scheduled. The delay is broken down into the three components discussed

earlier. From the graph we can see that for all the three technologies, the delay increases logarithmically

with window size. Also, the increase in delay is less than 100% when the window size is increased from 16

instructions to 32 instructions (or from 64 instructions to 128 instructions) because the middle term in the

delay equation, the delay at the root cell, is independent of window size. Detailed results are presented in

tabular form in Appendix B.

The various components of the total delay scale well as the feature size is reduced. This is not surprising

because all the delays are logic delays. It must be pointed out that the selection delays presented here are

optimistic because we do not consider the wires in the circuit, especially if it is the case that the request

signals
�

originate from the CAM entries in which the instructions reside. On the other hand, it might be

possible to minimize the effect of these wire delays if the ready signals are stored in a smaller, more compact

array.

5.6 Data Bypass Logic

The data bypass logic is responsible for bypassing result values to subsequent instructions from instructions

that have completed execution but have not yet written their results to the register file. The hardware datap-

aths and control added for this purpose form the bypass logic. The number of bypasses required is determined

by the depth of the pipeline and the issue width of the microarchitecture. As pointed out in [1], if $�� is the

issue width, and if there are � pipestages after the first result-producing stage, then a fully bypassed design

would require
� , " $�� � " � � bypass paths assuming 2-input functional units. In other words, the number

�

The ready flags discussed in the wakeup logic presented in Section 5.2.
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of bypass paths grows quadratically with issue width. The current trend towards deeper pipelines and wider

degree of issue only multiplies the number of bypass paths and makes the bypass logic even more critical.

The bypass logic consists of two components: the datapath and the control. The datapath comprises

busses, called the result busses, that are used to broadcast bypass values from each source to all possible

destinations. The sources of bypass values are the functional units and the cache ports. Buffers are used to

drive the bypass values on the result busses. In addition to the result busses, the datapath comprises operand

MUXes. Operand MUXes are required to gate in the appropriate result on to the operand busses. The fan-in

of the operand MUXes is one greater than the number of result busses. The extra input to the MUX is for the

case of reading the operand from the register file.

The control logic is responsible for controlling the operand MUXes. The control logic compares the tag

of the result value to the tag of the source value that is required at each functional unit. If there is a match,

the MUX control is set so that the result value is driven on the appropriate operand bus.

The key factor that determines the speed of the bypass logic is the delay of the result wires that are used to

transmit bypassed values. The control adds to this delay; however, for our analysis, we will ignore the control

because its delay is a small fraction of the total delay. Also, as we move towards smaller feature sizes, wire

delays resulting from the result wires will be responsible for a significant fraction of the total delay.

5.6.1 Structure
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Figure 22: Bypass Logic

A commonly used structure for the bypass logic is shown in Figure 22. The figure shows a bit-slice of the

datapath. There are four functional units marked FU0 to FU3. Consider the bit slice of FU0. It gets its two

operand bits from the opd0-l and opd0-r operand wires. The result bit is driven on the res0 result wire by

the result driver. Tristate buffers are used to drive the result bits on to the operand wires from the result

wires. These buffers implement the MUXes shown in the figure. For example, in order to bypass the result
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of functional unit FU1 to the left input of functional unit FU0, the tristate driver marked A is switched on.

The driver A connects the res1 wire and the opd0-l wire. In the case where bypasses are not activated, the

operand bits are placed on the operand wires by the register file read ports
�
. The result bits are written to

the register file in addition to being bypassed.

The delay of the bypass logic is largely determined by the time it takes for the driver at the output of each

functional unit to drive the result value on the corresponding result wires. This in turn depends on the length

of the result wires. From the figure it can be seen that the length of the wires is a function of the layout. For

the layout presented in the figure, the length of the result wires is determined by the height of the functional

units and the register file. Alternative layouts are discussed in the results section.

5.6.2 Delay Analysis

As discussed before, the delay of the bypass logic can be approximated by the wire delay of the result wires.

Considering the wires as distributed RC lines, the delay is given by

� ����� 6 � ���� " � �������
	 " � " � �������
	 "��� ���� "�� � " � �������
	 " � �������
	

where � is the length of the result wires.

From the above equation we can see that as the issue width is increased, the length of the result wires

increases and this causes the bypass delay to grow quadratically with issue width. Increasing the depth of

the pipeline also increases the delay of the bypass logic as follows. Increasing the depth increases the fan-in

of the operand MUXes connected to a given result wire. This in turn increases the amount of capacitance to

be charged or discharged on each result wire because the diffusion capacitance of the tristate buffers of the

operand MUXes adds to the capacitance on the wires. However, this component of the delay is not captured

by our simple model. We expect this component of the delay to become relatively less significant as the

feature size is reduced.

5.6.3 Results

Table 2 shows typical heights of functional units. The lengths were estimated based on data presented in

papers [14, 28, 15] describing specific implementations of functional units. For example, the height of a

complete ALU is � , ��� �
, where

�
is half the feature size. The complete ALU, referred to as � � � � � % , com-

prises an adder, a shifter, and a logic unit. Similarly, the height of a simple ALU is ������� �
. The simple ALU,

referred to as � � �.� � � ) 	�� , contains an adder, a logic unit but no shifter. A load/store unit, referred to as a

LDST unit, consists of an adder for computing effective addresses.

From the table the total length of the result wires for a 4-way machine with 1 � � � � � % , 1 � ���.� � � ) 	�� , and

two LDST units can be calculated as follows.

� ��& � *�� � +�� � � 0 ��������0 � �
* ' � ���(� � % ����0 � � * ' � ��� � � � ) 	 � � ��0 � �
* ' , "�� � � � � ��0 � �
*
�
In a reservation-station based microarchitecture like the Intel Pentium Pro [13], the operand bits come from the data field of the

reservation station entry.
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Functional unit Height (
�

) Description

Adder 1400 64-bit adder

Shifter 1500 64-bit barrel shifter

Logic Unit 300 Performs logical operations

Complete ALU ( � � �(� � % ) 3200 Comprises adder, shifter, and logic unit

Simple ALU ( � � �.� � � ) 	�� ) 1700 Comprises adder and logic unit

Load/Store (LDST) Unit 1400 Comprises adder for effective address calculation

Table 2: Functional unit heights

Issue Functional unit
������ �

� � 0 ����0 � � * Register file Wire Delay

width mix (
�

) height (
�

) length (
�

) (ps)

4 1 � ���(� � % , 1 � � � � � � ) 	 � , 2 LDST 7700 12800 20500 184.9

8 2 � ���(� � % , 2 � � � � � � ) 	 � , 4 LDST 15400 33600 49000 1056.4

Table 3: Result wire delays for a 4-way and a 8-way processor

� � , � ��� � ' � , ��� � ' ������� � ' , " ��� ��� �
� , � � ��� �

The above calculations do not take into consideration the height of an integer multiplier or divider because

these units are usually placed at either end and hence the result wires do not have to extend over them. Also,

we have ignored the height of the rows of MUXes (drivers) between the functional units. The register file

height is computed using the formula

� ��0 � �
* � � 2 ��� � "
�
������� � ��0 � � * '

� ��+ !'� 0 &)� � ) � � ��% ��"
� � " $���� �

where
� � " $���� is the total number of ports for a $�� -wide machine assuming 2 single-ended read ports

and 1 single-ended write port are required for each instruction,
� 2 �����

is the number of physical regis-

ters, ������� � ��0 � �
* is the height of an individual RAM cell excluding the wordlines, and � ��+ !'� 0 &)� � ) � � ��%&� is the

extension in height of each cell for each wordline added 	 .
Using similar calculations, we computed the wire delays for hypothetical 4-way and 8-way machines.

Note that the wire delays remain constant across the three technologies according to the scaling model as-

sumed in this study. Table 3 shows the results.

There are two observations that can be made from the table. First, while the wire delay for the 4-way

machine seems to be within a clock period for current technologies (feature sizes) this might not be true for

future technologies. Second, the wire delay for the 8-way machine is significant and can potentially degrade


We use ����� � ��������� �������� , �������������� for 4-way and ��������� �!#"$� for 8-way, and %'&)($*������ � ���! �"�#%$'&+,!#��� in our

calculations.
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the clock speed even for current technologies.

REGFILE

FU1

FU2

FU3

(a) (b)

REGFILE

FU0

FU1 FU3

FU2

REGFILE

FU0

single cycle bypass

2-cycle bypass

Figure 23: Alternative layouts for bypassing

Alternative Layouts

The results presented in the previous section assume a particular layout; the functional units are placed on

either side of the register file. However, as mentioned before, the length of the result wires is a function of

the layout. Hence, microarchitects will have to study alternative layouts in order to reduce bypass delays.

Figure 23 shows some alternative layouts.

In alternative (a), all the functional units are placed on one side of the register file. In this case the result

wires do not have to extend over the register file. However, the length of the operand wires originating from

the register file increase relative to Figure 22 thus stretching the register file access time. Also, this organi-

zation has the disadvantage that the sense amplifiers of the register file cannot be distributed on both sides.

This might lead to an increase in the width of the register file and hence, can also increase the register file

access time.

In the long term, microarchitects will have to consider clustered organizations like the one shown in al-

ternative (b). Each cluster has its own copy of the register file. Bypasses within a cluster complete in a single

cycle while inter-cluster bypasses take 2 or more cycles. Such a scheme is implemented in the DEC 21264

[18]. The hardware or the compiler or both will have to ensure that inter-cluster bypasses occur infrequently.

In addition to mitigating the delay of the bypass logic, this organization also has the advantage of faster regis-

ter files because there are fewer ports on each register file. Another technique [1] that can be used to improve

bypass performance is to use an incomplete bypass network. In an incomplete bypass network only the fre-

quently used bypass paths are provided while interlocks are used in the remaining situations. For an 8-way

machine with deep pipelines, this would exclude a large number of bypass paths.
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Issue Window Rename Wakeup+Selection Bypass

width size delay (ps) delay (ps) delay (ps)

4 32 351.0 578.0 184.9

8 64 427.9 724.0 1056.4

Table 4: Overall delay results for �������� � technology

6 Overall Delay Results and Pipelining Issues

The overall results for a 4-way and a 8-way microarchitecture in �������� � technology are shown in Table 4.

The results for the ������ � and �������� � technology are shown in Appendix B. For the 4-way machine, the

window logic (wakeup + select) has the greatest delay among all the structures considered and hence deter-

mines the critical path delay. The register rename delay comes next; it is about 39% faster than the delay

of the window logic. The bypass delay is relatively small in this case. The results are similar for the 8-way

machine except for bypass logic, which has a much higher delay. One way of dealing with this problem is to

use clustering of register files and functional units. For example, the 8-way machine could be implemented

as two 4-way clusters with single-cycle bypasses within each cluster and multi-cycle (2 or 3 cycle) bypasses

across the two clusters. Therefore, in both cases the delay of the window logic is the largest and hence, the

window logic is the most crucial structure among the list of structures we studied.

Until now, the delay of each of the critical structures was analyzed in detail. However, in addition to the

delay, another important consideration is the pipelineability of the structures. Even if the delay of a structure

is relatively large it can be eliminated from the critical path if it can be pipelined i.e. its operation is spread

over multiple pipestages. For example, almost all designs spread floating-point operations over multiple cy-

cles.

However, while pipelining can improve performance by facilitating a faster clock, it can result in a num-

ber of side-effects that can degrade performance too. First, the extra stages introduced by deeper pipelining

in the front end increase the penalty of mispredicted branches. Also, the penalty of instruction cache misses

will increase as a result of extra pipestages that have to be re-filled. At the same time accurate branch pre-

diction can alleviate these problems to a certain extent. Hence, if the performance improvement achieved as

a result of deeper pipelining (faster clock) surpasses the performance degradation caused by the extra stages,

then pipelining might be an attractive option. The current trend in the microprocessor industry is towards

deeper pipelining. For example, the pipeline in the Intel Pentium Pro [13] has as many as 14 pipestages.

The general subject of the effect of pipelining depth on overall performance has been the focus of a num-

ber of studies [20, 17, 10]. We took a different approach in our study. We studied the feasibility of pipelining

each of the critical structures and identified atomic operations, if any, implemented by the structures. We

define an operation to be atomic if the operation has to be completed within a single cycle in order to exe-

cute dependent instructions in consecutive cycles. An obvious example of an atomic operation is a simple

ALU operation (integer add, logical and, etc.). If the ALU operation is spread over multiple pipestages then

dependent instructions cannot execute in consecutive cycles and the resulting pipeline bubbles can result in

serious performance degradation especially in programs with limited parallelism. Because atomic operations
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will not be pipelined for performance reasons, we believe that the latency of these atomic operations will ul-

timately limit the degree of pipelining. Consequently, the delays of these atomic operations are crucial and

will determine the complexity of a microarchitecture.

	 Register renaming

The register rename logic can be pipelined by spreading the dependence checking and the map table

access over multiple pipestages. While it is easy to see how dependence checking can be pipelined,

it is not so obvious how the map table access can be pipelined. However, there are schemes [6, 23]

for pipelining RAMs that can be employed to pipeline the map table access. In addition, in order to

ensure that each rename group sees the map table updates performed by previous rename groups, the

updates have to be bypassed around the map table i.e. the updates should be visible before the writes to

the table actually complete. Hence, we think that even though the design will be complicated, register

renaming can be pipelined.

It must be pointed out that before attempting to pipeline renaming, there are a number of tricks that

can be used to reduce its latency. First, the map table can be duplicated to reduce the number of ports

on each copy of the table. Second, because not all instructions have two operands and because it is

likely that instructions in a rename group have common operands, the port requirements on the map

table can be reduced with little effect on performance.

	 Wakeup and selection

Wakeup and select together constitute an atomic operation. If they are spread across multiple pipestages,

dependent instructions cannot execute in consecutive cycles as shown in Figure 24. The add and the

sub instructions cannot be executed back-to-back because the result of select stage has to feed the

wakeup stage. The resulting pipeline bubbles can seriously degrade performance especially in pro-

grams with limited parallelism. Hence, wakeup and select together constitute an atomic operation and

must be accomplished in a single cycle.

WAKEUP EXEC

WAKEUP

WAKEUP

SELECT

SELECT

EXEC

EXEC

SELECT

bubble

add r10, r1, r2

sub r1, r10, 2

. . .

. . .

. . .

. . .

. . .

. . .

Figure 24: Pipelining wakeup and select

	 Data bypassing

Data bypassing is another example of an atomic operation. In order for dependent operations to execute

in consecutive cycles, the bypass value must be made available to the dependent instruction within a

cycle. Results presented earlier show this is feasible for a 4-way machine because the delay of the

bypass logic in this case is relatively small. For wide issue machines (width greater than 4) some form

of clustering will be required to make this feasible.
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	 Register file access

Again, the techniques used to pipeline RAM can be employed to pipeline the register file. Tullsen et.

al. [29] studied the effect of spreading register read over two pipestages. They found that single thread

performance degraded by only 2% for their design.

Once again, it must be mentioned that instead of pipelining the register file, architects can reduce its

latency by duplicating the register file. Each copy of the register file will have half the number of read

ports as the original register file. This technique has been used in the DEC 21264 [18]. In this case

two copies of the integer register file are used.

	 Cache access

Cache access can be pipelined in a number of ways. One scheme, implemented in the DEC 21064

[9], reads the tags and the data in the first cycle and performs the hit/miss detection operation in the

second cycle. A second, more aggressive scheme could pipeline both the tag RAM and the data RAM

themselves. While pipelining the cache can facilitate a faster clock, it can degrade performance by

increasing the load-use latency. However, we believe that current out-of-order microarchitectures can

tolerate the extra cycle of latency and hence minimize the increase in cycle count.

A related trade-off is to size the L1 data and instruction caches so that they can be accessed in a single

cycle and use a bigger L2 cache to service the L1 misses.

The above discussion shows that as microarchitects employ deeper pipelines to enable ultra-fast clocks,

it is likely that the window logic (wakeup and selection) is going to become the most critical structure.

7 Conclusions

In this report we analyzed the delay of some critical structures in superscalar processors. These structures

are critical in the sense that their delay is a function of issue width, issue window size and wire delays and

hence, it is likely that the delay of these structures will determine the cycle time in future designs in advanced

technologies. We studied how the delays varied with issue width and window size. We also studied how the

delays scale as feature sizes shrink and wire delays become more prominent.

Our results show that the logic associated with managing the issue window of a superscalar processor is

likely to become the most critical structure as we move towards wider-issue, larger windows, and advanced

technologies in which wire delays dominate. One of the functions implemented by the window logic is the

broadcast of result tags to all the waiting instructions in the window. The delay of this operation is determined

by the delay of wires that span the issue window. We found that the delay of this operation increases quadrat-

ically with window size and issue width. Hence, this operation does not scale well as we move towards larger

windows, wider issue widths, and advanced technologies in which wire delays dominate. Furthermore, in or-

der to be able to execute dependent instructions in consecutive cycles (back-to-back) the delay of the window

logic (wakeup delay + selection delay) should be less than a cycle.

In addition to the window logic, a second structure that needs careful consideration especially in future

technologies is the data bypass logic. The length of the result wires used to broadcast bypass values increases
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linearly with issue width and hence, the delay of the data bypass logic increases quadratically with issue

width. We believe that these wire delays will force architects to consider clustered microarchitectures like

the one employed by the DEC 21264 [18].
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A Technology Parameters

The Hspice Level 3 models used to simulate the synthetic ������ � , �������� � , and �������� � CMOS technolo-

gies are given in Table 5. Table 6 gives the metal resistance and capacitance values assumed for the three

technologies.

Parameter ��� ���
	 ��� ����
	 ������� �
	
tox 165 70 35

vto 0.77(-0.87) 0.67(-0.77) 0.55(-0.55)

uo 570(145) 535(122) 450(80)

gamma 0.8(0.73) 0.53(0.42) 0.40(0.32)

vmax 2.7e5(0.0) 1.8e5(0.0) 1.05e5(0.0)

theta 0.404(0.233) 0.404(0.233) 0.404(0.233)

eta 0.04(0.028) 0.024(0.018) 0.008(0.008)

kappa 1.2(0.04) 1.2(0.04) 1.2(0.04)

phi 0.90 0.90 0.90

nsub 8.8e16(9.0e16) 1.38e17(1.38e17) 4.07e17(4.07e17)

nfs 4e11 4e11 4e11

xj 0.2 � 0.2 � 0.2 �
cj 2e-4(5e-4) 5.4e-4(9.3e-4) 10.6e-4(21.3e-4)

mj 0.389(0.420) 0.389(0.420) 0.389(0.420)

cjsw 4e-10 1.5e-10 3.0e-11

mjsw 0.26(0.31) 0.26(0.31) 0.26(0.31)

pb 0.80 0.80 0.80

cgso 2.1e-10(2.7e-10) 1.8e-10(2.4e-10) 1.8e-10(2.4e-10)

cgdo 2.1e-10(2.7e-10) 1.8e-10(2.4e-10) 1.8e-10(2.4e-10)

delta 0.0 0.0 0.0

ld 0.0001 � 0.0001 � 0.0001 �
rsh 0.5 0.5 0.5

Vdd 5.0 2.5 2.0

Table 5: Spice parameters (Hspice Level 3 model)

Technology
�  #"$�&%(' )  " �&%*'

(
�

/ � m) (fF/ � m)

��� ���
	 0.02 0.275

��� ����
	 0.046 0.628

������� �
	 0.09 1.22

Table 6: Metal resistance and capacitance
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B Delay Results

Issue Decoder Wordline drive Bitline Sense Amp Total

width delay (ps) delay (ps) delay (ps) delay(ps) delay (ps)

��� ���
	 technology

2 540.3 218.9 188.5 309.7 1502.2

4 547.1 227.9 212.1 317.5 1566.9

8 562.5 245.8 259.1 335.1 1700.9

��� ����
	 technology

2 220.2 95.6 98.6 137.9 649.4

4 225.8 103.9 116.2 143.0 698.5

8 243.1 115.8 151.7 151.4 800.8

������� �
	 technology

2 129.6 70.6 72.9 102.8 435.4

4 136.8 78.2 87.6 105.8 478.9

8 148.4 92.5 117.8 110.7 561.7

Table 7: Breakup of rename delay
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Window Tag Drive Tag Match Match OR Total

Size Delay (ps) Delay(ps) Delay(ps) Delay(ps)

Issue Width = 2

8 73.0 331.3 248.1 652.4

16 82.6 333.1 248.5 664.2

24 92.6 337.3 248.8 678.7

32 103.7 344.0 249.1 696.9

40 114.9 347.7 248.9 711.5

48 126.3 352.4 248.7 727.5

56 137.4 358.7 249.2 745.4

64 149.1 364.6 248.7 762.4

Issue Width = 4

8 74.5 368.2 407.0 849.7

16 86.4 372.4 406.8 865.6

24 98.8 377.6 403.9 880.3

32 112.3 384.8 409.2 906.2

40 126.2 392.3 408.7 927.2

48 140.6 400.1 404.2 944.9

56 156.3 409.0 404.1 969.4

64 172.4 416.9 403.3 992.7

Issue Width = 8

8 77.5 400.2 665.3 1143.0

16 93.3 406.6 665.7 1165.5

24 111.4 415.2 664.8 1191.4

32 130.7 425.2 658.5 1214.4

40 151.5 437.7 660.2 1249.5

48 174.4 451.0 658.3 1283.8

56 199.3 465.0 664.6 1328.9

64 228.2 479.2 664.6 1372.0

Table 8: Breakup of wakeup delay for ������ � technology
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Window Tag Drive Tag Match Match OR Total

Size Delay(ps) Delay(ps) Delay(ps) Delay(ps)

Issue Width = 2

8 28.5 126.1 101.3 255.8

16 33.4 128.7 101.5 263.7

24 38.3 129.1 101.2 268.6

32 43.7 133.2 97.3 274.1

40 49.7 136.3 101.2 287.3

48 53.1 138.8 97.4 289.3

56 58.9 142.7 101.1 302.8

64 64.4 145.0 98.9 308.3

Issue Width = 4

8 29.7 147.1 155.8 332.6

16 36.0 151.2 158.3 345.4

24 42.7 155.0 159.1 356.8

32 50.5 157.7 158.4 366.7

40 56.3 163.2 159.0 378.5

48 63.2 168.1 159.6 390.9

56 72.0 171.9 157.0 400.9

64 80.9 179.0 159.1 419.0

Issue Width = 8

8 32.2 173.4 257.6 463.2

16 41.6 177.5 257.8 476.9

24 51.1 183.7 257.8 492.5

32 61.9 190.6 257.7 510.1

40 74.7 199.1 257.7 531.5

48 88.8 208.9 257.6 555.3

56 102.9 216.4 258.4 577.7

64 121.8 224.8 258.4 605.0

Table 9: Breakup of wakeup delay for �������� � technology
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Window Tag Drive Tag Match Match OR Total

Size Delay(ps) Delay(ps) Delay(ps) Delay(ps)

Issue Width = 2

8 14.6 67.9 60.7 143.1

16 18.8 68.7 60.6 148.1

24 22.4 69.8 60.6 152.7

32 26.1 71.8 60.6 158.6

40 29.9 73.6 60.3 163.8

48 33.7 75.7 59.9 169.3

56 36.6 77.3 61.0 174.8

64 41.4 79.4 59.7 180.5

Issue Width = 4

8 15.8 84.1 84.7 184.7

16 21.1 85.1 84.4 190.6

24 26.1 87.6 84.8 198.5

32 31.2 90.8 84.3 206.3

40 36.6 93.3 84.8 214.7

48 41.7 96.5 84.4 222.5

56 47.5 99.4 84.8 231.8

64 54.1 102.8 84.4 241.3

Issue Width = 8

8 18.8 104.9 123.6 247.3

16 26.1 108.4 123.8 258.3

24 33.8 113.6 123.1 270.5

32 42.0 118.2 125.0 285.1

40 51.5 124.8 123.2 299.5

48 62.6 130.4 123.0 316.0

56 75.1 135.2 123.2 333.4

64 90.0 139.4 122.9 352.3

Table 10: Breakup of wakeup delay for �������� � technology
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Window size
���*"������	�
� �

(ps)
������� �

(ps)
����*%�� �����	�
� �

(ps) Total delay(ps)

��� ���
	 technology

16 233.2 607.2 272.5 1113.0

32 532.5 737.6 727.4 1997.5

64 534.6 742.9 719.8 1997.4

128 802.8 753.4 1118.5 2674.6

��� ����
	 technology

16 125.0 338.5 135.4 598.9

32 246.6 339.7 295.4 881.7

64 245.5 338.0 296.3 879.8

128 347.9 338.5 460.3 1146.7

������� �
	 technology

16 53.6 141.7 55.1 250.4

32 107.0 141.2 123.5 371.7

64 106.9 144.2 121.9 373.0

128 159.9 146.7 195.5 502.1

Table 11: Breakup of selection delay

Issue Window Rename Wakeup+Selection Bypass

width size delay (ps) delay (ps) delay (ps)

4 32 1577.9 2903.7 184.9

8 64 1710.5 3369.4 1056.4

Table 12: Overall delay results for ������ � technology

Issue Window Rename Wakeup+Selection Bypass

width size delay (ps) delay (ps) delay (ps)

4 32 627.2 1248.4 184.9

8 64 726.6 1484.8 1056.4

Table 13: Overall delay results for �������� � technology
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