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A B S T R A C T  

In highly-pipelined machines, instructions and data 
are prefetched and buffered in both the processor and the 
cache. This is done to reduce the average memory access la- 
tency and to take advantage of memory interleaving. Lock- 
up free caches are designed to avoid processor blocking on a 
cache miss. Write buffers are often included in a pipelined 
machine to avoid processor waiting on writes. In a shared 
memory multiprocessor, there are more advantages in 
buffering memory requests, since each memory access has to 
traverse the memory- processor interconnection and has to 
compete with memory requests issued by different processors. 
Buffering, however, can cause logical problems in multipro- 
cessors. These problems are aggravated if each processor has 
a private memory in which shared writable data may be 
present, such as in a cache-based system or in a system with 
a distributed global memory. In this paper, we analyze the 
benefits and problems associated with the buffering of 
memory requests in shared memory multiprocessors. We 
show that  the logical problem of buffering is directly related 
to the problem of synchronization. A simple model is 
presented to evaluate the performance improvement result- 
ing from buffering. 

1. I N T R O D U C T I O N  

Shared memory MIMD systems are becoming very 
popular because of their versatility and the fact that  they 
are a natural evolution from traditional architectures based 
on the proven von Neumann single-processor concept. Off- 
the-shelf, low-cost microprocessor components can be con- 
nected in a tightly-coupled configuration [ARC85], and at- 
tain computing speed comparable to that of single-processor 
mainframes. Similarly, in high-end machines, the limit to 
technology improvements leads to the use of tightly-coupled 
configurations to meet the ever-increasing demand for com- 
puting power. This trend is clear from observing the design 
of recent machines such as the IBM308X and the Cray-XMP 
[HWA84a]. At the same time, many advanced designs for 
shared memory multiprocessor supercomputers [HWA84b] 
are being researched both in academia and in industry: ex- 
amples are the Cedar at the University of Illinois, the NYU 
UItracomputer, and the IBM RP3 multiprocessors. 

Tightly-coupled multiprocessor systems with a limit- 
ed number of very powerful pipelined processors are possible 
computer architectures for achieving the billions of instruc- 
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tions per second that  will be required from the data process- 
ing systems of the next decade. In such architectures, it is 
important to keep the processor efficiency high because of 
the large cost of each processor. High utilization of proces- 
sors is guaranteed by a steady, uninterrupted supply of in- 
structions and operands. Pipelining and buffering of memory 
accesses must be used in order to bridge the gap between the 
slower shared memory and an execution unit with a very 
short cycle time. 

In a multiprocessor, processor interconnections to 
shared memories are more complex than the dedicated 
memory bus found in single processors. Thus, transfers 
between processors and memories are slower. The effects of 
memory access conflicts and latency delays can be reduced 
by connecting a local memory to each processor. As a cache, 
the local memory is allocated dynamically at run-time and 
addressed associatively. If the local memory is part of the 
physical address space of a process, then it is allocated at 
compile- or load-time and addressed randomly [PHI83]. Lo- 
cal memories may contain shared data. In local caches 
which allow shared data, the problem of multiple, incon- 
sistent copies of the same data in different caches appears 
[CEN78, DUB82]. This problem is often solved by hardware - 
in general, a processor that  writes into its cache sends invali- 
dation signals to all the other caches possessing a copy of the 
block which contains the modified word. If a random access 
local memory contains shared data, the multiple copy prob- 
lem does not exist, but the local memories must be address- 
able by all processors. In the Cm*, for example, operand 
accesses to the global memory are routed automatically - i.e., 
through hardware - to the computer module containing the 
operand. 

Three different multiprocessor systems are studied in 
this paper from the point of view of memory access 
buffering. These structures are representative of the system 
structures for shared memory multiprocessors. 

• System 1: Shared global memory system 
A multiprocessor with shared global memory and 
private, local memories. The shared memory is ac- 
cessed by all processors. Local memories are associat- 
ed with specific processors and do not contain any 
shared data (see Figure 1). 

• System 2: Distributed global memory system 
A multiprocessor with distributed global memory 
which consists of an interconnection of local 
memories. The local memories contain global, as well 
as private data and are accessed randomly (no multi- 
ple copies of data exist) (see Figure 2). 
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• System 3: Cache-based system 
A multiprocessor with shared global memory and 
private caches. The shared memory contains code 
and data, and the caches are accessed associatively. 
The caches may or may not contain shared data. We 
will consider only the cases of write-through and 
write-back caches (see Figure 3). 
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Figure 1: System with a shared global memory. 
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Figure 2b: System with distributed global memory. Re- 
mote accesses are buffered in a buffer independent of 
the PREFETCH/STORE buffers. 

In these three systems, we will study the effects of 
buffering of memory requests on the coherence of the mul- 
tiprocessor and on its performance. The buffering of 
memory accesses has been shown to improve the perfor- 
mance of pipelined processors in many studies. Buffers can 
be included in the processor, the cache, the interconneetion 
or at the memory. The performance advantages of buffering 
stem from the improvement in the overall system 
throughput through the pipelining of execution and memory 
accesses. 

In section 2, we review memory access buffering tech- 
niques. In a single processor system, the only logical prob- 
lems limiting buffering are the dependencies between succes- 
sive instructions. In a shared memory multiprocessor, logical 
problems also arise because of the concurrent environment. 
In section 3, these problems are reviewed and the notions of 
strong and weak coherence are introduced and discussed in 
the context of system 1. In section 4 and 5 possible buffering 
techniques are identified for systems 2 and 3 in the contexts 
of weak and strong coherence. Finally, in section 6, we pro- 
pose extensions to the concepts and results presented in the 
paper. 
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Figure 3a: Cache-based system. Invalidations are 
buffered in the P R E F E T C H / S T O R E  buffers. 
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Figure 3b: Cache-based system. 
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2. M E M O R Y  A C C E S S  B U F F E R I N G  T E C H N I Q U E S  

In high-end, general-purpose processors, the pipelin- 
ing of instruction execution is common place. Extensive pre- 
fetching and buffering of memory accesses are implemented 
in pipelined computers. Prefetching anticipates data LOADs 
by the execution unit by early fetching and decoding of fu- 
ture instructions; moreover, buffering STOREs reduces a 
processor's idle time when waiting for an acknowledgement 
after a STORE operation. 

Prefetching of instructions is one of the most com- 
mon examples and is very effective because of the predicta- 
bility of instruction sequencing. Operands are also pre- 
fetched in high-end machines. Often, an instruction can be 
decoded, its operand addresses computed, and the accesses to 
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memory initiated, long before the instruction is actually exe- 
cuted. Several operand fetches may be in progress at any 
time. Ideally, by the t ime the .instruction enters the execu- 
t ion unit, all of its memory operands will have been fetched. 

A scheme support ing operand prefetching is imple- 
mented in the IBM3033, by the operand registers [KOG81]. 
Up to six operand prefetehes may be in progress at  any time. 
The instruction decode unit  initiates the prefetch by storing 
the effective address in one of six operand address registers. 
The memory requests are tagged so that ,  when the da ta  ar- 
rives in the processor, it is stored in the corresponding 
operand data  register, packaged with the execution unit.  A 
similar procedure is implemented for the STOREs. STOREs 
to memory occur later in the pipeline, when the execution of 
an instruction is completed. Usually, STOREs can be com- 
pleted in one pipeline cycle, by simply writing data  and ad- 
dresses in an operand STORE buffer. Up to four STOREs 
can be buffered in the IBM3033 machine. STORE buffers are 
particularly appealing because the processor does not need to 
wait for the return of information from memory, contrary to 
the LOAD of an operand. As a result, LOADs are more criti- 
cal for performance and are often given higher priority over 
STORE requests. 

To support  a processor with extensive operand 
buffering, a cache is usually pipelined and may be Iockup- 
free [KRO81]. A Iockup-free cache does not block (or lock 
up) the processor on a miss. Rather,  it records the s ta tus  of 
the memory request causing the miss and keeps accepting re- 
quests from the processor. When the  cache locks up the pro- 
cessor, the processor must  stop issuing memory requests. If 
the cache locks up memory accesses on each miss and 
resolves one miss at  a time, the prefetching mechanism of 
the processor will not be effective. Since memory interleaving 
across cache blocks [BRI83] can speedup the resolution of 
several concurrent  misses, Iockup free caches may 
significantly decrease the average miss penalty. In [KROS1], 
a lockup-free cache is described in which several misses can 
be buffered in the cache and can be resolved concurrently by 
the cache controller. 

In a multiprocessor system, m e m o ~  accesses can be 
buffered in the processor, in the interconnection network, 
and at the shared memory. Buffering at the shared memory 
has been analyzed in [BRI79]. In some designs, several paths 
may be possible between a processor and a memory module 
[CHI84]. If invalidations or STOREs have to modify an entry 
in a local memory of another  processor, these updates may 
be buffered in the destination processor node and they may 
have lower priority than  the accesses issued by the processor 
directly connected to the local memory. A good example is 
the BIAS filter in the IBM3033 to store invalidation signals 
coming from other caches [SM182]. Unless they are buffered, 
the accesses coming from other processors will reduce the  
bandwidth between the processor and its local memory. 

Buffering instruction fetches is safe for a pipelined 
machine in a multiprocessor if it can be assumed tha t  in- 
structions are not. modifiable, We will not discuss instruction 
fetches any further.  The following sections address more 
specifically the problems associated with operand fetching 
and storing. 

Another  trivial case in which buffering is not  a prob- 
lem is throughput-or iented multiprocessor systems, in which 
the processors execute completely independent processes. In 
this case, there is no constraint  imposed on buffering because 
of the multiprocessor environment.  The discussion in this 

paper applies to multiprocessor systems in which several 
processes sharing da ta  can be scheduled on different proces- 
sors at the same time. This is the case for multi tasked sys- 
tems and for some multiprocessor operating systems. 

Buffer management refers to the order in which mul- 
tiple buffered requests are treated.  In most cases, the re- 
quests are t reated in a strict  FIFO order (First-ln-First-Out).  
In some cases requests may be allowed to pass each other in 
the buffer. This is referred to as jockeying. Jockeying is 
often permitted between memory requests for different 
memory words, hut  is not permitted between requests des- 
t ined to the same memory word. Jockeying with this restric- 
t ion is called restricted jockeying in the rest of the paper. 

3. S E Q U E N T I A L  C O N S I S T E N C Y  A N D  
C O H E R E N C E  I N  M U L T I P R O C E S S O R S  

A simple uniprocessor generally executes instructions 
one at  a time, in the order specified by the program. If the 
processor is pipelined however, then several consecutive in- 
structions may be executed concurrently or even out  of their  
intended order. This is allowable in uniprocessors, provided 
hardware mechanisms (interlocks) exist to check data  and 
control dependencies between instructions to be executed 
concurrently [KOG81]. This  checking is local to the processor 
and can be done efficiently. 

If processors are par t  of a multiprocessor which exe- 
cutes a concurrent program, then such local dependency 
checking is still necessary but  not sufficient to preserve the 
correct outcome of a concurrent  execution. Since da ta  are 
shared and interrupts  can be sent between processors, 
processes running on different processors may affect the out- 
come of each other. Enforcing data  dependencies between 
processors which are physically d is tant  is not as efficient as 
enforcing them in a single processor. 

A strong requirement for the functional behavior of a 
multiprocessor system is aequential con,istency. Lamport  
[LAM79] defines sequential consistency as follows. 

Definit ion 3.1: Sequential  consistency 

"[A system is sequentially consistent if] the result of any 
execution is the same as if the operations of all the pro- 
cessors were ~executed in some sequential order, and the 
operations of each individual processor appear in this se- 
quence in the order specified by its program." 

The definition above applies to systems where com- 
plete s ta tements  are not considered atomic. Atomicity is lim- 
ited to LOADs and STOREs. For example, in a s ta tement  
such as C~--A + B ,  where A, B, and C are in memory, 
events from different processors may be interleaved between 
the LOADs of A and B and the STORE of C. There is an 
implicit ordering of events, e.g., A is first fetched then B is 
fetched, then C is stored. 

The only way t ha t  two concurrent  processes can 
affect each other 's  execution is through the sharing of da ta  
and the sending of interproeessor interrupt  signals. Take for 
example the mult i tasked program of Figure 4a. In this pro- 
gram, two processes synchronize to access a critical section 
through shared variables A and B. We define a legal inter- 
leaving of memory accesses an interleaving such t h a t  the 
references from each process appear in program order. The 
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PROCESSOR 1 

A:=O 

AI=I /event SI(A) 
LABl: I f  (B=I) COTOLAB1 /event  LI(B) 

<critical section> 
A:=O 

PROCESSOR 2 

B:=O 

BI=I /event  $2 (B) 
LAB2: If (A=I) GOTO LAB2 /event L2(A) 

<critical section> 
B:=O 

Figure 4a: Synchronization protocol using two shared 
variables A and B. 

legal interleavings of executions of events on shared variables 
A and B in program 4a are displayed in Figure 4b. All 6 le- 
gal interleavings of the first two s tatements  of each program 
are possible. In some cases legal interleavings may be impos- 
sible because they correspond to the sequences tha t  the pro- 
grammer wants to avoid. Some of the possible interleavings 
result in deadlocked sequences. Note tha t ,  in Figure 4a, if 
processor 1 is allowed to prefetch B before sett ing A to 1, 
and if processor 2 is allowed to prefetch A before sett ing B 
to 1, an illegal interleaving may result in which both proces- 
sors enter the critical section at  the same time. The inter- 
leaving is illegal because the events on shared da ta  in the 
two processors do not appear in their intended logical order 
in the interleaving. 

Legal Interleavlngn: Result: 

SI(A)->LI(B)->S2(B)->L2(B) Processor i enters CS. 
S2(B)->L2(A)->SI(A)->LI(B) Processor 2 enters CS. 
SI(A)->S2(B)->LI(A)->L2(B) Deadlock. 
SI(A)->S2(B)->L2(B)->LI(A) Deadlock. 
$2 (B) ->SI (A) ->LI (A) ->L2 (B) Deadlock. 
$2 (B) ->$1 (A) ->L2 (B) ->LI (a) Deadlock. 

Figure 4b: Legal Interleavings of STORE and LOAD 
events. 

Since the user considers only legal interleavings when 
a program is written, a sequentially consistent multiprocessor 
must  only allow legal interleavings of events. The only da ta  
dependencies to resolve between two different processes are 
on shared data (we ignore interrupts).  The coherence en- 
forced on shared data  by the memory system is therefore 
very relevant to this study. Censier and Feautrier define a 
coherent memory scheme as follows [CEN78]. 

Definition 3.2: Memory system coherence 

"A memory scheme is coherent if the value returned on 
a LOAD instruction is always the value given by the la- 
test  STORE instruction with the same address." 

In an environment  where STOREs can be buffered in a 
STORE buffer associated with each processor, the notion of 
latest value is vague. It is not clear whether "latest  STORE" 
refers to the execution of the STORE by a processor, or to 
the update of memory. In order to refine the definition of 
memory system coherence, we differentiate between initist. 
ing, issuing and performing a memory access. 

* The processor environment includes the CPU and local buffers. 

Definition 3.3: Memory  request initiating, issuing, and 
performing 

A request is initiated when a processor has sent the re- 
quest and the completion of the request is out of its con- 
trol. An initiated request is issued when it has left the 
processor environment* and is in t ransi t  in the memory 
system. A LOAD by processor I is considered performed 
with respect to processor K at a point in t ime when the 
issuing of a STORE to the same address by processor K 
cannot  affect the value returned to processor I. A 
STORE by processor I is considered performed with 
respect to processor K, at  a point in t ime when an is- 
sued LOAD to the same address by processor K returns 
the value defined by the STORE.t  An access by proces- 
sor I is performed when it is performed with respect to 
all processors. 

Because of dependencies within each instruction 
stream, the definition implies t ha t  an access by processor K 
is performed with respect to processor K as soon as it is ini- 
t iated. 

For example, in system 1 (Figure 1), operand pre- 
fetching is implemented through a prefeteh buffer at the pro- 
cessor. The processor initiates the operand prefetch by plac- 
ing the address in tha t  buffer. Then the buffer controller is- 
sues the operand fetch to the shared interconnection and 
memory. The request t ransi ts  in the interconnection and it 
is performed when it is latched in a buffer associated with 
the memory, provided this buffer is FIFO (restricted jockey- 
ing is allowed in the memory buffer). The situation is similar 
for a STORE request. The processor initiates the STORE by 
placing the request in a STORE buffer at  the processor. 
Later on, the STORE buffer controller issues the STORE re- 
quest to the interconnection. The request is then in t ransi t  in 
the interconnection. It will he performed as soon a s ' i t  is 
latched in the FIFO buffer associated with the destination 
memory. 

We want  to emphasize at this point the basic 
difference, in general, between issuing and performing a 
memory access. A memory STORE cannot  affect any other 
process before it is issued (and similarly, a memory LOAD 
canno t  be affected by any other process until  it is issued). 
When the STORE is issued but not performed, it may affect 
the issuing of a LOAD of the same data  by any processor; at  
the t ime when the STORE is performed it is certain t ha t  it 
will affect the issuing of a LOAD on the same data  by anoth- 
er processor.t The distinction between issued and performed 
is impor tant  for the analysis of cache-based systems and sys- 
tems with recombining intereonnection networks such as the 
network proposed for the NYU Ultracomputer  [HWA84b]. 

From definition 3.3, it is clear t h a t  definition 3.2 of 
memory system coherence refers to performed STOREs. 
Collier [COL84, COL85] has extensively studied the problems 
of coherence and event ordering in a multiprocessor system 
where each processor has its own copy of the global memory. 
He proves t ha t  a sufficient and (for all practical purposes) a 
necessary condition for sequential consistency is tha t  all pro- 
cessors must  "observe" STORE events in the same order. 
However, Collier does not consider operand prefetching. In 
the following definition, it is considered t ha t  a STORE on a 

Naturally, the issued LOAD is only affected by the particular 
STORE, if it is performed before a subsequent STORE is 
performed at the same address. 
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variable is observed by a processor at the t ime when the pro- 
cessor performs a LOAD on tha t  variable which returns the 
value defined by the STORE. 

Def in i t i on  3.4: S t r o n g  o r d e r i n g  o f  storage accesses 

In a multiprocessor system, storage accesses are strongly 
ordered if 
1) accesses to global data  by any one processor are ini- 
tiated, issued and performed in program order, and if 
2) at  the t ime when a STORE on global data  by proces- 
sor I is observed by processor K, all accesses to global 
da ta  performed with respect to I before the issuing of 
the STOREff  must  be performed with respect to K. 

It follows from logical considerations on the  t iming of 
events in a multiprocessor [LAM79], tha t  a coherent system 
with strong ordering of events is sequentially consistent. 
Condition (1) constrains the ordering of accesses on global 
da ta  to be in program order. The only way tha t  a processor I 
can affect another  processor K is by I modifying a global 
variable, X, and by K subsequently reading the value. Condi- 
tion (2) guarantees tha t  all global accesses issued and ob- 
served by l before the issuance of the STORE request "hap-  
pened before" all global accesses issued and observed by K 
after the LOAD request is performed [LAM79]. 

Condition (1) is necessary as demonstrated by the ex- 
ample in Figure 4. Condition (2) is essential if there are 
more than  two processors in the multiprocessor, as the fol- 
lowing example demonstrates.  Refer to Figure 5a and b. In 
the following, Si(X) and Li(X) represent global accesses 
" S T O R E  by processor i in X" and "LOAD of X by processor 
i, respectively. If L2(A) reads the value produced by SI(A), 
and if L3(B) returns the value produced by S2(B), then 
L3(A) must also read the value produced by s ta tement  
S l (h) .  However, if, for some reason, event SI(A) takes much 
more time to propagate to processor P2 than  it does to pro- 
¢essor P3, then there may be enough time (depending on 
conflicts and distances) for P2 to perform event L2(A), then 
S2(B), and for P3 to perform L3(B) before SI(A) has been 
performed. This may result in P3 performing L3(A) on the 
value of A previous to SI(A), and in an illegal interleaving of 
events. Note t ha t  the problem comes from the fact t h a t  
SI(A) was performed with respect to P2 when P2 initiated 
S2(B); it should therefore be performed with respect to P3 
when L3(B) is performed. Of course, the possibility of such 
an occurrence depends greatly on actual machine timing, bu t  
this example shows how difficult it is to design cache-based 
systems and systems with recombining interconnection net- 
work in which events arc strongly ordered. 

Processor i Processor 2 Processor 3 

s l  iA) L2 iA) L3 iB) 
S2 (B) L3 (A) 

Figure 5a: Three processes sharing variables A and B. 

The complexity of definition 3.4 comes mainly from 
the fact t ha t  STOREs can be observed at different times by 
different processors before they are performed. If STOREs 
can only be observed once they are performed, then condi- 

'rt It is assumed here that the value to STORE is known at the 
time of issuance. In [LAM79], it is considered that the value could 
be defined after the STORE has been performed. 

tion (1) is sufficient. In this case the STOREs are "atomic" 
and therefore, as soon as a global access is performed with 
respect to any processor K, it is performed with respect to 
all processors. System 1 behaves in this manner  and we now 
examine the requirements imposed by strong ordering on the 
design of system 1. 

Figure 5b: Possible outcome of concurrent  execution of 
programs in Figure 5a. 

Example:  Strong ordering of  events in system 1 

This system has been analyzed by Lamport  [LAM79]. 
We first look at the requirements to satisfy condition (1) of 
definition 3.4. If the delay through the network is constant  
or bounded for all requests (a rare case in practice because of 
conflicts), or if there is only one pa th  from processors to 
memories (e.g., in single bus systems) then successive re- 
quests can be issued in program order without  waiting for 
acknowledgements from the  memory. In general, however, 
because of conflicts, the only way tha t  a processor can ensure 
t ha t  its global da ta  requests are performed in program order 
is to issue the requests one at  a t ime and to wait  for an ack- 
nowledgement after each request. Since the STOREs are 
atomic, condition (1) is sufficient. The following are the 
rules for enforcing strong ordering of events in system 1. 

1) Global memory accesses can only be performed at the 
memory. 

2) Individual processors initiate global da ta  accesses in 
program order. These accesses (both for LOADs and 
STOREs) are buffered in the same local buffer associated 
with the processor. Therefore, the STORE and PRE- 
FETCH buffers of a pipellned machine must  be logically 
unique. The combined buffer is managed by a strict  
FIFO policy. Internal  forwarding [KOG81] (i.e., bypass- 
ing the memory) in a processor is restricted by condition 
(1). 

3) The controller of the combined P R E F E T C H / S T O R E  
buffer issues and performs the memory accesses one-by- 
one, in the FIFO order of the buffer. 

The first requirement precludes recombining intercon- 
nection networks, in which a LOAD request "colliding" with 
a STORE request for the same data  in a switch box is com- 
bined so t h a t  the STORE is sent to memory and the LOAD 
returns the value defined by the STORE. In such a system, 
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guaranteeing condition (2) and avoiding the problem 
described in Figure 5 is difficult in general. 

To mainta in  strong ordering, dependencies on every 
data  access to shared memory have to be checked. However, 
most of these data  are not synchronizing variables, i.e., 
shared variables used to control the concurrency between 
several processes (such as variables A and B in Figure 4). In 
multi tasked programs such variables are used to synchronize 
processes and to mainta in  the integrity of shared modifiable 
data  structures or variables. 

We can identify several sources of inefficiencies in the 
strong ordering algorithm given above. First, restricted jock- 
eying should be allowed in the P R E F E T C H / S T O R E  buffer 
associated with the processor: a processor does not need the 
result of STORE references, but  LOAD references are partic- 
ularly critical because of local dependencies in the pipeline. 
Therefore, performance can be improved if LOADs are al- 
lowed to pass STOREs in the combined 
P R E F E T C H / S T O R E  buffer (provided the LOAD and the 
STORE are not for the same address). If the intereonnection 
network is complex and packet-switched, performance is also 
improved if the controller of the PR E FE T CH / ST O RE buffer 
does not have to wait until  each shared memory access is 
performed before issuing the next memory access, and can 
empty the buffer at the faster issue rate, ra ther  than  the per- 
form rate. Also, to speed-up the CPU, the PREFETCH and 
the STORE buffers can be separate altogether. The policy in 
which shared memory accesses can be issued optimally is 
called weak ordering of events and is introduced and defined 
below. 

In a system with a weak ordering of events, two 
types of shared variables are distinguished: first the shared 
operands appearing in algorithms whose value does not con- 
trol the concurrent execution; and second synchronizing vari- 
ables which protect the access to shared writable operands or 
implement synchronization between different processes. If a 
shared variable is modified by one process and appears in 
other processes and, if the access to the variable must  be 
protected, then it is the responsibility of the programmer to 
ensure mutual  exclusion for each access to the variable by 
using high-level language constructs such as critical sections 
[AND83]. Critical sections are in turn  implemented by basic 
synchronization primitive~ such as locks. It is assumed tha t ,  
at run time, the system can distinguish between accesses to 
synchronizing variables and to other shared variables. Syn- 
chronizing variables can be distinguished by the type of in- 
struction (TEST_AND_SET, COMPARE_AND_SWAP, 
RESET, F E T C H A N D _ E X E C U T E ,  or special LOAD and 
STORE instructions, for example). 

Definition 3.5: Weak ordering of events 

In a multiprocessor system, storage accesses are weakly 
ordered if 
1) accesses to global synchronizing variables are strongly 
ordered and if 
2) no access to a synchronizing variable is issued in a 
processor before all previous global da ta  accesses have 
been performed and if 
3) no access to global da ta  is issued by a processor be- 
fore a previous access to a synchronizing variable has 
been performed. 

The dependency conditions on shared variables are 
weaker in such a system, because they are only limited to 
hardware-recognized synchronizing variables. Between opera- 

tions on such variables, no assumption can be made by the 
programmer of a process on the order in which STOREs are 
propagated and observed. The order of successive STOREs 
by a processor, to the same address, is however respected. 
Buffering and restricted jockeying are allowed in all buffers, 
except for operations on hardware-recognized synchronizing 
variables. 

In order tha t  the program of Figure 4 executes 
correctly in a system with a weakly ordering of events, vari- 
ables A and B must  have been declared as synchronizing 
variables. Special LOAD and STORE instructions may there- 
fore be generated by the compiler for such variables. It is in- 
teresting, tha t  in the concurrent language ADA lAND83], 
such synchronizing variables may be specified in a pragma 
(i.e., an advice to the compiler). This provision was most 
probably included to prevent harmful optimizations by the 
compiler for such variables. 

A weakly ordered system is not sequentially con- 
sistent. If the compiler is capable of detecting shared vari- 
ables used for synchronization (such as A or B in Figure 4), 
it could generate special LOAD and STORE cycles for such 
variables. We feel t ha t  such detection may however be 
difficult without  an explicit declaration from the program- 
mer. 

Simple performance analysis of buffering in system 1 

A schematic representation of a shared memory mul- 
tiprocessor system is given in Figure 6. Processors execute lo- 
cally until  an access to shared memory has to he performed. 
An access request traverses the processor/memory intereon- 
neetion, and is serviced by the appropriate bank of the 
shared, interleaved memory. The state of each processor al- 
ternates between compute and wait  phases. A processor 
"computes" while it accesses local data.  On a reference to 
shared data,  it may have to wait while the shared data  is 
not available. Let tp be the average durat ion of the compute 
phase between two successive data  accesses to shared 
memory in one of the t9 processors. If Pw is the probabili ty 
tha t  an instruction contains an access to shared data  and 
I s v is the MIPS rate of a processor when all accesses are lo- 
cal ' (single processor configuration), then t_ = 1 / ( I  e_ p , ) .  

. . . .  F . F -  

The mterconnectmn is characterized by tieou e and tperform, 
the minimum times to issue and to perform a request respec- 
tively. There are M memory modules, which are all accessed 
with equal probability, and the access t ime of a memory 
bank is T m . We will assume tha t  the memory is sufficiently 
interleaved, so tha t  it is never a bottleneck. For example, M 
can be large enough, so t h a t  P / t .  < M / T , .  We also 
neglect all dependencies in the CPU ~nd conflicts to access 
shared memory (i.e., the memory system has enough 
bandwidth.).  The following results show the relative effect 
of the two buffering strategies. Let tlnre ! be the average in- 
terreference time between two consecutive accesses to shared 
variables by the same processor, i.e., it is the total  duration 
of the compute and the wait phases between two accesses to 
shared memory; we have: 

tinref ~ tp + tperf orm "Jr T m (nO buffering at the processor), 

tinre f ~ M A X  [tp ,tperfor m ] (buffering with strong order- 

ing), or 

tinre f ~ M A X  [tp ,t i . . . .  ] (buffering with weak ordering). 
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In the first equation T m may be equal to zero if buffers are 
implemented at the memory. In the second and third results, 
we have assumed buffering at the memory. The first ine- 
quality results from the fact that, in a non-buffered system, 
the processor is blocked every time it performs a shared 
memory access. In the second or third cases, the processor 
and the buffer controller form a pipeline with average seg- 
ment times of ta and t .errorrn , or t .  and tiss~ e , respective- . . . ¥ 
ly. The throughput o(  t~am plpehne is determined by the 
bottleneck segment. 

P Ixoces lors  Interco~ection 

T, z 

t ~ m  

M memory banks 

TM 

Figure 6: Schematic representation of a multiprocessor 
system and its shared memory. 

The efficiency of the multiprocessor system denoted 
E is the ratio of the MIPS rates of a processor in the 
tightly-coupled (/t.c.) and in the single processor (Is.p.) 
configurations. 

E = ( I t . s .  /Io.p. ) = ( t p / t i , , 4  ). 

From the above formulas, we can see that the effectiveness of 
buffering shared data accesses depends on the relative values 
of tp and tissu e or of tp and t_er !or., • Note that the value 
of t. depends both on the MII~S rate of the processor as a 
single processor, and on the probability that an instruction 
references data in shared memory. In Figure 7 the multipro- 
cessor efficiencies in the cases of no buffering at the processor 
and of buffering with strong ordering are compared as a 
function of t er -orm/ t  Buffering is more attractive for P 1 .P" 
highly-pipelincd machmes, and for cases where the access 
rate to shared memory is high. In Figure 8, we have assumed 
that tissu e <tp and the multiprocessor efficiency of buffered 
systems with weak and strong ordering are compared as 
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Figure 7: Comparison of systems without buffering 
{dashed line) and with buffering and strong ordering 
{solid line). 
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Figure 8: Comparison of buffering with strong and weak 
ordering ( tis~u e < tp ). 

tp_erI orm/tp increases. This would be the case if the number 
of processors increases and the interconnection network is 
packet-switched; so that  the delay through the network in- 
creases, but the time to issue remains the same. It appears 
from the simplified model that weak ordering in buffered sys- 
tem is only effective for systems where tp < tp./.er orm" While, 
the simple models give indications, they must be mterpreteo 
with caution since many effects have not been taken into ac- 
count (conflicts, dependencies, finite buffer length, synchroni- 
zation, jockeying in buffers...) A more extensive model would 
be justified, but it is beyond the scope of this paper. 

4. M U L T I P R O C E S S O R S  W I T H  D I S T R I B U T E D  
G L O B A L  M E M O R Y  

In the architecture of system 2, each processor has a 
local memory. Private and shared data can be placed in that  
local memory. Each memory is accessible by all processors. 
We assume that, at the hardware level, the distinction 
between global and private data cannot be made. Logically, 
this system is equivalent to system 1 with no private 
memory, but the shared memory access time is not uniform; 
it depends on whether the access is local or remote. In sys- 
tem 2, all STOREs are atomic. Condition (1) of definition 3.4 
is therefore sufficient for strong ordering and sequential con- 
sistency. 

A well-known example of system 2 is the Cm*, built 
at Carnegie-Mellon University. In the Cm*, a STORE or a 
LOAD cycle must be fully acknowledged before the processor 
can proceed with its execution. The access times of references 
in the local memory, in the memory of a processor of the 
same duster, or in a memory of a remote cluster are 3, 9 and 
26 microseconds, respectively. During that time a processor 
is blocked. Since all accesses are acknowledged, and since 
the LSI-11s (the processors used in the Cm*) are non- 
pipelined and remain blocked during each access, the Cm* is 
strongly ordered. If buffering is implemented at the proces- 
sor, then strong or weak coherence are possible alternatives. 

In Figure 2, two organizations of the buffers are 
presented. In the first case {Figure 2a), the remote accesses 
are buffered at the destination in the same buffer as the local 
accesses of the destination processor. As in system 1, the 
buffer management is strictly FIFO. A remote memory ac- 
cess is issued in this case when it is sent to the interconnec- 
t]on network. A local access is issued and performed as soon 
as it is placed in the local buffer. A remote access is per- 
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formed when it is placed in the buffer of the remote memory. 
With these definitions, the conditions for strong and weak 
ordering are similar to the conditions for system l, and the 
performance models are the same, except t ha t  the probabili- 
ty of a shared data  reference in an instruction must  be re- 
placed by the probability of a remote data  reference. 

In the second case (Figure 2b), remote accesses are 
buffered in a distinct remote access buffer. To maximize 
processor/local memory bandwidth,  remote accesses may be 
given a different (lower) level of priority. To enforce s t r o n g  
ordering in this system, local or remote accesses should be 
considered performed only once they are executed in the local 
or the remote memories, respectively. The time to perform 
an access in this system may therefore be quite long. Strong 
ordering may be inefficient. Weak ordering is preferable. In 
the case of weak ordering, the STORE/PREFETCH buffer 
issues local references by start ing the memory cycle and is- 
sues remote references by simply latching them in the first 
stage of the interconnection. However, whenever a processor 
executes an instruction on a declared synchronizing variable 
(this is detected by the fact tha t  the data  have been tagged 
by the compiler, or tha t  special instructions are used), it 
must  ensure tha t  all its previous data  accesses have been 
performed, and stop issuing PREFETCHes and STOREs of 
operands until the access to the synchronizing variable is 
also performed. 

6. C A C H E - B A S E D  M U L T I P R O C E S S O R S  

In a cache-based multiprocessor, each processor has a 
local cache and the cache contains data  and instructions 
from shared memory. We distinguish between the cases of 
software- and hardware-enforced coherence. Caches may be 
write-through or write-back caches [SMI82]. 

5.1 S o f t w a r e - e n f o r c e d  c o h e r e n c e  

If no shared writable data  can be loaded into cache 
then no coherence problem exists between the caches. This 
technique relies on software to avoid the coherence problem. 
At  any time, the caches contain private data  or non- 
modifiable shared data. The distinction is done at compile- 
time, possibly with some indication from the programmer. 
Accesses for shared writable da ta  in the shared memory can 
be buffered at  the processor in a common 
P R E F E T C H / S T O R E  buffer. With respect to buffering, the 
problems with cache-based systems described in this para- 
graph are very similar to the problems analyzed in system 1. 
Other  cache systems with software enforced coherence are 
possible but  are not considered here. 

5.2 H a r d w a r e - e n f o r c e d  c o h e r e n c e  

Of particular interest is the case of cache-based sys- 
tems with hardware-enforced coherence [CEN78, DUB82]. 
We only discuss data  caches tha t  can contain shared data.  
Instruction fetches are not par t  of this discussion. If the 
caches contain shared writable data,  coherence between mul- 
tiple copies of these data  is maintained through hardware in- 
validation signals. Also, in some coherence algorithms, a pro- 
cessor may broadcast a LOAD to all caches and to the 
memory in the case of a miss, in order to read the da ta  
directly from another cache. Algorithms to enforce coher- 
ence abound in the literature. Analyzing in details the impli- 
cations of strong and weak coherence on cache coherence 

protocols will be the topic of a future paper. In this paper, 
we simply introduce some alternatives. The problem of 
event ordering is much more complex for cache-based sys- 
tems than it is for the previous two systems. For example, 
while a STORE and its resulting invalidations are in pro- 
gress, copies of the modified variable may exist in different 
caches as well as in the shared memory and therefore a 
STORE may not be atomic. In order to enforce strong order- 
ing of events, we briefly discuss how to implement conditions 
(1) and (2) of definition 3.4 for the two system configurations 
shown in Figure 3. In the following, P-data  refers to da ta  
tha t  are private to the cache (one single copy exists) and S- 
data  refers to data  t ha t  are shared among several caches 
(several copies may exist in different caches)[DUB82]. 

Two buffer configurations are shown in Figure 3. In 
Figure 3.a, there is a unique buffer per processor. The buffer 
contains data  PREFETCH and STORE requests for the local 
processor plus the accesses made by remote processors 
(LOADs or INVALIDATEs). The local processor initiates its 
STOREs and LOADs in the local P R E F E T C H / S T O R E  
buffer. No jockeying is allowed in this buffer. The local 
buffer controller issues requests to the cache one at a time. A 
STORE request on S-data in the cache will require invalidat- 
ing the data  in other  caches. A STORE issued (Figure 3a) by 
processor I is performed with respect to processor K when 
the cache is updated (hit on P-data) or at  a point in t ime 
when it is placed in the memory buffer and when an invali- 
dation (if it is necessary) has been placed in the local buffer 
of processor K (access to S-data). There are several ways to 
enforce condition (2). 

In the first solution, the LOADs causing misses and 
the STOREs on S-data causing INVALIDATEs are broad- 
cast to all caches and to memory so t ha t  they are performed 
with respect to all processors at the same time. A cache can 
read a missing block from a different cache. It is therefore as- 
sumed tha t  a LOAD issued by processor I is performed with 
respect to processor K after the cache cycle (hit) or after the 
request has been placed in the memory buffer and in the lo- 
cal buffer of processor K (miss). This means tha t  LOADs and 
STOREs can be performed atomically; this solution can be 
applied easily to systems with a few buses [ARC85]. 

Another  solution satisfying condition (2) is inspired 
from the paper by Collier [COL85]. In this case, the caches 
could be connected by a point-to-point interconnection such 
as a ring or a mesh. When a STORE on S-data must  pro- 
pagate invalidations, the location in shared memory is first 
locked to prevent any processor from accessing it. The invali- 
dation is then sent to each cache, one by one but  always in 
the same order, by propagating invalidations through the 
point-to-point interconnection. When the invalidation has 
been placed in the local buffer of each cache, the STORE is 
performed in memory. At  this t ime the STORE is considered 
performed, and the processor issuing the STORE may issue 
the next global memory access. A LOAD missing in the 
cache for which a STORE is in progress will be rejected at  
the shared memory because the STORE has locked the 
memory block. It should be retried (alternatively the LOAD 
could be delayed at  the memory in a special buffer). The 
LOAD is only performed when it is accepted by the memory 
(i.e., after the STORE has released the memory block). It 
can he easily shown tha t  such a scheme satisfies condition (2) 
of definition 3.4. This comes from the facts t ha t  LOADs are 
performed atomically in the cache or at the memory, t h a t  
the STOREs on P-da ta  are performed atomically at the 
cache, and t h a t  the STOREs on S-data (i.e., causing IN- 
VALIDATEs) are performed one after the other and in ord- 
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er. We believe that the second solution is good for non-bus 
cache-based systems, with a centralized directory [CEN78, 
DUB82] in which broadcasting is impracticle. 

In the system of Figure 3b, the buffer for INVALI- 
DATEs and for LOADs issued by remote processors is dis- 
tinct from the buffer for LOADs and STOREs from the local 
processor. An invalidation of a block in a remote cache is 
performed when it is executed in the cache. It is difficult to 
maintain atomicity of STOREs (first solution above) because 
the invalidation buffer of each cache may contain different 
numbers of invalidation requests, making the time to invali- 
date each cache random. The second solution is possible and 
will enforce strong cohercnce. The on[y difference is that an 
invalidation signal must invalidate a cazhe before moving to 
the next cache (in the system of Figure 3.a, an invalidation is 
simply placed in the local buffer). 

In a weakly ordered system, the processors can issue 
shared memory request without waiting for previous requests 
to be performed. This would result in a system with very 
high efficiency. In this case, the only troublesome accesses are 
accesses to synchronizing variables. The buffer controller 
must still record the status of all cache accesses that  it has 
issued but not performed, so that it can perform them every 
time an access to a synchronizing variable is detected. The 
implementation of such a buffer may be very complex. 
Deadlocks are also possible. The details of an implementa- 
tion for a given cache coherence mechanism would be in- 
teresting in order to understand the practical aspects of the 
concept of weak ordering in cache-based systems, but it is 
beyond the scope of this paper. 

6. CONCLUSION 

We have presented in this paper a framework to 
analyze the coherence properties of shared memory multipro- 
cessor systems when data accesses are buffered at the proces- 
sor and in the interconnection between the processors and 
the shared memory. The concepts and results presented in 
this paper are extensions of Lamport's results [LAM79]. We 
have introduced three states in which a shared memory re- 
quest may be. We have demonstrated that  these states are 
fundamental by using them to define the notion of strong 
ordering when data accesses are buffered and by showing the 
equivalence between strong ordering and sequential con- 
sistency. To alleviate the performance problems with strong 
ordering, we have introduced the concept of weak ordering 
of events, Weak ordering results in the highest possible pro- 
cessor efficiency. A weakly ordered system is not sequentially 
consistent. The programmer must declare explicitly what we 
have called synchronizing variables, i.e., variables used to 
synchronize processors, and to protect the integrity of shared 
writable data through mutual exclusion. 

Three systems were analyzed in this study under no 
buffering, buffering with strong ordering and buffering with 
weak ordering. In the case of system 1 a simple model was 
presented to identify the range of system parameters under 
which the three policies are effective. The model could be ex- 
tended to other cases and more sophisticated models are 
warranted to fully highlight the advantages of buffering in 
specific systems. The fundamental approach taken in this 
paper has allowed us to identify the basic restrictions on 
buffering imposed by the two ordering policies in the case of 
some very complex systems, such as cache-based systems. 
We believe that  more work is warranted in this direction. 
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