
MEMORY ACCESS BUFFERING IN MULTIPROCESSORSt

Michel Dubois , Chrlstoph Scheurich, Faye Briggs*

Computer Research Institute
University of Southern California

Los Angeles, California

*Dept. of Electrical and Computer Eng.
Rice University
Houston, Texas

A B S T R A C T

In highly-pipelined machines, instructions and data
are prefetched and buffered in both the processor and the
cache. This is done to reduce the average memory access la-
tency and to take advantage of memory interleaving. Lock-
up free caches are designed to avoid processor blocking on a
cache miss. Write buffers are often included in a pipelined
machine to avoid processor waiting on writes. In a shared
memory multiprocessor, there are more advantages in
buffering memory requests, since each memory access has to
traverse the memory- processor interconnection and has to
compete with memory requests issued by different processors.
Buffering, however, can cause logical problems in multipro-
cessors. These problems are aggravated if each processor has
a private memory in which shared writable data may be
present, such as in a cache-based system or in a system with
a distributed global memory. In this paper, we analyze the
benefits and problems associated with the buffering of
memory requests in shared memory multiprocessors. We
show that the logical problem of buffering is directly related
to the problem of synchronization. A simple model is
presented to evaluate the performance improvement result-
ing from buffering.

1. I N T R O D U C T I O N

Shared memory MIMD systems are becoming very
popular because of their versatility and the fact that they
are a natural evolution from traditional architectures based
on the proven von Neumann single-processor concept. Off-
the-shelf, low-cost microprocessor components can be con-
nected in a tightly-coupled configuration [ARC85], and at-
tain computing speed comparable to that of single-processor
mainframes. Similarly, in high-end machines, the limit to
technology improvements leads to the use of tightly-coupled
configurations to meet the ever-increasing demand for com-
puting power. This trend is clear from observing the design
of recent machines such as the IBM308X and the Cray-XMP
[HWA84a]. At the same time, many advanced designs for
shared memory multiprocessor supercomputers [HWA84b]
are being researched both in academia and in industry: ex-
amples are the Cedar at the University of Illinois, the NYU
UItracomputer, and the IBM RP3 multiprocessors.

Tightly-coupled multiprocessor systems with a limit-
ed number of very powerful pipelined processors are possible
computer architectures for achieving the billions of instruc-

t This research is supported by an NSF Research Initiation Grant
No DMC-8505328 and the USC Faculty Innovation Fund

tions per second that will be required from the data process-
ing systems of the next decade. In such architectures, it is
important to keep the processor efficiency high because of
the large cost of each processor. High utilization of proces-
sors is guaranteed by a steady, uninterrupted supply of in-
structions and operands. Pipelining and buffering of memory
accesses must be used in order to bridge the gap between the
slower shared memory and an execution unit with a very
short cycle time.

In a multiprocessor, processor interconnections to
shared memories are more complex than the dedicated
memory bus found in single processors. Thus, transfers
between processors and memories are slower. The effects of
memory access conflicts and latency delays can be reduced
by connecting a local memory to each processor. As a cache,
the local memory is allocated dynamically at run-time and
addressed associatively. If the local memory is part of the
physical address space of a process, then it is allocated at
compile- or load-time and addressed randomly [PHI83]. Lo-
cal memories may contain shared data. In local caches
which allow shared data, the problem of multiple, incon-
sistent copies of the same data in different caches appears
[CEN78, DUB82]. This problem is often solved by hardware -
in general, a processor that writes into its cache sends invali-
dation signals to all the other caches possessing a copy of the
block which contains the modified word. If a random access
local memory contains shared data, the multiple copy prob-
lem does not exist, but the local memories must be address-
able by all processors. In the Cm*, for example, operand
accesses to the global memory are routed automatically - i.e.,
through hardware - to the computer module containing the
operand.

Three different multiprocessor systems are studied in
this paper from the point of view of memory access
buffering. These structures are representative of the system
structures for shared memory multiprocessors.

• System 1: Shared global memory system
A multiprocessor with shared global memory and
private, local memories. The shared memory is ac-
cessed by all processors. Local memories are associat-
ed with specific processors and do not contain any
shared data (see Figure 1).

• System 2: Distributed global memory system
A multiprocessor with distributed global memory
which consists of an interconnection of local
memories. The local memories contain global, as well
as private data and are accessed randomly (no multi-
ple copies of data exist) (see Figure 2).

434
0884-7495/86/0000/0434S01.00 © 1986 IEEE

• System 3: Cache-based system
A multiprocessor with shared global memory and
private caches. The shared memory contains code
and data, and the caches are accessed associatively.
The caches may or may not contain shared data. We
will consider only the cases of write-through and
write-back caches (see Figure 3).

J BUFFERS

()

E

J ~ M sHARED MEMORY
MOOULES
EMORY BUFFERS

INTERCONNECTION I

F

(

E

PREFE1L"H/$TORZ BUFFER

I PROCESSORS

MEMORIES

Figure 1: System with a shared global memory.

I RUFFdRS INTERC~ONNECI"ION

PROCESSORS
Figure 2a: System with distributed global memory. Re-
mote accesses are buffered in PREFETCH/STORE
buffers.

I P

Figure 2b: System with distributed global memory. Re-
mote accesses are buffered in a buffer independent of
the PREFETCH/STORE buffers.

In these three systems, we will study the effects of
buffering of memory requests on the coherence of the mul-
tiprocessor and on its performance. The buffering of
memory accesses has been shown to improve the perfor-
mance of pipelined processors in many studies. Buffers can
be included in the processor, the cache, the interconneetion
or at the memory. The performance advantages of buffering
stem from the improvement in the overall system
throughput through the pipelining of execution and memory
accesses.

In section 2, we review memory access buffering tech-
niques. In a single processor system, the only logical prob-
lems limiting buffering are the dependencies between succes-
sive instructions. In a shared memory multiprocessor, logical
problems also arise because of the concurrent environment.
In section 3, these problems are reviewed and the notions of
strong and weak coherence are introduced and discussed in
the context of system 1. In section 4 and 5 possible buffering
techniques are identified for systems 2 and 3 in the contexts
of weak and strong coherence. Finally, in section 6, we pro-
pose extensions to the concepts and results presented in the
paper.

BUFFERS j

• . IC.tCHEj~.-..-[j/I~.., FREFItTCH/aTORE
J [- - 1 |U'FER

~PROCES~

Figure 3a: Cache-based system. Invalidations are
buffered in the P R E F E T C H / S T O R E buffers.

|

BUFFERS ~J INTERCONNEC TION

o ° ,

Figure 3b: Cache-based system.

 S gEog*
MOttLES

EMORY BUFFERS

1
t l i~l.I I)A 1"ION BUFI~RS

~ PREFtrCN/sroes BUFFERS

) I~OCESSORS

Invalidations are
buffered in independent INVALIDATION buffers.

2. M E M O R Y A C C E S S B U F F E R I N G T E C H N I Q U E S

In high-end, general-purpose processors, the pipelin-
ing of instruction execution is common place. Extensive pre-
fetching and buffering of memory accesses are implemented
in pipelined computers. Prefetching anticipates data LOADs
by the execution unit by early fetching and decoding of fu-
ture instructions; moreover, buffering STOREs reduces a
processor's idle time when waiting for an acknowledgement
after a STORE operation.

Prefetching of instructions is one of the most com-
mon examples and is very effective because of the predicta-
bility of instruction sequencing. Operands are also pre-
fetched in high-end machines. Often, an instruction can be
decoded, its operand addresses computed, and the accesses to

435

memory initiated, long before the instruction is actually exe-
cuted. Several operand fetches may be in progress at any
time. Ideally, by the t ime the .instruction enters the execu-
t ion unit, all of its memory operands will have been fetched.

A scheme support ing operand prefetching is imple-
mented in the IBM3033, by the operand registers [KOG81].
Up to six operand prefetehes may be in progress at any time.
The instruction decode unit initiates the prefetch by storing
the effective address in one of six operand address registers.
The memory requests are tagged so that , when the da ta ar-
rives in the processor, it is stored in the corresponding
operand data register, packaged with the execution unit. A
similar procedure is implemented for the STOREs. STOREs
to memory occur later in the pipeline, when the execution of
an instruction is completed. Usually, STOREs can be com-
pleted in one pipeline cycle, by simply writing data and ad-
dresses in an operand STORE buffer. Up to four STOREs
can be buffered in the IBM3033 machine. STORE buffers are
particularly appealing because the processor does not need to
wait for the return of information from memory, contrary to
the LOAD of an operand. As a result, LOADs are more criti-
cal for performance and are often given higher priority over
STORE requests.

To support a processor with extensive operand
buffering, a cache is usually pipelined and may be Iockup-
free [KRO81]. A Iockup-free cache does not block (or lock
up) the processor on a miss. Rather, it records the s ta tus of
the memory request causing the miss and keeps accepting re-
quests from the processor. When the cache locks up the pro-
cessor, the processor must stop issuing memory requests. If
the cache locks up memory accesses on each miss and
resolves one miss at a time, the prefetching mechanism of
the processor will not be effective. Since memory interleaving
across cache blocks [BRI83] can speedup the resolution of
several concurrent misses, Iockup free caches may
significantly decrease the average miss penalty. In [KROS1],
a lockup-free cache is described in which several misses can
be buffered in the cache and can be resolved concurrently by
the cache controller.

In a multiprocessor system, m e m o ~ accesses can be
buffered in the processor, in the interconnection network,
and at the shared memory. Buffering at the shared memory
has been analyzed in [BRI79]. In some designs, several paths
may be possible between a processor and a memory module
[CHI84]. If invalidations or STOREs have to modify an entry
in a local memory of another processor, these updates may
be buffered in the destination processor node and they may
have lower priority than the accesses issued by the processor
directly connected to the local memory. A good example is
the BIAS filter in the IBM3033 to store invalidation signals
coming from other caches [SM182]. Unless they are buffered,
the accesses coming from other processors will reduce the
bandwidth between the processor and its local memory.

Buffering instruction fetches is safe for a pipelined
machine in a multiprocessor if it can be assumed tha t in-
structions are not. modifiable, We will not discuss instruction
fetches any further. The following sections address more
specifically the problems associated with operand fetching
and storing.

Another trivial case in which buffering is not a prob-
lem is throughput-or iented multiprocessor systems, in which
the processors execute completely independent processes. In
this case, there is no constraint imposed on buffering because
of the multiprocessor environment. The discussion in this

paper applies to multiprocessor systems in which several
processes sharing da ta can be scheduled on different proces-
sors at the same time. This is the case for multi tasked sys-
tems and for some multiprocessor operating systems.

Buffer management refers to the order in which mul-
tiple buffered requests are treated. In most cases, the re-
quests are t reated in a strict FIFO order (First-ln-First-Out).
In some cases requests may be allowed to pass each other in
the buffer. This is referred to as jockeying. Jockeying is
often permitted between memory requests for different
memory words, hut is not permitted between requests des-
t ined to the same memory word. Jockeying with this restric-
t ion is called restricted jockeying in the rest of the paper.

3. S E Q U E N T I A L C O N S I S T E N C Y A N D
C O H E R E N C E I N M U L T I P R O C E S S O R S

A simple uniprocessor generally executes instructions
one at a time, in the order specified by the program. If the
processor is pipelined however, then several consecutive in-
structions may be executed concurrently or even out of their
intended order. This is allowable in uniprocessors, provided
hardware mechanisms (interlocks) exist to check data and
control dependencies between instructions to be executed
concurrently [KOG81]. This checking is local to the processor
and can be done efficiently.

If processors are par t of a multiprocessor which exe-
cutes a concurrent program, then such local dependency
checking is still necessary but not sufficient to preserve the
correct outcome of a concurrent execution. Since da ta are
shared and interrupts can be sent between processors,
processes running on different processors may affect the out-
come of each other. Enforcing data dependencies between
processors which are physically d is tant is not as efficient as
enforcing them in a single processor.

A strong requirement for the functional behavior of a
multiprocessor system is aequential con,istency. Lamport
[LAM79] defines sequential consistency as follows.

Definit ion 3.1: Sequential consistency

"[A system is sequentially consistent if] the result of any
execution is the same as if the operations of all the pro-
cessors were ~executed in some sequential order, and the
operations of each individual processor appear in this se-
quence in the order specified by its program."

The definition above applies to systems where com-
plete s ta tements are not considered atomic. Atomicity is lim-
ited to LOADs and STOREs. For example, in a s ta tement
such as C~--A + B , where A, B, and C are in memory,
events from different processors may be interleaved between
the LOADs of A and B and the STORE of C. There is an
implicit ordering of events, e.g., A is first fetched then B is
fetched, then C is stored.

The only way t ha t two concurrent processes can
affect each other 's execution is through the sharing of da ta
and the sending of interproeessor interrupt signals. Take for
example the mult i tasked program of Figure 4a. In this pro-
gram, two processes synchronize to access a critical section
through shared variables A and B. We define a legal inter-
leaving of memory accesses an interleaving such t h a t the
references from each process appear in program order. The

436

PROCESSOR 1

A:=O

AI=I /event SI(A)
LABl: I f (B=I) COTOLAB1 /event LI(B)

<critical section>
A:=O

PROCESSOR 2

B:=O

BI=I /event $2 (B)
LAB2: If (A=I) GOTO LAB2 /event L2(A)

<critical section>
B:=O

Figure 4a: Synchronization protocol using two shared
variables A and B.

legal interleavings of executions of events on shared variables
A and B in program 4a are displayed in Figure 4b. All 6 le-
gal interleavings of the first two s tatements of each program
are possible. In some cases legal interleavings may be impos-
sible because they correspond to the sequences tha t the pro-
grammer wants to avoid. Some of the possible interleavings
result in deadlocked sequences. Note tha t , in Figure 4a, if
processor 1 is allowed to prefetch B before sett ing A to 1,
and if processor 2 is allowed to prefetch A before sett ing B
to 1, an illegal interleaving may result in which both proces-
sors enter the critical section at the same time. The inter-
leaving is illegal because the events on shared da ta in the
two processors do not appear in their intended logical order
in the interleaving.

Legal Interleavlngn: Result:

SI(A)->LI(B)->S2(B)->L2(B) Processor i enters CS.
S2(B)->L2(A)->SI(A)->LI(B) Processor 2 enters CS.
SI(A)->S2(B)->LI(A)->L2(B) Deadlock.
SI(A)->S2(B)->L2(B)->LI(A) Deadlock.
$2 (B) ->SI (A) ->LI (A) ->L2 (B) Deadlock.
$2 (B) ->$1 (A) ->L2 (B) ->LI (a) Deadlock.

Figure 4b: Legal Interleavings of STORE and LOAD
events.

Since the user considers only legal interleavings when
a program is written, a sequentially consistent multiprocessor
must only allow legal interleavings of events. The only da ta
dependencies to resolve between two different processes are
on shared data (we ignore interrupts). The coherence en-
forced on shared data by the memory system is therefore
very relevant to this study. Censier and Feautrier define a
coherent memory scheme as follows [CEN78].

Definition 3.2: Memory system coherence

"A memory scheme is coherent if the value returned on
a LOAD instruction is always the value given by the la-
test STORE instruction with the same address."

In an environment where STOREs can be buffered in a
STORE buffer associated with each processor, the notion of
latest value is vague. It is not clear whether "latest STORE"
refers to the execution of the STORE by a processor, or to
the update of memory. In order to refine the definition of
memory system coherence, we differentiate between initist.
ing, issuing and performing a memory access.

* The processor environment includes the CPU and local buffers.

Definition 3.3: Memory request initiating, issuing, and
performing

A request is initiated when a processor has sent the re-
quest and the completion of the request is out of its con-
trol. An initiated request is issued when it has left the
processor environment* and is in t ransi t in the memory
system. A LOAD by processor I is considered performed
with respect to processor K at a point in t ime when the
issuing of a STORE to the same address by processor K
cannot affect the value returned to processor I. A
STORE by processor I is considered performed with
respect to processor K, at a point in t ime when an is-
sued LOAD to the same address by processor K returns
the value defined by the STORE.t An access by proces-
sor I is performed when it is performed with respect to
all processors.

Because of dependencies within each instruction
stream, the definition implies t ha t an access by processor K
is performed with respect to processor K as soon as it is ini-
t iated.

For example, in system 1 (Figure 1), operand pre-
fetching is implemented through a prefeteh buffer at the pro-
cessor. The processor initiates the operand prefetch by plac-
ing the address in tha t buffer. Then the buffer controller is-
sues the operand fetch to the shared interconnection and
memory. The request t ransi ts in the interconnection and it
is performed when it is latched in a buffer associated with
the memory, provided this buffer is FIFO (restricted jockey-
ing is allowed in the memory buffer). The situation is similar
for a STORE request. The processor initiates the STORE by
placing the request in a STORE buffer at the processor.
Later on, the STORE buffer controller issues the STORE re-
quest to the interconnection. The request is then in t ransi t in
the interconnection. It will he performed as soon a s ' i t is
latched in the FIFO buffer associated with the destination
memory.

We want to emphasize at this point the basic
difference, in general, between issuing and performing a
memory access. A memory STORE cannot affect any other
process before it is issued (and similarly, a memory LOAD
canno t be affected by any other process until it is issued).
When the STORE is issued but not performed, it may affect
the issuing of a LOAD of the same data by any processor; at
the t ime when the STORE is performed it is certain t ha t it
will affect the issuing of a LOAD on the same data by anoth-
er processor.t The distinction between issued and performed
is impor tant for the analysis of cache-based systems and sys-
tems with recombining intereonnection networks such as the
network proposed for the NYU Ultracomputer [HWA84b].

From definition 3.3, it is clear t h a t definition 3.2 of
memory system coherence refers to performed STOREs.
Collier [COL84, COL85] has extensively studied the problems
of coherence and event ordering in a multiprocessor system
where each processor has its own copy of the global memory.
He proves t ha t a sufficient and (for all practical purposes) a
necessary condition for sequential consistency is tha t all pro-
cessors must "observe" STORE events in the same order.
However, Collier does not consider operand prefetching. In
the following definition, it is considered t ha t a STORE on a

Naturally, the issued LOAD is only affected by the particular
STORE, if it is performed before a subsequent STORE is
performed at the same address.

437

variable is observed by a processor at the t ime when the pro-
cessor performs a LOAD on tha t variable which returns the
value defined by the STORE.

Def in i t i on 3.4: S t r o n g o r d e r i n g o f storage accesses

In a multiprocessor system, storage accesses are strongly
ordered if
1) accesses to global data by any one processor are ini-
tiated, issued and performed in program order, and if
2) at the t ime when a STORE on global data by proces-
sor I is observed by processor K, all accesses to global
da ta performed with respect to I before the issuing of
the STOREff must be performed with respect to K.

It follows from logical considerations on the t iming of
events in a multiprocessor [LAM79], tha t a coherent system
with strong ordering of events is sequentially consistent.
Condition (1) constrains the ordering of accesses on global
da ta to be in program order. The only way tha t a processor I
can affect another processor K is by I modifying a global
variable, X, and by K subsequently reading the value. Condi-
tion (2) guarantees tha t all global accesses issued and ob-
served by l before the issuance of the STORE request "hap-
pened before" all global accesses issued and observed by K
after the LOAD request is performed [LAM79].

Condition (1) is necessary as demonstrated by the ex-
ample in Figure 4. Condition (2) is essential if there are
more than two processors in the multiprocessor, as the fol-
lowing example demonstrates. Refer to Figure 5a and b. In
the following, Si(X) and Li(X) represent global accesses
" S T O R E by processor i in X" and "LOAD of X by processor
i, respectively. If L2(A) reads the value produced by SI(A),
and if L3(B) returns the value produced by S2(B), then
L3(A) must also read the value produced by s ta tement
S l (h) . However, if, for some reason, event SI(A) takes much
more time to propagate to processor P2 than it does to pro-
¢essor P3, then there may be enough time (depending on
conflicts and distances) for P2 to perform event L2(A), then
S2(B), and for P3 to perform L3(B) before SI(A) has been
performed. This may result in P3 performing L3(A) on the
value of A previous to SI(A), and in an illegal interleaving of
events. Note t ha t the problem comes from the fact t h a t
SI(A) was performed with respect to P2 when P2 initiated
S2(B); it should therefore be performed with respect to P3
when L3(B) is performed. Of course, the possibility of such
an occurrence depends greatly on actual machine timing, bu t
this example shows how difficult it is to design cache-based
systems and systems with recombining interconnection net-
work in which events arc strongly ordered.

Processor i Processor 2 Processor 3

s l iA) L2 iA) L3 iB)
S2 (B) L3 (A)

Figure 5a: Three processes sharing variables A and B.

The complexity of definition 3.4 comes mainly from
the fact t ha t STOREs can be observed at different times by
different processors before they are performed. If STOREs
can only be observed once they are performed, then condi-

'rt It is assumed here that the value to STORE is known at the
time of issuance. In [LAM79], it is considered that the value could
be defined after the STORE has been performed.

tion (1) is sufficient. In this case the STOREs are "atomic"
and therefore, as soon as a global access is performed with
respect to any processor K, it is performed with respect to
all processors. System 1 behaves in this manner and we now
examine the requirements imposed by strong ordering on the
design of system 1.

Figure 5b: Possible outcome of concurrent execution of
programs in Figure 5a.

Example: Strong ordering of events in system 1

This system has been analyzed by Lamport [LAM79].
We first look at the requirements to satisfy condition (1) of
definition 3.4. If the delay through the network is constant
or bounded for all requests (a rare case in practice because of
conflicts), or if there is only one pa th from processors to
memories (e.g., in single bus systems) then successive re-
quests can be issued in program order without waiting for
acknowledgements from the memory. In general, however,
because of conflicts, the only way tha t a processor can ensure
t ha t its global da ta requests are performed in program order
is to issue the requests one at a t ime and to wait for an ack-
nowledgement after each request. Since the STOREs are
atomic, condition (1) is sufficient. The following are the
rules for enforcing strong ordering of events in system 1.

1) Global memory accesses can only be performed at the
memory.

2) Individual processors initiate global da ta accesses in
program order. These accesses (both for LOADs and
STOREs) are buffered in the same local buffer associated
with the processor. Therefore, the STORE and PRE-
FETCH buffers of a pipellned machine must be logically
unique. The combined buffer is managed by a strict
FIFO policy. Internal forwarding [KOG81] (i.e., bypass-
ing the memory) in a processor is restricted by condition
(1).

3) The controller of the combined P R E F E T C H / S T O R E
buffer issues and performs the memory accesses one-by-
one, in the FIFO order of the buffer.

The first requirement precludes recombining intercon-
nection networks, in which a LOAD request "colliding" with
a STORE request for the same data in a switch box is com-
bined so t h a t the STORE is sent to memory and the LOAD
returns the value defined by the STORE. In such a system,

438

guaranteeing condition (2) and avoiding the problem
described in Figure 5 is difficult in general.

To mainta in strong ordering, dependencies on every
data access to shared memory have to be checked. However,
most of these data are not synchronizing variables, i.e.,
shared variables used to control the concurrency between
several processes (such as variables A and B in Figure 4). In
multi tasked programs such variables are used to synchronize
processes and to mainta in the integrity of shared modifiable
data structures or variables.

We can identify several sources of inefficiencies in the
strong ordering algorithm given above. First, restricted jock-
eying should be allowed in the P R E F E T C H / S T O R E buffer
associated with the processor: a processor does not need the
result of STORE references, but LOAD references are partic-
ularly critical because of local dependencies in the pipeline.
Therefore, performance can be improved if LOADs are al-
lowed to pass STOREs in the combined
P R E F E T C H / S T O R E buffer (provided the LOAD and the
STORE are not for the same address). If the intereonnection
network is complex and packet-switched, performance is also
improved if the controller of the PR E FE T CH / ST O RE buffer
does not have to wait until each shared memory access is
performed before issuing the next memory access, and can
empty the buffer at the faster issue rate, ra ther than the per-
form rate. Also, to speed-up the CPU, the PREFETCH and
the STORE buffers can be separate altogether. The policy in
which shared memory accesses can be issued optimally is
called weak ordering of events and is introduced and defined
below.

In a system with a weak ordering of events, two
types of shared variables are distinguished: first the shared
operands appearing in algorithms whose value does not con-
trol the concurrent execution; and second synchronizing vari-
ables which protect the access to shared writable operands or
implement synchronization between different processes. If a
shared variable is modified by one process and appears in
other processes and, if the access to the variable must be
protected, then it is the responsibility of the programmer to
ensure mutual exclusion for each access to the variable by
using high-level language constructs such as critical sections
[AND83]. Critical sections are in turn implemented by basic
synchronization primitive~ such as locks. It is assumed tha t ,
at run time, the system can distinguish between accesses to
synchronizing variables and to other shared variables. Syn-
chronizing variables can be distinguished by the type of in-
struction (TEST_AND_SET, COMPARE_AND_SWAP,
RESET, F E T C H A N D _ E X E C U T E , or special LOAD and
STORE instructions, for example).

Definition 3.5: Weak ordering of events

In a multiprocessor system, storage accesses are weakly
ordered if
1) accesses to global synchronizing variables are strongly
ordered and if
2) no access to a synchronizing variable is issued in a
processor before all previous global da ta accesses have
been performed and if
3) no access to global da ta is issued by a processor be-
fore a previous access to a synchronizing variable has
been performed.

The dependency conditions on shared variables are
weaker in such a system, because they are only limited to
hardware-recognized synchronizing variables. Between opera-

tions on such variables, no assumption can be made by the
programmer of a process on the order in which STOREs are
propagated and observed. The order of successive STOREs
by a processor, to the same address, is however respected.
Buffering and restricted jockeying are allowed in all buffers,
except for operations on hardware-recognized synchronizing
variables.

In order tha t the program of Figure 4 executes
correctly in a system with a weakly ordering of events, vari-
ables A and B must have been declared as synchronizing
variables. Special LOAD and STORE instructions may there-
fore be generated by the compiler for such variables. It is in-
teresting, tha t in the concurrent language ADA lAND83],
such synchronizing variables may be specified in a pragma
(i.e., an advice to the compiler). This provision was most
probably included to prevent harmful optimizations by the
compiler for such variables.

A weakly ordered system is not sequentially con-
sistent. If the compiler is capable of detecting shared vari-
ables used for synchronization (such as A or B in Figure 4),
it could generate special LOAD and STORE cycles for such
variables. We feel t ha t such detection may however be
difficult without an explicit declaration from the program-
mer.

Simple performance analysis of buffering in system 1

A schematic representation of a shared memory mul-
tiprocessor system is given in Figure 6. Processors execute lo-
cally until an access to shared memory has to he performed.
An access request traverses the processor/memory intereon-
neetion, and is serviced by the appropriate bank of the
shared, interleaved memory. The state of each processor al-
ternates between compute and wait phases. A processor
"computes" while it accesses local data. On a reference to
shared data, it may have to wait while the shared data is
not available. Let tp be the average durat ion of the compute
phase between two successive data accesses to shared
memory in one of the t9 processors. If Pw is the probabili ty
tha t an instruction contains an access to shared data and
I s v is the MIPS rate of a processor when all accesses are lo-
cal ' (single processor configuration), then t_ = 1 / (I e_ p ,) .

. . . . F . F -

The mterconnectmn is characterized by tieou e and tperform,
the minimum times to issue and to perform a request respec-
tively. There are M memory modules, which are all accessed
with equal probability, and the access t ime of a memory
bank is T m . We will assume tha t the memory is sufficiently
interleaved, so tha t it is never a bottleneck. For example, M
can be large enough, so t h a t P / t . < M / T , . We also
neglect all dependencies in the CPU ~nd conflicts to access
shared memory (i.e., the memory system has enough
bandwidth.). The following results show the relative effect
of the two buffering strategies. Let tlnre ! be the average in-
terreference time between two consecutive accesses to shared
variables by the same processor, i.e., it is the total duration
of the compute and the wait phases between two accesses to
shared memory; we have:

tinref ~ tp + tperf orm "Jr T m (nO buffering at the processor),

tinre f ~ M A X [tp ,tperfor m] (buffering with strong order-

ing), or

tinre f ~ M A X [tp ,t i] (buffering with weak ordering).

439

In the first equation T m may be equal to zero if buffers are
implemented at the memory. In the second and third results,
we have assumed buffering at the memory. The first ine-
quality results from the fact that, in a non-buffered system,
the processor is blocked every time it performs a shared
memory access. In the second or third cases, the processor
and the buffer controller form a pipeline with average seg-
ment times of ta and t .errorrn , or t . and tiss~ e , respective- . . . ¥
ly. The throughput o(t~am plpehne is determined by the
bottleneck segment.

P Ixoces lors Interco~ection

T, z

t ~ m

M memory banks

TM

Figure 6: Schematic representation of a multiprocessor
system and its shared memory.

The efficiency of the multiprocessor system denoted
E is the ratio of the MIPS rates of a processor in the
tightly-coupled (/t.c.) and in the single processor (Is.p.)
configurations.

E = (I t . s . /Io.p.) = (t p / t i , , 4).

From the above formulas, we can see that the effectiveness of
buffering shared data accesses depends on the relative values
of tp and tissu e or of tp and t_er !or., • Note that the value
of t. depends both on the MII~S rate of the processor as a
single processor, and on the probability that an instruction
references data in shared memory. In Figure 7 the multipro-
cessor efficiencies in the cases of no buffering at the processor
and of buffering with strong ordering are compared as a
function of t er -orm/ t Buffering is more attractive for P 1 .P"
highly-pipelincd machmes, and for cases where the access
rate to shared memory is high. In Figure 8, we have assumed
that tissu e <tp and the multiprocessor efficiency of buffered
systems with weak and strong ordering are compared as

1
05
OJ
0.7
O.e
0.5
Q,i
0.3
O~
0.1

buffering wi~
~ \ ~ " i - t m a $ ordering

f- . . \

Figure 7: Comparison of systems without buffering
{dashed line) and with buffering and strong ordering
{solid line).

LC
O.q
0.J
C~7
G6
OA
0.4
02
O~
0.1

orderin <rin
r ' t ' ~ '

t@

Figure 8: Comparison of buffering with strong and weak
ordering (tis~u e < tp).

tp_erI orm/tp increases. This would be the case if the number
of processors increases and the interconnection network is
packet-switched; so that the delay through the network in-
creases, but the time to issue remains the same. It appears
from the simplified model that weak ordering in buffered sys-
tem is only effective for systems where tp < tp./.er orm" While,
the simple models give indications, they must be mterpreteo
with caution since many effects have not been taken into ac-
count (conflicts, dependencies, finite buffer length, synchroni-
zation, jockeying in buffers...) A more extensive model would
be justified, but it is beyond the scope of this paper.

4. M U L T I P R O C E S S O R S W I T H D I S T R I B U T E D
G L O B A L M E M O R Y

In the architecture of system 2, each processor has a
local memory. Private and shared data can be placed in that
local memory. Each memory is accessible by all processors.
We assume that, at the hardware level, the distinction
between global and private data cannot be made. Logically,
this system is equivalent to system 1 with no private
memory, but the shared memory access time is not uniform;
it depends on whether the access is local or remote. In sys-
tem 2, all STOREs are atomic. Condition (1) of definition 3.4
is therefore sufficient for strong ordering and sequential con-
sistency.

A well-known example of system 2 is the Cm*, built
at Carnegie-Mellon University. In the Cm*, a STORE or a
LOAD cycle must be fully acknowledged before the processor
can proceed with its execution. The access times of references
in the local memory, in the memory of a processor of the
same duster, or in a memory of a remote cluster are 3, 9 and
26 microseconds, respectively. During that time a processor
is blocked. Since all accesses are acknowledged, and since
the LSI-11s (the processors used in the Cm*) are non-
pipelined and remain blocked during each access, the Cm* is
strongly ordered. If buffering is implemented at the proces-
sor, then strong or weak coherence are possible alternatives.

In Figure 2, two organizations of the buffers are
presented. In the first case {Figure 2a), the remote accesses
are buffered at the destination in the same buffer as the local
accesses of the destination processor. As in system 1, the
buffer management is strictly FIFO. A remote memory ac-
cess is issued in this case when it is sent to the interconnec-
t]on network. A local access is issued and performed as soon
as it is placed in the local buffer. A remote access is per-

440

formed when it is placed in the buffer of the remote memory.
With these definitions, the conditions for strong and weak
ordering are similar to the conditions for system l, and the
performance models are the same, except t ha t the probabili-
ty of a shared data reference in an instruction must be re-
placed by the probability of a remote data reference.

In the second case (Figure 2b), remote accesses are
buffered in a distinct remote access buffer. To maximize
processor/local memory bandwidth, remote accesses may be
given a different (lower) level of priority. To enforce s t r o n g
ordering in this system, local or remote accesses should be
considered performed only once they are executed in the local
or the remote memories, respectively. The time to perform
an access in this system may therefore be quite long. Strong
ordering may be inefficient. Weak ordering is preferable. In
the case of weak ordering, the STORE/PREFETCH buffer
issues local references by start ing the memory cycle and is-
sues remote references by simply latching them in the first
stage of the interconnection. However, whenever a processor
executes an instruction on a declared synchronizing variable
(this is detected by the fact tha t the data have been tagged
by the compiler, or tha t special instructions are used), it
must ensure tha t all its previous data accesses have been
performed, and stop issuing PREFETCHes and STOREs of
operands until the access to the synchronizing variable is
also performed.

6. C A C H E - B A S E D M U L T I P R O C E S S O R S

In a cache-based multiprocessor, each processor has a
local cache and the cache contains data and instructions
from shared memory. We distinguish between the cases of
software- and hardware-enforced coherence. Caches may be
write-through or write-back caches [SMI82].

5.1 S o f t w a r e - e n f o r c e d c o h e r e n c e

If no shared writable data can be loaded into cache
then no coherence problem exists between the caches. This
technique relies on software to avoid the coherence problem.
At any time, the caches contain private data or non-
modifiable shared data. The distinction is done at compile-
time, possibly with some indication from the programmer.
Accesses for shared writable da ta in the shared memory can
be buffered at the processor in a common
P R E F E T C H / S T O R E buffer. With respect to buffering, the
problems with cache-based systems described in this para-
graph are very similar to the problems analyzed in system 1.
Other cache systems with software enforced coherence are
possible but are not considered here.

5.2 H a r d w a r e - e n f o r c e d c o h e r e n c e

Of particular interest is the case of cache-based sys-
tems with hardware-enforced coherence [CEN78, DUB82].
We only discuss data caches tha t can contain shared data.
Instruction fetches are not par t of this discussion. If the
caches contain shared writable data, coherence between mul-
tiple copies of these data is maintained through hardware in-
validation signals. Also, in some coherence algorithms, a pro-
cessor may broadcast a LOAD to all caches and to the
memory in the case of a miss, in order to read the da ta
directly from another cache. Algorithms to enforce coher-
ence abound in the literature. Analyzing in details the impli-
cations of strong and weak coherence on cache coherence

protocols will be the topic of a future paper. In this paper,
we simply introduce some alternatives. The problem of
event ordering is much more complex for cache-based sys-
tems than it is for the previous two systems. For example,
while a STORE and its resulting invalidations are in pro-
gress, copies of the modified variable may exist in different
caches as well as in the shared memory and therefore a
STORE may not be atomic. In order to enforce strong order-
ing of events, we briefly discuss how to implement conditions
(1) and (2) of definition 3.4 for the two system configurations
shown in Figure 3. In the following, P-data refers to da ta
tha t are private to the cache (one single copy exists) and S-
data refers to data t ha t are shared among several caches
(several copies may exist in different caches)[DUB82].

Two buffer configurations are shown in Figure 3. In
Figure 3.a, there is a unique buffer per processor. The buffer
contains data PREFETCH and STORE requests for the local
processor plus the accesses made by remote processors
(LOADs or INVALIDATEs). The local processor initiates its
STOREs and LOADs in the local P R E F E T C H / S T O R E
buffer. No jockeying is allowed in this buffer. The local
buffer controller issues requests to the cache one at a time. A
STORE request on S-data in the cache will require invalidat-
ing the data in other caches. A STORE issued (Figure 3a) by
processor I is performed with respect to processor K when
the cache is updated (hit on P-data) or at a point in t ime
when it is placed in the memory buffer and when an invali-
dation (if it is necessary) has been placed in the local buffer
of processor K (access to S-data). There are several ways to
enforce condition (2).

In the first solution, the LOADs causing misses and
the STOREs on S-data causing INVALIDATEs are broad-
cast to all caches and to memory so t ha t they are performed
with respect to all processors at the same time. A cache can
read a missing block from a different cache. It is therefore as-
sumed tha t a LOAD issued by processor I is performed with
respect to processor K after the cache cycle (hit) or after the
request has been placed in the memory buffer and in the lo-
cal buffer of processor K (miss). This means tha t LOADs and
STOREs can be performed atomically; this solution can be
applied easily to systems with a few buses [ARC85].

Another solution satisfying condition (2) is inspired
from the paper by Collier [COL85]. In this case, the caches
could be connected by a point-to-point interconnection such
as a ring or a mesh. When a STORE on S-data must pro-
pagate invalidations, the location in shared memory is first
locked to prevent any processor from accessing it. The invali-
dation is then sent to each cache, one by one but always in
the same order, by propagating invalidations through the
point-to-point interconnection. When the invalidation has
been placed in the local buffer of each cache, the STORE is
performed in memory. At this t ime the STORE is considered
performed, and the processor issuing the STORE may issue
the next global memory access. A LOAD missing in the
cache for which a STORE is in progress will be rejected at
the shared memory because the STORE has locked the
memory block. It should be retried (alternatively the LOAD
could be delayed at the memory in a special buffer). The
LOAD is only performed when it is accepted by the memory
(i.e., after the STORE has released the memory block). It
can he easily shown tha t such a scheme satisfies condition (2)
of definition 3.4. This comes from the facts t ha t LOADs are
performed atomically in the cache or at the memory, t h a t
the STOREs on P-da ta are performed atomically at the
cache, and t h a t the STOREs on S-data (i.e., causing IN-
VALIDATEs) are performed one after the other and in ord-

441

er. We believe that the second solution is good for non-bus
cache-based systems, with a centralized directory [CEN78,
DUB82] in which broadcasting is impracticle.

In the system of Figure 3b, the buffer for INVALI-
DATEs and for LOADs issued by remote processors is dis-
tinct from the buffer for LOADs and STOREs from the local
processor. An invalidation of a block in a remote cache is
performed when it is executed in the cache. It is difficult to
maintain atomicity of STOREs (first solution above) because
the invalidation buffer of each cache may contain different
numbers of invalidation requests, making the time to invali-
date each cache random. The second solution is possible and
will enforce strong cohercnce. The on[y difference is that an
invalidation signal must invalidate a cazhe before moving to
the next cache (in the system of Figure 3.a, an invalidation is
simply placed in the local buffer).

In a weakly ordered system, the processors can issue
shared memory request without waiting for previous requests
to be performed. This would result in a system with very
high efficiency. In this case, the only troublesome accesses are
accesses to synchronizing variables. The buffer controller
must still record the status of all cache accesses that it has
issued but not performed, so that it can perform them every
time an access to a synchronizing variable is detected. The
implementation of such a buffer may be very complex.
Deadlocks are also possible. The details of an implementa-
tion for a given cache coherence mechanism would be in-
teresting in order to understand the practical aspects of the
concept of weak ordering in cache-based systems, but it is
beyond the scope of this paper.

6. CONCLUSION

We have presented in this paper a framework to
analyze the coherence properties of shared memory multipro-
cessor systems when data accesses are buffered at the proces-
sor and in the interconnection between the processors and
the shared memory. The concepts and results presented in
this paper are extensions of Lamport's results [LAM79]. We
have introduced three states in which a shared memory re-
quest may be. We have demonstrated that these states are
fundamental by using them to define the notion of strong
ordering when data accesses are buffered and by showing the
equivalence between strong ordering and sequential con-
sistency. To alleviate the performance problems with strong
ordering, we have introduced the concept of weak ordering
of events, Weak ordering results in the highest possible pro-
cessor efficiency. A weakly ordered system is not sequentially
consistent. The programmer must declare explicitly what we
have called synchronizing variables, i.e., variables used to
synchronize processors, and to protect the integrity of shared
writable data through mutual exclusion.

Three systems were analyzed in this study under no
buffering, buffering with strong ordering and buffering with
weak ordering. In the case of system 1 a simple model was
presented to identify the range of system parameters under
which the three policies are effective. The model could be ex-
tended to other cases and more sophisticated models are
warranted to fully highlight the advantages of buffering in
specific systems. The fundamental approach taken in this
paper has allowed us to identify the basic restrictions on
buffering imposed by the two ordering policies in the case of
some very complex systems, such as cache-based systems.
We believe that more work is warranted in this direction.

7. R E F E R E N C E S

lAND83] G.R. Andrews, et al., "Concepts and Notations for
Concurrent Programming," Computing Surveys, Vol.15, No.
l, March 1983.
[ARC85] Special session on commercial cache-based multipro-
cessors, in the Proceedings of the 12th International Symposi-
um on Computer Architecture, June 1985.
[BRI79] F.A. Briggs, "Effects of Buffered Memory Requests
in Multiprocessor Systems," Proceedings of the Conference
on Simulation, Measurements, and Modeling of Computer
Systems, 1979.
[BRI83] F.A. Briggs and M. Dubois, "Effectiveness of Private
Caches in Multiprocessors with Parallel-Pipelined
Memories," IEEE Transaction8 on Computers, January
1983.
[CEN78] L. M. Censier and P. Feautrier,"A New Solution to
Coherence Problems in Multieache Systems," IEEE Transac-
tions on Computers, Vol. C-27, No.12, December 1978.
[CH184] C-Y Chin and K. Hwang,"Paeket-switehing Net-
works for Multiprocessor and Data-flow Computers,"
Proceedings of the 11th International Symposium on Comput-
er Architecture, June 1984.
[COL84] W. W. Collier, "Architectures for Systems of Paral-
lel Processes," IBM Technical Report TR00.3253, January
27, 1984.
[COL85] W. W. Collier, "Reasoning about Parallel Architec-
tures," submitted to JACM, 1985.
[DUB82] M. Dubois and F.A. Briggs, "Effects of Caehe
Coherency in Multiproeessors," IEEE Transactions on Com-
puters, Vol. C-31, No. 11, November 1982.
[GEH82] E.F. Gehringer, et al., "The Cm* Testbed," IEEE
Computer, October 1982.
[HWA84a] K. Hwang and F.A. Briggs, Computer Architec-
ture and Parallel Processing, Mac Craw-Hill.
[HWA84b] Tutorial on Supercomputero: Design and Applica-
tions, Kai Hwang Ed., IEEE Computer Society, 1984.
[KOG81] P. M. Kogge, "The Architecture of Pipelined Com-
puters," Mac Grow-Hill, 1981.
[KROSl] D. Kroft, "Lookup-free Instruction Fetch/Prefetch
Cache Organization," Proceedings of the 8th Annual Syrups-
Mum on Computer Architecture, June 1981.
[KUN76] H.T. Kung, "Synchronized and Asynchronous
Parallel Algorithms for multiprocessors," in Algorithms and
Complexity: New Directions and Recent Results, J.F. Traub
Ed., New York: Academic Press, 1976.
[LAM78], L. Lamport, "Time, Clocks, and the Ordering of
Events in a Distributed System," Commun. of the ACM,
July 1978, Vol.21, No. 7.
[LAM79] L. Lamport, "How to Make a Multiprocessor Com-
puter That Correctly Executes Multiprocess Programs,"
IEEE Transaction8 on Computers, Vol. C-28, No. 9, Sep-
tember 1979.
[PHI83] L. Philipson, et al., "Communication Structure for a
Multiprocessor Computer with Distributed Global Memory,"
Proceedings of the lOth Annual International Symposium on
Computer Architecture, 1983.
[SMI82] A.J. Smith, "Cache Memories," Computing Surveys,
Vol. 14, No. 3, September 1982.

442

