
CS194-24
Advanced Operating Systems

Structures and Implementation
Lecture 13

File Systems (Con’t)
RAID/Journaling/VFS

March 17th, 2014
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs194-24

Lec 14.23/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Goals for Today

• Distributed file systems
• Peer-to-Peer Systems
• Application-specific file systems

Interactive is important!
Ask Questions!

Note: Some slides and/or pictures in the following are
adapted from slides ©2013

Lec 14.33/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall:Network-Attached Storage and the CAP Theorem

• Consistency:
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes

partitioned
• Consistency, Availability, Partition-Tolerance (CAP) Theorem:

Cannot have all three at same time
– Otherwise known as “Brewer’s Theorem”

Network

Lec 14.43/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes! (more on this later)

Lec 14.53/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”? NFS does operation
twice and second time returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of
reading a file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know

they are talking over network)
Lec 14.63/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 14.73/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done,
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 14.83/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Schematic View of NFS Architecture

Lec 14.93/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Remote Procedure Call
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls: remoteFileSystemRead(“rutabaga”);
– Translated automatically into call on server:fileSysRead(“rutabaga”);

• Implementation:
– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

» Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing
objects, copying arguments passed by reference, etc.

Lec 14.103/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2

Lec 14.113/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

RPC Details
• Equivalence with regular procedure call

– Parameters Request Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition
language (IDL)”
» Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for

result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack

results, send them off
• Cross-platform issues:

– What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded

(avoids unnecessary conversions).

Lec 14.123/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of servicembox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 14.133/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free

» Caching can help, but may make failure handling complex

Lec 14.143/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Andrew File System

• Andrew File System (AFS, late 80’s)  DCE DFS
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only
after the file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 14.153/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 14.163/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

More Relaxed Consistency?

• Can we get better performance by relaxing consistency?
– More extensive use of caching
– No need to check frequently to see if data up to date
– No need to forward changes immediately to readers

» AFS fixes this problem with “update on close” behavior
– Frequent rewriting of an object does not require all
changes to be sent to readers
» Consider Write Caching behavior of local file system – is

this a relaxed form of consistency?
» No, because all requests go through the same cache

• Issues with relaxed consistency:
– When updates propagated to other readers?
– Consistent set of updates make it to readers?
– Updates lost when multiple simultaneous writers?

Lec 14.173/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Possible approaches to relaxed consistency
• Usual requirement: Coherence

– Writes viewed by everyone in the same serial order
• Free-for-all

– Writes happen at whatever granularity the system
chooses: block size, etc

• Update on close
– As in AFS
– Makes sure that writes are consistent

• Conflict resolution: Clean up inconsistencies later
– Often includes versioned data solution

» Many branches, someone or something merges branches
– At server or client
– Server side made famous by Coda file system

» Every update that goes to server contains predicate to be
run on data before commit

» Provide a set of possible data modifications to be chosen
based on predicate

Lec 14.183/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Data Deduplication

• How to address performance issues with network file
systems over wide area? What about caching?
– Files are often opened multiple times

» Caching works
– Files are often changed incrementally

» Caching less works less well
– Different files often share content or groups of bytes

» Caching doesn’t work well at all!
• Why doesn’t file caching work well in many cases?

– Because it is based on names rather than data
» Name of file, absolute position within file, etc

• Better option? Base caching on contents rather than names
– Called “Data de-duplication”

Wide Area
Network

Lec 14.193/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Data-based Caching (Data “De-Duplication”)

• Use a sliding-window hash function to break files into
chunks
– Rabin Fingerprint: randomized function of data window

» Pick sensitivity: e.g. 48 bytes at a time, lower 13 bits = 0
 2-13 probability of happening, expected chunk size 8192

» Need minimum and maximum chunk sizes
– Now – if data stays same, chunk stays the same

• Blocks named by cryptographic hashes such as SHA-1
Lec 14.203/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Low Bandwidth File System

• LBFS (Low Bandwidth File System)
– Based on NFS v3 protocol
– Uses AFS consistency, however

» Writes made visible on close
– All messages passed through de-duplication process

Lec 14.213/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

How Effective is this technique?

• There is a remarkable amount of overlapping
content in typical developer file systems
– Great for source trees, compilation, etc

• Less commonality for binary file formats
• However, this technique is in use in network

optimization appliances
• Also works really well for archival backup

Lec 14.223/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

A different take: Why Peer-to-Peer ideas for storage?
• Incremental Scalability

– Add or remove nodes as necessary
» Systems stays online during changes

– With many other systems:
» Must add large groups of nodes at once
» System downtime during change in active set of nodes

• Low Management Overhead (related to first property)
– System automatically adapts as nodes die or are added
– Data automatically migrated to avoid failure or take advantage

of new nodes
• Self Load-Balance

– Automatic partitioning of data among available nodes
– Automatic rearrangement of information or query loads to avoid

hot-spots
• Not bound by commercial notions of semantics

– Can use weaker consistency when desired
– Provide flexibility to vary semantics on a per-application basis
– Leads to higher efficiency or performance

Lec 14.233/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Peer-to-Peer: Fully equivalent components

• Peer-to-Peer has many interacting components
– View system as a set of equivalent nodes

» “All nodes are created equal”
– Any structure on system must be self-organizing

» Not based on physical characteristics, location, or
ownership

Lec 14.243/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Routed queries (Freenet, Chord, Tapestry, etc.)

N4Publisher@
Client

N6

N9

N7

N8

N3
N2

N1

Lookup(“title”)
Key=“title”
Value=MP3 data…

N5

Can be O(log N) messages per lookup (or even O(1))
Potentially complex routing state and maintenance.

Lec 14.253/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Consistent hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 160-bit
ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

Lec 14.263/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Lookup with Leaf Set

0…

10…

110…

111…

Lookup ID

Source• Assign IDs to nodes
– Map hash values to
node with closest ID

• Leaf set is
successors and
predecessors
– All that’s needed for
correctness

• Routing table
matches successively
longer prefixes
– Allows efficient
lookups

• Data Replication:
– On leaf set

Lec 14.273/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Advantages/Disadvantages of Consistent Hashing

• Advantages:
– Automatically adapts data partitioning as node membership

changes
– Node given random key value automatically “knows” how to

participate in routing and data management
– Random key assignment gives approximation to load balance

• Disadvantages
– Uneven distribution of key storage natural consequence of

random node names  Leads to uneven query load
– Key management can be expensive when nodes transiently fail

» Assuming that we immediately respond to node failure, must
transfer state to new node set

» Then when node returns, must transfer state back
» Can be a significant cost if transient failure common

• Disadvantages of “Scalable” routing algorithms
– More than one hop to find data  O(log N) or worse
– Number of hops unpredictable and almost always > 1

» Node failure, randomness, etc

Lec 14.283/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Dynamo Assumptions

• Query Model – Simple interface exposed to application level
– Get(), Put()
– No Delete()
– No transactions, no complex queries

• Atomicity, Consistency, Isolation, Durability
– Operations either succeed or fail, no middle ground
– System will be eventually consistent, no sacrifice of availability

to assure consistency
– Conflicts can occur while updates propagate through system
– System can still function while entire sections of network are

down
• Efficiency – Measure system by the 99.9th percentile

– Important with millions of users, 0.1% can be in the 10,000s
• Non Hostile Environment

– No need to authenticate query, no malicious queries
– Behind web services, not in front of them

Lec 14.293/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Service Level Agreements (SLA)

• Application can deliver its
functionality in a bounded
time:
– Every dependency in the

platform needs to deliver its
functionality with even tighter
bounds.

• Example: service guaranteeing
that it will provide a response
within 300ms for 99.9% of its
requests for a peak client load
of 500 requests per second

• Contrast to services which
focus on mean response time

Service-oriented architecture
of Amazon’s platform

Lec 14.303/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Replication
• Each data item is replicated

at N hosts
• “preference list”: The list of

nodes responsible for storing
a particular key
– Successive nodes not guaranteed

to be on different physical nodes
– Thus preference list includes physically distinct nodes

• Sloppy Quorum
– R (or W) is the minimum number of nodes that must participate

in a successful read (or write) operation.
– Setting R + W > N yields a quorum-like system.
– Latency of a get (or put) is dictated by the slowest of the R

(or W) replicas. For this reason, R and W are usually
configured to be less than N, to provide better latency.

• Replicas synchronized via anti-entropy protocol
– Use of Merkle tree for each unique range
– Nodes exchange root of trees for shared key range

Lec 14.313/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Data Versioning

• A put() call may return to its caller before the
update has been applied at all the replicas

• A get() call may return many versions of the
same object.

• Challenge: an object having distinct version sub-
histories, which the system will need to reconcile in the
future.

• Solution: uses vector clocks in order to capture causality
between different versions of the same object
– A vector clock is a list of (node, counter) pairs
– Every version of every object is associated with
one vector clock

– If the counters on the first object’s clock are
less-than-or-equal to all of the nodes in the
second clock, then the first is an ancestor of the
second and can be forgotten.

Lec 14.323/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Vector clock example

Lec 14.333/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Conflicts (multiversion data)
• Client must resolve conflicts

– Only resolve conflicts on reads
– Different resolution options:

» Use vector clocks to decide based on history
» Use timestamps to pick latest version

– Examples given in paper:
» For shopping cart, simply merge different versions
» For customer’s session information, use latest version

– Stale versions returned on reads are updated (“read repair”)
• Vary N, R, W to match requirements of applications

– High performance reads: R=1, W=N
– Fast writes with possible inconsistency: W=1
– Common configuration: N=3, R=2, W=2

• When do branches occur?
– Branches uncommon: 0.06% of requests saw > 1 version over

24 hours
– Divergence occurs because of high write rate (more

coordinators), not necessarily because of failure

Lec 14.343/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Haystack File System
• Does it ever make sense to adapt a file system to a

particular usage pattern?
– Perhaps

• Good example: Facebook’s “Haystack” filesystem
– Specific application (Photo Sharing)

» Large files!, Many files!
» 260 Billion images, 20 PetaBytes (1015 bytes!)
» One billion new photos a week (60 TeraBytes)

– Presence of Content
Delivery Network (CDN)
» Distributed caching and

distribution network
» Facebook web servers return

special URLs that encode
requests to CDN

» Pay for service by bandwidth
– Specific usage patterns:

» New photos accessed a
lot (caching well)

» Old photos accessed little,
but likely to be requested
at any time  NEEDLES

Number of photos
requested in day

Lec 14.353/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Old Solution: NFS
• Issues with this design?
• Long Tail  Caching does not

work for most photos
– Every access to back end storage

must be fast without benefit of
caching!

• Linear Directory scheme works
badly for many photos/directory
– Many disk operations to find

even a single photo
– Directory’s block map too big to cache in memory
– “Fixed” by reducing directory size, however still not great

• Meta-Data (FFS) requires ≥ 3 disk accesses per lookup
– Caching all iNodes in memory might help, but iNodes are big

• Fundamentally, Photo Storage different from other
storage:
– Normal file systems fine for developers, databases, etc

Lec 14.363/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

New Solution: Haystack
• Finding a needle

(old photo) in Haystack
• Differentiate between old

and new photos
– How? By looking at “Writeable”

vs “Read-only” volumes
– New Photos go to Writeable

volumes
• Directory: Help locate photos

– Name (URL) of photo has
embedded volume and photo ID

• Let CDN or Haystack Cache
Serve new photos
– rather than forwarding them to

Writeable volumes
• Haystack Store: Multiple “Physical Volumes”

– Physical volume is large file (100 GB) which stores millions of
photos

– Data Accessed by Volume ID with offset into file
– Since Physical Volumes are large files, use XFS which is

optimized for large files

Lec 14.373/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Haystack Details

• Each physical volume is stored as single file in XFS
– Superblock: General information about the volume
– Each photo (a “needle”) stored by appending to file

• Needles stored sequentially in file
– Naming: [Volume ID, Key, Alternate Key, Cookie]
– Cookie: random value to avoid guessing attacks
– Key: Unique 64-bit photo ID
– Alternate Key: four different sizes, ‘n’, ‘a’, ‘s’, ‘t’

• Deleted Needle Simply marked as “deleted”
– Overwritten Needle – new version appended at end

Lec 14.383/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Haystack Details (Con’t)
• Replication for reliability

and performance:
– Multiple physical volumes

combined into logical volume
» Factor of 3

– Four different sizes
» Thumbnails, Small, Medium, Large

• Lookup
– User requests Webpage
– Webserver returns URL of form:

» http://<CDN>/<Cache>/<Machine id>/<Logical volume,photo>
» Possibly reference cache only if old image

– CDN will strip off CDN reference if missing, forward to cache
– Cache will strip off cache reference and forward to Store

• In-memory index on Store for each volume map:
[Key, Alternate Key]  Offset

Lec 14.393/19/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Summary (2/2)

• Distributed File System:
– Transparent access to files stored on a remote disk
– Caching for performance

• Data De-Duplication: Caching based on data contents
• Peer-to-Peer:

– Use of 100s or 1000s of nodes to keep higher
performance or greater availability

– May need to relax consistency for better performance
• Application-Specific File Systems (e.g. Haystack):

– Optimize system for particular usage pattern

