
CS162
Operating Systems and
Systems Programming

Lecture 8

Readers-Writers
Language Support for Synchronization

September 27, 2010
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 8.29/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Implementation of Locks by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE;
Acquire() {

disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

Lec 8.39/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: How to Re-enable After Sleep()?
• In Nachos, since ints are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

Thread A Thread B
..disable intssleep

sleep returnenable ints
...

disable intsleep
sleep returnenable ints..

Lec 8.49/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;
Acquire() {

// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Lec 8.59/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Semaphores
• Definition: a Semaphore has a non-negative integer

value and supports the following two operations:
– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1
» Think of this as the wait() operation

– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any
» This of this as the signal() operation

– Only time can set integer directly is at initialization time
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=2Value=1Value=0Value=1Value=0Value=2

Lec 8.69/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Goals for Today

• Continue with Synchronization Abstractions
– Monitors and condition variables

• Readers-Writers problem and solutoin
• Language Support for Synchronization

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 8.79/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Review: Full Solution to Bounded Buffer
Semaphore fullBuffer = 0; // Initially, no coke
Semaphore emptyBuffers = numBuffers;// Initially, num empty slots
Semaphore mutex = 1; // No one using machine
Producer(item) {emptyBuffers.P(); // Wait until spacemutex.P(); // Wait until buffer freeEnqueue(item);mutex.V();fullBuffers.V(); // Tell consumers there is// more coke}
Consumer() {fullBuffers.P(); // Check if there’s a cokemutex.P(); // Wait until machine freeitem = Dequeue();mutex.V();emptyBuffers.V(); // tell producer need morereturn item;}

Lec 8.89/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock:

Producer(item) {mutex.P(); // Wait until buffer free
emptyBuffers.P();// Could wait forever!Enqueue(item);mutex.V();fullBuffers.V(); // Tell consumers more coke

}
• Is order of V’s important?

– No, except that it might affect scheduling efficiency
• What if we have 2 producers or 2 consumers?

– Do we need to change anything?

Lec 8.99/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up, but:

– They are confusing because they are dual purpose:
» Both mutual exclusion and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared
data
– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the
language

• The lock provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

Lec 8.109/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue(item) {lock.Acquire(); // Lock shared dataqueue.enqueue(item); // Add itemlock.Release(); // Release Lock}
RemoveFromQueue() {lock.Acquire(); // Lock shared dataitem = queue.dequeue();// Get next item or nulllock.Release(); // Release Lockreturn(item); // Might return null}

• Not very interesting use of “Monitor”
– It only uses a lock with no condition variables
– Cannot put consumer to sleep if no work!

Lec 8.119/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Condition Variables
• How do we change the RemoveFromQueue() routine to

wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!
– In Birrell paper, he says can perform signal() outside of
lock – IGNORE HIM (this is only an optimization)

Lec 8.129/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;Queue queue;

AddToQueue(item) {lock.Acquire(); // Get Lockqueue.enqueue(item); // Add itemdataready.signal(); // Signal any waiterslock.Release(); // Release Lock}
RemoveFromQueue() {lock.Acquire(); // Get Lockwhile (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue(); // Get next itemlock.Release(); // Release Lockreturn(item);
}

Lec 8.139/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal

and wait. Consider a piece of our dequeue code:
while (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue();// Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue();// Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it

exits critical section or if it waits again
– Mesa-style (Nachos, most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

Lec 8.149/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Administrivia

• First design document due tonight
– Has to be in by 11:59pm
– Good luck!

• What we expect in document/review:
– Architecture, correctness constraints, algorithms,
pseudocode, NO CODE!

– Important: testing strategy, and test case types
• Design reviews:

– Everyone must attend! (no exceptions)
– 2 points off for one missing person
– 1 additional point off for each additional missing person
– Penalty for arriving late (plan on arriving 5—10 mins
early)

– Please sign up by today (signup link off announcements)

Lec 8.159/27/10 Kubiatowicz CS162 ©UCB Fall 2010

• compare&swap (&address, reg1, reg2) { /* 68000 */if (reg1 == M[address]) {M[address] = reg2;return success;} else {return failure;}}

Here is an atomic add to linked-list function:
addToQueue(&object) {do { // repeat until no conflictld r1, M[root] // Get ptr to current headst r1, M[object] // Save link in new object} until (compare&swap(&root,r1,object));}

Using of Compare&Swap for queues

root next next

next
New

Object
Lec 8.169/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

Lec 8.179/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()Wait until no writersAccess data baseCheck out – wake up a waiting writer
– Writer()Wait until no active readers or writersAccess databaseCheck out – wake up waiting readers or writer
– State variables (Protected by a lock called “lock”):

» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Conditioin okToWrite = NIL

Lec 8.189/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Code for a Reader
Reader() {
// First check self into system
lock.Acquire();
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
lock.release();
// Perform actual read-only access
AccessDatabase(ReadOnly);
// Now, check out of system
lock.Acquire();
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
lock.Release();

}

Lec 8.199/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Writer() {// First check self into systemlock.Acquire();
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existokToWrite.wait(&lock); // Sleep on cond varWW--; // No longer waiting}
AW++; // Now we are active!lock.release();
// Perform actual read/write accessAccessDatabase(ReadWrite);
// Now, check out of systemlock.Acquire();AW--; // No longer activeif (WW > 0){ // Give priority to writersokToWrite.signal(); // Wake up one writer} else if (WR > 0) { // Otherwise, wake readerokToRead.broadcast(); // Wake all readers}lock.Release();

}

Code for a Writer

Lec 8.209/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3
• On entry, each reader checks the following:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• First, R1 comes along:
AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers make take a while to access database
– Situation: Locks released
– Only AR is non-zero

Lec 8.219/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Simulation(2)

• Next, W1 comes along:
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existokToWrite.wait(&lock); // Sleep on cond varWW--; // No longer waiting}
AW++;

• Can’t start because of readers, so go to sleep:
AR = 2, WR = 0, AW = 0, WW = 1

• Finally, R3 comes along:
AR = 2, WR = 1, AW = 0, WW = 1

• Now, say that R2 finishes before R1:
AR = 1, WR = 1, AW = 0, WW = 1

• Finally, last of first two readers (R1) finishes and
wakes up writer:

if (AR == 0 && WW > 0) // No other active readersokToWrite.signal(); // Wake up one writer

Lec 8.229/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Simulation(3)

• When writer wakes up, get:
AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
if (WW > 0){ // Give priority to writers

okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}

– Writer wakes up reader, so get:
AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished

Lec 8.239/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Questions
• Can readers starve? Consider Reader() entry code:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
• Further, what if we turn the signal() into broadcast()

AR--; // No longer active
okToWrite.broadcast(); // Wake up one writer

• Finally, what if we use only one condition variable (call
it “okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

Lec 8.249/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait() { semaphore.P(); }
Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock lock) {lock.Release();semaphore.P();lock.Acquire();}Signal() { semaphore.V(); }
– No: Condition vars have no history, semaphores have
history:
» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue

Lec 8.259/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock lock) {
lock.Release();semaphore.P();lock.Acquire();}Signal() {if semaphore queue is not emptysemaphore.V();}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

Lec 8.269/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Monitor Conclusion
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads
can proceed

• Basic structure of monitor-based program:
lockwhile (need to wait) {condvar.wait();}unlock
do something so no need to wait
lock
condvar.signal();
unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

Lec 8.279/27/10 Kubiatowicz CS162 ©UCB Fall 2010

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section
int Rtn() {

lock.acquire();…if (exception) {lock.release();return errReturnCode;}…lock.release();return OK;}
– Watch out for setjmp/longjmp!

» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack

back to procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
lock.acquire

Proc D

Proc E
Calls longjmp

Stack growth

Lec 8.289/27/10 Kubiatowicz CS162 ©UCB Fall 2010

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

– Consider:
void Rtn() {

lock.acquire();
…
DoFoo();
…
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Notice that an exception in DoFoo() will exit without
releasing the lock

Lec 8.299/27/10 Kubiatowicz CS162 ©UCB Fall 2010

C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Catch exceptions, release lock, and re-throw exception:
void Rtn() {

lock.acquire();
try {

…
DoFoo();
…

} catch (…) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

}
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Even Better: auto_ptr<T> facility. See C++ Spec.

» Can deallocate/free lock regardless of exit method
Lec 8.309/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
class Account {

private int balance;// object constructorpublic Account (int initialBalance) {balance = initialBalance;}public synchronized int getBalance() {return balance;}public synchronized void deposit(int amount) {balance += amount;}}
– Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method.

Lec 8.319/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:
synchronized (object) {

…
}

– Since every Java object has an associated lock, this
type of statement acquires and releases the object’s
lock on entry and exit of the body

– Works properly even with exceptions:
synchronized (object) {

…
DoFoo();
…

}
void DoFoo() {

throw errException;
}

Lec 8.329/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:

t1 = time.now();while (!ATMRequest()) {wait (CHECKPERIOD);t2 = time.new();if (t2 – t1 > LONG_TIME) checkMachine();}
– Not all Java VMs equivalent!

» Different scheduling policies, not necessarily preemptive!

Lec 8.339/27/10 Kubiatowicz CS162 ©UCB Fall 2010

Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Readers/Writers

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Language support for synchronization:
– Java provides synchronized keyword and one condition-
variable per object (with wait() and notify())

