Pond – The Ocean Store Prototype

Overview

– Goals
– Features
– Design
– Implementation
– Experimental Results

Goals – A Distributed File System Offering

– Incremental Scalability
 • More servers translates to more available data
– Secure Sharing
 • Access Control
– Long term durability
 • With high probability data should not be able to leave the system

Key Features

– Location Independent Routing
 • Tapestry
– Byzantine Update Agreement
 • For management of the inner ring
– Push based cache correction
 • Overlay locality aware multi-cast network
– Continuous archiving
 • Erasure codes
Design

- Two tier network
 - Upper tier composed of well connected powerful servers
 - Serialize changes to data
 - Lower tier composed of user workstations
 - Cache data
 - Archive data
 - Read / Write data

The *Data Object*

- Can be thought of as corresponding to a File
- Is composed of immutable versions
- Each version is broken into B-tree of blocks
- Is referenced by an AGUID
 - Versions by VGUID
 - Blocks by BGUID
- Can be conditionally operated on
• Retrieving Data
 – AGUID: secure hash of name and public key
 – Contact primary replica to find VGUID
 – From the VGUID retrieve BGUID’s
 – Copy the block data to the local system
 – Join the *dissemination tree*
 • Act as a cached copy

• Controlling Data
 – Primary Replica
 • Publishes AGUID to VGUID mappings
 – Digitally signs
 • Enforces access control
 • Serializes writes
 • Pushes cache updates
 • Archives data

• Writing data
 – Send a request to the primary replica
 – Replica verifies credentials
 – Checks predicates
 – Creates new VGUID and then associates data
 – Pushes update down *dissemination tree*
• Archiving Data With Erasure Codes
 – Divides data into N chunks
 – Encodes chunks to M erasure blocks
 – M > N
 – Any N of the M blocks is sufficient for reconstruction
 – Located by erasure block number and BGUID.
 – How does one know the BGUID?
 • The AGUID is unavailable?

• Primary Replica – The Inner Ring
 – Byzantine internal decisions
 – Decisions published with by public key
 • Each node has a fraction of the private key
 • Enough fractions to prove a Byzantine agreement was reached are required to sign a decision

• Inner Ring – Changing Nodes
 – Byzantine decision
 • Decides to elect
 • Decides Who to elect
 • Chooses the key set
 – Old keys are deleted
 • By Byzantine assumption, conspiring nodes do not have enough keys to publish

• The Responsible Party
 – Publishes node statistics
 – Used to nominate nodes to inner ring
 – Has no say over the actions of the inner rings
 – There could be many of them
 – Being compromised would not destroy the network
• Implementation of the Pond Prototype
 – Pros
 • 50,000 lines of Java
 • Event based between modules
 • Some modules are pluggable
 • Highly portable
 – Cons
 • Garbage collector ‘Stops The World’

Storage Overhead
 – B-Tree dominates cost of small files
 – Convergence at 32KB
 – Erasure Codes add 4.8x storage penalty

Write Latency Components
 – For small updates
 • Computing the signature dominates
 – For large updates
 • Computing the erasure fragments dominate

<table>
<thead>
<tr>
<th>Phase</th>
<th>4 kB Update</th>
<th>2 MB Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Validity</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Serialize</td>
<td>6.1</td>
<td>26.6</td>
</tr>
<tr>
<td>Update</td>
<td>1.5</td>
<td>113.0</td>
</tr>
<tr>
<td>Archive</td>
<td>4.5</td>
<td>566.9</td>
</tr>
<tr>
<td>Sign Result</td>
<td>77.8</td>
<td>75.8</td>
</tr>
</tbody>
</table>

Tests are local to minimize network’s effect

Write Throughput
 – Increasing data size amortizes signature time
 – Approaches 8MB/s as block size grows
 – With archiving enabled
 • Performance peaks at 2.6MB/s
Propagation Efficiency
- As Replicas Increase
 - Network economy becomes more efficient
 - Less high RTT links are used
- Tests are with 10, 20, and 50 replicas
 - This is 2%, 4% and 10% of the network
 - Are these numbers likely to occur in practice?

Andrew Benchmark
- **WAN**
 - Read Performance
 - Up to 4.6x better
 - Write Performance
 - Up to 7.3x worse
- **LAN**
 - Read Performance
 - From 2x to 3x worse
 - Write Performance
 - From 8x to 80x worse

Are these tradeoffs acceptable?

Questions?