
DHT-Based Distributed Crawler
CS294-4 Peer-to-Peer Systems

Owen Cooper, Sailesh Krishnamurthy, Boon Thau Loo
 {owenc,sailesh,boonloo}@cs.berkeley.edu

1.0 Motivation

A search engine, like Google, is built using two pieces of infrastructure - a crawler that indexes the
web and a searcher that uses the index to answer user queries. While Google's crawler has worked
well, there is the issue of timeliness and the lack of control given to end-users to direct the crawl
according to their interests. The interface presented by such search engines is hence very limited.
Since the underlying index built out of the crawl is not exposed, it is difficult to build other
applications, such as focused crawlers (eg Bingo! [1]) that try to do more than just return a set of
URLs.

The goal of our project is to build a peer-to-peer (p2p) decentralized crawler deployable over the
wide-area. This decentralized crawler will serve as a base infrastructure for clients to build their
own personalized crawlers. Different clients can choose to build their own different and
personalized searching tools on top of this common crawling infrastructure. On top of allowing
for user control over the crawl, a distributed crawler can give the advantage of having better
aggregate bandwidth usage (as compared to a centralized crawler) where the crawlers are chosen
based on geographic proximity to the web sites that they are downloading from. As more nodes
join the system, the aggregate bandwidth increases and the crawl will scale organically. Based on
recent proposals on using p2p networks to index the web [13], it is conceivable that such an
infrastructure would require the use of the p2p networks themselves to actively crawl the web sites
for indexing.

2.0 Focus of the Project

The focus of the project is to build a distributed crawler that displays good scaling properties. We
will also explore different tradeoffs in the design space. We plan to deploy the crawler on Planetlab
[11].

The distributed crawler will be built using Distributed Hash tables (DHTs) [10]. DHTs provide
good load balancing and also graceful handling of node joins and leaves. This is important both
from a crawl-load distribution perspective, and also allows the crawl to proceed despite churn in the
network. To drive the actual crawl, we will utilize PIER, a P2P relational query engine [4] over
DHTs. In particular, we will utilize PIER's recursive query facilities (repeated web crawling fits the
recursive query model quite well). As for the actual downloading of the web pages, we will use the
TeSS (Telegraph Screen Scraper) infrastructure [3] which handles both ordinary and deep web
pages.

2.1 Load Distribution Policies

The key to achieving a scalable "crawling service" is in distributing the crawling load
appropriately. The data-flow shown above depicts only the load distribution _mechanism_ in its
essence. To partition the crawling load, there are many policies we can choose from. One of the
important contributions of this project is to study different partitioning policies. Some of these
policy choices include:

• Partitioning the crawling by URL
• Partitioning the crawling by hostname
• Hierarchical partitioning by hostname that provides more crawling nodes for bigger

domains
• Select geographically close crawlers for each target web site. Explore the use of triangle

inequality or the use of the "King" tool [2] from the University of Washington.

Picking different partitioning policies will have an impact on load balancing of both crawler and
web sites. It will also have an impact on bandwidth consumption, which may come be an important
factor in keeping our distributed crawler efficient.

2.2 Avoiding a DOS effect

It is important for the distributed crawler not to launch a DOS attack on the sites being crawled. An
important task will be to explore ways in which we can throttle back the number of total
connections to a given hostname. This is especially important if URLs display locality within
certain pages. E.g. a Yahoo page would contain several Yahoo links that would require crawling
the same page within a short time frame. Of course, different domains may be able to withstand a
different number of connections. There are trade-offs between the load balancing policy of choice
and the efficacy of our throttling techniques. For instance, it is easy to throttle load to a given web
site when we have partitioned the crawling by the domain hostname, but that might not be a good
way to evenly balance the load. Coordinating different crawlers to throttle their access to a web
site would require distributed state maintenance. A naive solution is to require nodes to periodically
publish information on their download rates on rate-limited sites into the DHT. A continuous query
executed in PIER is used to aggregate the crawl statistics and sent to the participating crawler. This
scheme exposes tradeoffs in timeliness vs bandwidth consumptions.

2.3 Crawl Reordering

Individual crawler nodes may choose to shuffle the order in which the crawl is performed. This
reordering can be encapsulated within a reordering PIER operator, and the reordering policies will
be based on user-defined functions. This allows crawl policies that can be prioritized by how
important page is or catered to user interests. This gives more flexible crawl orderings apart from
the standard randomized, breadth-first or depth-first crawls.

2.4 Metrics

We plan to use some of the following metrics in evaluating the tradeoffs discussed:

• Throughput (total pages crawled per unit of wall clock time)
• Message overheads (bandwidth per page crawled)
• Accesses per unit time (for each hostname) => this serves as a metric for how effective our

anti-DOS policies are

2.5 Other Research Issues

Our primary goal in building this crawler is to make it feasible and efficient. We have identified
several other important and interesting issues worth exploring as part of future work beyond the
class project.

• Provide a keyword search facility for the crawler. This is orthogonal to the design of the
crawler.

• Build-in crawl personalization facilities for end-users. We will provide the base
infrastructure to do personalized crawls, but leave the personalization to higher-level
applications.

• Persistent storage and indexing of web pages. This is orthogonal to the design of the
crawler. For better persistence, storing the web pages in Oceanstore [12] would be ideal.

• In the P2P environments, we recognize that fault tolerance is an important issue. When a
crawler node fails, some sites may fail to get crawled. Fault tolerance can be addressed with
running redundant queries at the Query Processor layer. Better techniques may be available
to us that provide similar reliability at lower bandwidth overheads.

• We will primarily use the Bamboo DHT, but it is interesting to see how different DHTs will
impact the crawler's performance.

3.0 Related Work

Most of the existing distributed crawlers [5,6,9] deal with implementation issues of parallel
crawlers. In these environments, they do not have to deal with node failures, and communication
overheads are less of a concern. Because they are typically deployed "in-house", their bottleneck
bandwidth is usually their organization's incoming and outgoing bandwidth to the outside world. As
their nodes are not distributed, they cannot leverage on geographic proximity. The MIT Chord
project has a web archival system [8] proposed that uses Chord for crawling the web. However,
they have only tried their system for a small number of nodes, and do not handle rate-limiting of
content providers.

To our best knowledge, Grub [7] is the only widely used P2P web crawler. They are not truly a
decentralized infrastructure as they use a SETI@Home architecture. Their selling point is that their
system will crawl the web at a much faster rate as more nodes participate in the crawl.

References:

 [1] Sergej Sizov, Martin Theobald, Stefan Siersdorfer, Gerhard Weikum, Jens Graupmann,
Michael Biwer, Patrick Zimmer: "The BINGO! System for Information Portal Generation and
Expert Web Search." CIDR 2003

[2] Krishna P. Gummadi, Stefan Saroiu and Steven D. Gribble: "King: Estimating Latency between
Arbitrary Internet End Hosts" in the Proceedings of SIGCOMM IMW 2002, November 2002,
Marseille, France.

[3] TeSS, Telegraph Screen Scraper, http://telegraph.cs.berkeley.edu/tess/

[4] Ryan Huebsch, Joseph M.Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shenker, Ion Stoica,
Query the Internet with PIER, VLDB,2003

[5] Sergey Brin and Lawrence Page, The Anatomy of a Large-Scale Hypertextual Web Search
Engine.

[6] Vladislav Shkapenyuk and Torsten Suel, Deisgn and Implementaiton of a High-Performance
Distributed Web Crawler, ICDE 2002

[7] Grub's Distributed Web Crawling Project, http://www.grub.org

[8] Timo Burkard, Herodotus: A Peer-to-Peer Web Archival System, MIT Masters's Thesis, June
2002

[9] J. Cho and H. Garcia-Molina, Parallel Crawlers, WWW, 2002

[10] Looking up data in P2P systems Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert
Morris, Ion Stoica, Communications of the ACM, February 2003/Volume 46 No. 2

[11] PlanetLab: An Overlay Testbed for Broad-Coverage Services, Brent Chun, David Culler,
Timothy Roscoe, Andy Bavier, Larry Peterson, Mike Wawrzoniak, and Mic Bowman, PlanetLab
Tech Report PDN-03-009, January 2003.

[12] OceanStore: An Architecture for Global-Scale Persistent Storage. John Kubiatowicz, David
Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean
Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao. Appears in
Proceedings of the Ninth international Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), November 2000.

[13] On the Feasibility of Peer-to-Peer Web Indexing and Search. Jinyang Li, Boon Thau Loo,
Joseph Hellerstein, M. Frans Kaashoek, David Karger, and Robert Morris. 2nd International
Workshop on Peer-to-Peer Systems (IPTPS '03)

