
Continuous Query-Based Syndication:
Distributed, Expressive Messaging for the IoT

Gabriel Fierro
gt.fierro@berkeley.edu

Erik Krogen
erikkrogen@berkeley.edu

Abstract—Applications in the Internet of Things exist at a
confluence of semantically isolated networks over buildings,
physical spaces, cloud services, smart appliances and mobile and
wearable devices. The utility of these applications is in their
ability to capture capabilities of new families of smart, networked
devices and integrate them with existing networks surrounding
people, things and places. We present a novel publish-subscribe
mechanism—continuous query-based syndication (CQBS)—that
allows subscribers to richly describe the set of resources they
require and maintain a consistent view of relevant data sources
even as they change over time. We implement a highly available,
distributed CQBS broker that uses a replicated coordinator to
provide simple failover for embedded clients. Through bench-
marks, we demonstrate that the system maintains reasonable
95th percentile latencies of under 10ms even under load.

I. INTRODUCTION

The context of the Internet of Things has seen an increase
in both the number and capabilities of small, low-powered,
constrained devices wanting to interact with each other and the
outside world, raising the question of how to conduct discovery
and communication.

Ensembles of networked “things” interacting with dynamic
applications require rich descriptive power to promote discov-
ery across heterogeneous devices and services, which should
be reflected in their communication mechanism. They also
require the ability to react to changes in the layout or configu-
ration of devices, whether these changes are generated by the
device or by a human administrator. One of the characteristics
that distinguishes the Internet of Things from prior collections
of networked things is the higher number of devices in a space
and the frequency with which those devices may enter or leave
a space. Applications or services may need to react to the
entrance or exit of a device or user. Discovery mechanisms
that operate at discrete intervals—request-response or periodic
advertisements—expect a delay proportional to the interval
length.

Publish-subscribe (pub-sub) is an attractive approach be-
cause it decouples publishers from subscribers in space:
communication through a well-known broker helps deal with
firewalls and NATs and reduces load on popular publishers.
There are two dominant “flavors” of pub-sub—topic-based
and content-based—that traditionally identify tradeoffs be-
tween performance and expressiveness. In topic-based pub-
sub systems, messages are published to logical channels that
may be in a flat or hierarchical namespace, and subscribers
identify a name or “glob” that matches topics. The benefits

are that matching is typically fast and message overhead is
small, but the expressive power of a “topic” is limited. In
content-based pub-sub, subscribers specify predicates, which
act as filters for incoming messages for publishers. While
this scheme has richer descriptive power, it requires larger
messages and computationally intensive brokers.

We propose an alternative pub-sub mechanism, continuous
query-based syndication (CQBS), in which subscriptions are
defined by SQL-style queries over publisher descriptions.
Publisher descriptions contain “metadata” defining properties
of the device, e.g. location, units of measure, groupings, etc.
that describe the context and configuration of the producer.
These queries are continuously evaluated to reflect the current
configuration of all publishers, enabling subscribers to always
receive messages relevant to their query even as the landscape
of publishers changes.

In this paper, we present the design and implementation
of a distributed CQBS broker, a message broker for service
composition that uses continuous query-based syndication
to enable dynamic and contextually-aware applications and
services for the Internet of Things. The system is intended
to serve as a ubiquitous message bus connecting an array of
embedded, networked devices with a collection of distributed
applications. In order to be effective, the design must meet the
following requirements:
● High Availability: IoT applications must be robust to the

inevitable hardware and network failures at scale. We
wish to create a system that is resilient in the face of
arbitrary machine failures.

● Scalability: Applications will want to connect across
rooms, buildings or even cities, requiring a large number
of ingress points. The system should be able to scale to
large numbers of clients with reasonably high message
rates.

● Simple Clients: The code necessary for a client to in-
teract with the system should be very simple, since we
assume that they may be embedded devices with limited
programming facilities and computational resources.

The system as described in this paper is implemented in
Go and is available online as free, open-source software at
https://github.com/gtfierro/cs262-project.

II. RELATED WORK

The CQBS distributed broker is most closely related to
publish-subscribe systems. We examine each of the systems

below along the primary design dimensions of the CQBS
broker: richness of publisher descriptions, expressiveness of
syndication model, client complexity and fault tolerance. A
summary of these systems and their properties can be seen in
Table I.

A. Topic-Based Publish-Subscribe

Most publish-subscribe (“pub-sub”) systems fall into one of
two categories: topic-based and content based [9]. The most
basic form of topic-based pub-sub is a channel model, in which
producers (data publishers) transmit data associated with some
channel name to a broker; subscribers list the channels in
which they are interested. The benefits of this approach are its
simplicity and speed—the “hot path” of a published message
simply retrieves a list of subscribers—but each publisher is
limited in expressive power to a single dimension (the name
of the channel) [1]. Because of these limitations, some modern
pub-sub systems use hierarchical topics with prefix and suffix
matching using wildcards. The most popular of these are
MQTT [2], Kafka [5] and XMPP [4].

MQTT is a lightweight publish-subscribe protocol popular
for its simpicity and extensible messages. Producers of data
in MQTT publish on hierarchical path-like topics such as
/apartment/gabe/livingroom/temperature. This
construction of topics is best for grouping publishers together
along a limited number of dimensions, but quickly becomes
unwieldy as the dimensionality and sparsity of the descriptions
increase. For example, a temperature sensor could be described
along the following dimensions:
● manufacturer and model number
● city, campus, building, floor and room number
● orientation or position within a room
● accuracy and precision of temperature sensor
● method of temperature sensing (e.g. IR, thermopile)
● who installed the temperature sensor and when it was

installed
● sample rate of the temperature sensor
To be effective, a topic-based system must determine the

order and syntax of topics so that subscribers can know
they are consuming the appropriate streams. This is further
complicated when considering other types of publishers which
may include an entirely different set of descriptive tags. MQTT
syndication supports prefix matching on topics and limited
forms of suffix matching. To subscribe, applications specify
explicit topics (a/b/c/d), one-level wildcards (+/b/c/d,
a/+/c/d, a/+/+/d, a/b/c/+) and multi-level wild-
cards (#, a/#, +/b/c/#). While appropriate for basic
subscriptions, this approach does not allow the expression of
more complex predicates that contain “and”, “or” or “not”
relations: temperature sensors in Gabe’s apartment, but not
the ones in the kitchen or the bedroom.

MQTT supports three Quality-of-Service levels for message
delivery: at most once, at least once, and exactly once. Most
client implementations simply address the first two, keeping
complexity and code-size down; it is entirely feasible to
implement a MQTT client on an embedded device, and there

exists an adaptation of MQTT (MQTT-S [3]) for non-TCP/IP
networks. MQTT does not contain any explicit fault tolerance
mechanisms: brokers may be distributed and “bridged” with
the aid of an administrator, but failover logic is entirely
implementation dependent. In summary, MQTT is insufficient
for our goals because hierarchical topics are fundamentally
constraining in their structure and syndication.

XMPP [4], or the Extensible Messaging and Presence
Protocol, is an XML-based technology for instant messaging,
video conferencing and more recently sensor communication
(as seen in large, deployed systems such as Sensor An-
drew [10]). Similar to channel-based systems, every entity
(publisher or subscriber or broker) in a distribution of fed-
erated XMPP servers has some unique address from which it
can send and receive messages. There are attempts to provide
a more expressive pub-sub model on top of XMPP that allows
for the discovery of services and subsequent subscription to
relevant service providers [11]. These service descriptions can
be extended to include arbitrary contextual data, which is a
definite advantage over primitive address-based messaging.

The limitation of XMPP lies in its size and complexity.
XMPP messages are XML-encoded and thus permit the ex-
pression of many different structures, but XML parsers are
typically large and memory-intensive, rendering them inappro-
priate for embedded devices. Additionally, XML tends towards
large messages, which can result in fragmented messages in
embedded networks that lower throughput and delivery rate.

Apache Kafka [5] is a distributed messaging system de-
signed for data pipelining in large, distributed, high-throughput
applications. Kafka is not designed for deployment scenarios
that require rich descriptions of the array of available data
services, so publisher and subscriber interactions are done
via hierarchical topics and wildcard matching (very similar
to MQTT).

Kafka, unlike MQTT and XMPP, is designed to be fault
tolerant: all topics are replicated in a cluster of brokers, and
failover is automatic. To achieve the combination of fault
tolerance and performance, Kafka clients must be carefully
engineered, and are intended to be fuller applications rather
than embedded devices. Thus, while Kafka may be suitable
for a data anaylsis pipeline in a datacenter, it does not meet
our requirements for message delivery and reception at the
“edge” of an IoT network.

B. Content-Based Publish-Subscribe

In content-based pub-sub systems, publishers attach richer
descriptions to messages, allowing subscribers to specify pred-
icates that act as filters for which messages they receive. While
this scheme has richer descriptive power, routing on a per-
message basis is computationally expensive (reducing routing
efficiency) and can require larger messages from publishers.

SIENA [6], the Scalable Internet Event Notification Archi-
tecture, aims to maximize the expressiveness of publishers and
subscribers communicating in a wide-area network. SIENA
publishers send messages containing a set of <type, name,

TABLE I: High-level comparison of features between systems

System Name Publisher Descriptions Syndication Client Complexity Client Failover Fault Tolerant
redis [1] N channels List of channel names Simple None Replicated cluster
MQTT [2][3] Hierarchical topics Wildcard matching Simple None None
XMPP [4] Unique names List of publishers Complex None Federated Servers
Kafka [5] Hierarchical topics Wildcard matching Complex Yes Replicated broker cluster
SIENA [6] attribute-value pairs SQL-like predicate N/A N/A Replicated broker, flexible routing
JMS [7] attribute-value pairs SQL-like predicate Complex Unknown Yes
CORBA [8] properties and names property matching Complex No No
CQBS Broker attribute-value pairs SQL-like predicate Simple Yes Replicated brokers, coordinators

value> tuples, to which clients can subscribe using SQL-
like filter expressions. This approach, designed to provide
discovery of relevant data in a large number of heterogeneous
messages, allows publishers to express richer metadata than
would be feasible using a topic-based scheme. It also allows
subscribers to more precisely define the data they need. For
example, this could easily capture the proposed descriptive
elements of the temperature sensor described above and allow
a subscriber to filter on any combination of those attributes.

SIENA is fully distributed, using a tree overlay for routing
and a special “merging” mechanism for pruning unnecessary
delivery of messages to subtrees. The disadvantages of SIENA
mirror those of other content-based systems: carrying a full
description of a publisher with every message reduces the
bytes available for application data in embedded, constrained
networks typical of the IoT.

JMS [7], the Java Message Service, is a distributed messag-
ing service for connecting distributed application components.
Publishers send messages with headers containing standard-
ized key-value pairs, but also contain lists of user-defined
key-value properties. Like SIENA, JMS clients subscribe with
SQL-like expressions that express constraints on the set of
publisher properties. One difference between JMS and other
systems is its default setting of exactly-once delivery, which
complicates client logic and raises the network overhead of
sending or receiving a message.

Distribution and fault-tolerance in JMS is possible, but
requires specific configuration of which topics are distributed
and among which servers they are distributed. The focus of
JMS is on enterprise-type applications that are in need of a
messaging system that can adapt to its needs, but does not
need to do so dynamically.

CORBA [8], the Common Object Request Broker Archi-
tecture, is a data bus for communication amongst distributed
objects that provides property- and name-based discovery
and event notification. Distributed object models (including
DCOM [12]) share many features with content-based pub-sub
systems: similar to JMS, published messages contain key-value
pairs in the header and body, and syndication is performed by
subscribers specifying filters on those attributes. CORBA itself
is limited because it is not designed to be distributed, and has
no failover or replication mechanisms.

III. CONTINUOUS QUERY-BASED SYNDICATION

Continuous Query-Based Syndication (CQBS) is a hybrid
publish-subscribe pattern that provides the expressiveness of

/ / s t r ea m i d e n t i f i e r f o r t e m p e r a t u r e da ta
UUID = ” dd9ef92e −140a−11e6−b352 −1002 b58053c7 ”
/ / r e g i s t e r c l i e n t
m e t a d a t a = {

UUID = UUID ,
L o c a t i o n / Room = ” 410 ” ,
L o c a t i o n / B u i l d i n g = ” Soda ” ,
L o c a t i o n / C i t y = ” B e r k e l e y ” ,
P o i n t / Type = ” S en so r ” ,
P o i n t / Measure = ” Tempera tu r e ”
Un i to fMeasu re = ” F a h r e n h e i t ” ,
Uni to fT ime = ”ms” ,
Timezone = ” America / Los Angeles ”

}
r e g i s t e r m s g := msgpack . encode (m e t a d a t a)
/ / t r a n s m i t t o l o c a l b r o k e r
s e n d t o b r o k e r (r e g i s t e r m s g)
whi le True :

t emp va l := r e a d s e n s o r ()
msg := msgpack . encode ({

UUID = UUID ,
Value = temp va l

})
s e n d t o b r o k e r (msg)
s l e e p (1 0)

Fig. 1: Pseudocode for a publisher registering a stream and publishing
data to a local broker. The figure is explained in fuller detail below.

content-based systems while retaining the simplicity of topic-
based systems. The goal of CQBS is to provide a messaging
system that can account for and adapt to the heterogeneity of
data sources in the IoT. CQBS allows embedded publishers
to describe themselves using rich metadata, and provides sub-
scribers with the ability to discover and subscribe to relevant
data sources and maintain a consistent view of the context of
those sources.

Here, we first establish the CQBS primitives—streams and
metadata—before delving into how CQBS operates and what
roles publishers and subscribers play. We then describe the
design and implementation of an individual broker. We defer
the discussion of the full distributed system to Section IV.

A. Streams and Metadata

A stream is a virtual representation of a specific sensor or
actuator channel (a “capability”) that is indexed by a 16-byte
universally unique identifier (UUID). Each stream is described
by metadata, which is a bag of key-value pairs: keys are
required to be strings, but values may be any one-dimensional

Subscriber Broker Publishers

SUBSCRIBE WHERE
Location/Room = 410 AND
Point/Type = "Sensor" AND
Point/Measure = "Temperature"

Subscribe

Register Stream

UUID: 9b5155d...
Location/Room: 410
Location/Building: Soda
Point/Type: Sensor
Point/Measure: Temperature

NEW: 9b5155d
UUID: 9b5155d...
Data: 70 deg F

UUID: 9b5155d...
Data: 70 deg F

UUID: 9b5155d...
Data: 70 deg F

UUID: 9b5155d...
Data: 70 deg F

Time

UUID: 9b5155d...
Location/Room: 420

DELETE: 9b5155d

Application subscribes
to temperature sensors
in Room 410

Receives notice of new
sensor

Application is subscribed
to relevant sensor data

Application is informed
that sensor has left room

New temp.
sensor sends
metadata to the
broker and
starts publishing

Sensor leaves
the room and
informs broker
of its new
location

Broker evaluates which subscriptions
(apps) might be affected when
publishers change metadata, and
sends requisite notifications

=

Fig. 2: The network traffic for a continuous query for discovering all temperature sensors in room 410 (omitted for brevity are additional
constrains for building, units, etc). As new streams are registered, or their metadata changes to no longer fit the discovery constraints, the
client is updated in real-time.

data type1. Key-value pairs are most effective when drawn
from some well-known ontology (such as Semantic Sensor
Web [13]), but our system places no restrictions on their
content.

The association of metadata to a stream is done by the
UUID; when a publisher creates a new stream, it registers that
stream with the broker by sending a message containing the
UUID and all of the metadata. The broker (or the coordinator,
in the distributed case) stores the mapping from stream UUID
to metadata. A publisher changes metadata by sending the
“diff” of which keys and values have changed. A given
producer (data provider) can have as many streams as it
wishes. Each message contains at least the UUID of the
originating stream, and can also contain any metadata changes,
and of couse the published value itself, which can be any
serializable object.

An example of metadata for a temperature sensor and
the associated client logic can be found in Figure 1. In the
initial registration message, along with the other metadata, the
reporting process describes the thermostat as being in room
410 Soda. If this changes, such as if the sensor were on
a piece of smart clothing or furniture, the sensor attaches
the metadata update Location/Room = "415" to any
outgoing message, where it is handled by the broker (described
in the following section). A discussion of client complexity can
be found in Section V.

This is a departure from the approach of content-based
pub-sub systems, where although the producer may possess
some unique identifier, it transmits any associated “content”
(metadata) in every message. This verbose design choice may
be appropriate for distributed sytems in which a publisher is a

1In our implementation, values are restricted to strings: see the Implemen-
tation header at the end of this section.

larger application that produces many different types of data,
but when the data per-producer is relatively static (temperature
sensors will always report temperature data), this flexibility is
unneeded. It becomes more efficient to essentially “cache” the
metadata of a publisher in a central location where it can be
used for syndication.

The simple structure of a stream (essentially a set of special
key-value pairs) means a stream can be well represented in
nearly any application protocol. We choose MsgPack, a lean,
typed binary serialization format that is simple enough to
be encoded/decoded on embedded devices with limited code
space.

B. Query-Based Syndication

A primary contribution of our distributed broker architec-
ture is its continuous, query-based syndication. Queries are
structured, SQL-like statements that define sets of constraints
over stream metadata to express ad-hoc relationships between
streams. Query-based syndication is the use of these queries
to define the forwarding routes from publishers to subscribers.
When an application sends a syndication query to the broker,
that query is evaluated by the broker into a set of matching
streams. The broker constructs forwarding paths for those
streams to the subscriber; whenever those streams send a
message to the broker, the broker forwards that message to
the relevant subscribers.

The resolution of queries to routes is continuous; the broker
reevaluates syndication queries as stream metadata evolves,
and informs clients of changes in the set of the streams to
which they are subscribed before adjusting the forwarding
paths. These changes happen on any metadata event: stream
registration, stream deletion and metadata updates on streams.

Queries are simple strings similar to the ”where” clause
of a SQL query. These predicates support basic operations

on keys and values: equality, regex matching, existence, and
combinations of these using and, or and not.

For example, a hypothetical daylighting application wants
to adjust the brightness of lights corresponding to how much
natural light is entering a room. It subscribes to the output of
all dimmable lights in room 410 as well as all illumination
sensors. There are two subscriptions:

-- dimmable lights
Room = 410 AND System = "Lighting"
AND has Actuator/Brightness
-- illumination sensors
Room = 410 AND Point/Type = "Sensor"
AND Point/Measure = "Illumination"

Figure 2 illustrates a typical exchange of messsages.
First, a temperature sensor stream with UUID (starting with)
9b5155d is registered as being in Room 410. Then, an
application enacts a subscription to all temperature sensors in
410 Soda. The broker evaluates this query against its metadata
store, and establishes forwarding paths for those streams. The
broker then informs the subscriber of the set of streams it
is subscribed to. As the sensor publishes, its messages are
forwarded to the subscriber. Finally, the sensor is moved to
another room — perhaps as part of a piece of smart clothing
or furniture — and informs the broker of the change in its
metadata. The broker sees that the Location/Room tag has
changed, so it looks internally for all syndication queries that
contain the Location/Room key. The broker reevaluates
each of these queries, informs the application of the change
in the set of its subscribed streams, and then adjusts the
forwarding paths.

C. CQBS Broker Design

Continuous queries are an extension of traditional request-
response relational queries to capture changes in a query’s
result set over time. All incoming queries are evaluated against
the metadata database or returned from a cache. After the
initial results of the discovery query are returned, the broker
will continue to deliver updates on the result set to the
subscribed client.

The broker maintains several data structures that are updated
on any metadata event – such as registering streams, deleting
streams or streams changing metadata – to avoid needing to
reevaluate all registered subscriptions on every single event.
The data structures provide fast lookup of all queries that
involve a given metadata key, and store the mapping from
a query to the set of the UUIDs for matched streams.

We decouple the metadata and query mechanism from
the underlying database by implementing the query language
using Go-yacc. This grants the ability to inject functionality at
intermediate levels of the parsing process. For each submitted
syndication query, the broker extracts the set of metadata keys
to optimize the query reevaluation process, which involves two
data structures.

The key-query table (the first data structure) maps meta-
data keys to the set of queries that involve them. Queries
are consistently hashed to avoid amplification of the lookup

table by duplicate queries with reordered clause terms. Any
incoming metadata event will have its keys referenced against
this lookup table, generating a set of queries that will need
to be reevaluated after the incoming metadata changes are
committed. The second data structure, the query-UUID table,
stores which streams have been resolved for each query. It
is updated whenever a query is evaluated, and simplifies
identifying which streams have entered or left a result set for
a given query upon a metadata event.

D. Implementation
The CQBS broker is implemented in Go [14], a statically

typed, garbage-collected language with language-level sup-
port for concurrency in the form of multithreading as well
as handling asynchronous operations. The language contains
several built-in concurrency primitives: goroutines (lightweight
processes), channels (for message passing) and a select
statement (which helps implement non-blocking operations).
For these reasons, the Go language is a natural fit for devel-
oping highly concurrent network systems.

Go channels, in both the buffered and unbuffered varieties,
make relaying backpressure straightforward. Using channels
to convey incoming and outgoing data between pipelined
components means that when a component is too loaded to
respond to pending tasks, it simply does not dequeue new tasks
from the incoming channel. This forces upstream components
to block in relaying their tasks to that component, and results
in cascading backpressure extending to the client [15]. It is
important to note that this backpressure is only applied to
publishers when they are sending faster than the broker can
sustain, not when a particular subscribed client is overloaded.

Having to manage queries against an underlying database
during metadata changes introduces a number of block-
ing operations into the “hot path” of the broker. Gor-
outines, combined with synchronization primitives such as
sync.WaitGroup2 from the Go standard library, are a nat-
ural way to dispatch multiple concurrent operations in parallel
and wait for their completion. Goroutines are scheduled by the
Go runtime, and scale nicely over multiple cores.

The design and implementation of Go does pose several
challenges for low-latency systems. First among these is the
garbage collector, which is non-generational and mark-and-
sweep. Concurrent garbage collection was introduced in Go
1.5, but heap allocations do noticeably contribute to increasing
latency. Because Go is garbage collected, a large number of
heap allocations can incur high latencies during operation.
Many protocol encoder/decoders in Go create many temporary
objects, and Go’s compile-time escape analysis unnecessarily
promotes many stack allocations to heap allocations, as re-
vealed in [16].

Using typed formats such as MsgPack, CapnProto and
Protobuf allows parsing code to “plan-ahead” for which types
to use and how much space they will use. JSON is particularly
bad at this; because it is a character-based format, parsing it re-
quires many intermediate buffers and lookaheads to determine

2https://golang.org/pkg/sync/#WaitGroup

the size and type of elements in a received message. Using
generated code for encoding/decoding can drastically reduce
the number of allocations. We use the excellent msgp library3,
which reduced the allocations per message from roughly 20
to 3.

IV. SYSTEM DESIGN

A. Overview

To meet the goals of client simplicity, availability and scal-
ability, we have developed an architecture which consists of
two primary components: distributed brokers and centralized
coordinators. See Figure 3 for an overview which will be
described in more detail in this and the following sections.

The system contains one logically centralized coordinator;
to all other entities in the system, the coordinator can be treated
as a single machine. In actuality, this logical coordinator
consists of three independent nodes to improve fault tolerance;
see Section IV-C for more detail. This coordinator makes all
of the decisions in the system, determining when a broker has
failed, which brokers should forward which messages where,
when changes occur to the set of publishers a subscriber is
currently receiving messages from and which broker a client
should contact if their broker fails. It then distributes these
decisions to the brokers, which take appropriate action.

To do this the coordinator stores the current state of all
brokers in the system, as well as information about all of the
clients that are known to the system, i.e. what broker they are
attached to, what query they are interested in (for subscribers),
and what their current metadata is (for publishers). Publisher
metadata is stored in a local instance of MongoDB [17] which
is used for executing queries.

Brokers are numerous and may reside anywhere; for ex-
ample, a deployment may consist of a broker located in
each building which contains client devices, or brokers may
be run on cloud computing nodes. Brokers are responsible
for communicating with clients and for forwarding messages
along routes as instructed by the coordinator. Any changes to
the set of clients connected to the broker, or to the metadata of
a publisher connected to the broker, are communicated back
to the coordinator for handling so that the coordinator always
has an up-to-date view of the entire system state.

B. Normal Operation

In this section we describe the events which take place under
normal operation, i.e. in the case that there are no failures
within the system.

A new subscriber enters the system. A subscriber contacts
its local broker, Broker A, whose address can be hardcoded
into the client or discovered through some network discov-
ery protocol, e.g. Bonjour, UPnP, or mDNS. The subscriber
submits a message to Broker A containing the query which
defines which publishers’ output it is subscribed to. Broker
A forwards the message along to the coordinator, which
evaluates the query against the set of publisher metadata

3https://github.com/tinylib/msgp

currently known to the system and replies to Broker A with
the (possibly empty) set of relevant publishers. If any relevant
publishers are found, the coordinator will contact the broker at
which they are located and instruct that broker to forward the
publisher’s messages to Broker A, which will in turn forward
the messages to the subscriber. We can see this, for example,
in Figure 3: SmartThermostat.c is publishing to a broker
which has a forwarding link established to another broker
to which TemperatureAlarm.py is connected, establish-
ing a publication route between SmartThermostat.c and
TemperatureAlarm.py.

A new publisher enters the system. A publisher contacts
its local broker, Broker A, in the same manner as a new
subscriber. The publisher submits its initial set of key-value
metadata pairs to Broker A, which forwards them to the coor-
dinator. The coordinator evaluates this new metadata against
the set of currently active queries, notifies any subscribers
whose queries apply to the new publisher, and constructs new
forwarding routes from Broker A as in the previous case.

A publisher submits new metadata. This process is
essentially the same as adding a new publisher, except that
in addition to possibly creating new forwarding links, some
may need to be removed if the metadata changed in such a
way that a publisher is no longer relevant to a subscriber’s
query. Again, the coordinator will instruct Broker A about
which brokers to create (and destroy) forwarding routes to.

Clients leave the system. When subscribers and publishers
leave the system, a similar process is followed; the coordinator
is notified, and forwarding routes are created or destroyed as
necessary.

A publisher publishes a message. When a message does
not contain any metadata changes, the coordinator is not
involved in any part of the process. The broker to which the
publisher is connected simply broadcasts the message over all
forwarding routes relevant to that publisher, and the recipient
brokers will forward the message to the subscriber.

C. Coordinator Fault-Tolerance

To all other components of the system, including clients,
the coordinator appears to be a single node which is resilient
to failures; however, to construct a highly available system
the coordinator must be able to handle at least one node
failure. To ensure that the coordinator will be resilient in the
face of machine failure, we replicate its state across three
independent nodes. Each coordinator node runs an Etcd [18]
node, a reliable key-value store which internally uses the
Raft distributed consensus protocol [19] to provide strong
consistency semantics among its members. At any given time,
one coordinator is designated as the leader; this is the only
coordinator node which will accept messages from or send
messages to brokers. A single “leader” key is stored in Etcd;
whichever coordinator was able to create this key via an atomic
create-if-not-exists operation is considered the leader. The key
is marked with a time-to-live of a few seconds which is
continually refreshed by the leader; if the leader fails to refresh

Broker

Broker

Broker

Broker

Broker

Coordinator

Coordinator

Coordinator

MongoDB

MongoDB

MongoDBEtcd

Etcd Etcd

1.2.3.4

(1.1.1.1)

(2.2.2.2)

(3.3.3.3)

Master Coordinator

Coordinator/Broker Link
Broker Forwarding Link
Etcd Cluster

Wireless Sensor Mesh

Publish/Subscribe

SmartThermostat.c

Temperature
Alarm.py

Fig. 3: Overview of the architecture of our brokerage system. Numerous clients communicate to a set of decentralized brokers which create
a forwarding network between themselves as instructed by the centralized coordinator nodes.

Etcd Replicated Log

log/1 publisher
/id2

log/2 log/3 log/4 log/5publisher
/id9

subscriber
/id17

subscriber
/id4

Continuous Checkpointing Coordinator Log

Fig. 4: Although they live in separate key spaces, the log and the
continuous checkpointing are serialized via the Etcd log so that they
can be leveraged for a consistent rebuild.

its ownership of the key, the key will disappear, allowing
another replica to become the new leader.

To make this cluster of machines with potential leadership
changes appear to brokers and clients as a single machine,
we maintain one external IP address at which the current
leader can always be contacted (“1.2.3.4” in Figure 3) in
addition to the internal IP addresses which coordinators use to
communicate with each other (“1.1.1.1”, “2.2.2.2”, “3.3.3.3”).
Various mechanisms can be used to ensure that this IP address
always points to the correct coordinator; we run coordinator
nodes on Amazon Web Services (AWS) 4, which provides an
“Elastic IP” feature which allows for machine instances to
request that an IP be reassigned to them. Unfortunately the
Elastic IP feature of AWS has delay of approximately 10–15
seconds (measured during our own experiments) before new
requests are successfully routed to the correct host after the
mapping has changed; this is a limitation of AWS and not
fundamental to our protocol.

Every time a message is received from a broker, the leader
logs the message to Etcd to make it durable before processing.
The replicas watch this log, continually applying log entries

4https://aws.amazon.com/

to their state as if they received the message from a broker.
This ensures that replicas are always very close to update-to-
date with the state of the leader, lagging behind by only the
latency of a write-read pair through Etcd (on the order of tens
of milliseconds), making IP reassignment the only reason that
coordinator failover is not extremely fast. When the leader is
finished processing a message, it sends an acknowledgment
back to the originating broker. If the broker does not receive
an acknowledgment, it will resend the message. So, if a leader
writes a message to the log and crashes before finalizing its
processing, the broker will eventually resend the message to
the new leader, which ensures that the necessary operations
are eventually completed. Since messages are idempotent (e.g.
attempting to create the same forwarding route twice has no
effect the second time), it is acceptable for the new leader to
redo some actions that the old leader carried out.

In addition to storing a log of inbound messages, the leader
also stores the current state of each client and broker as a key-
value pair within Etcd. This is essentially a form of continuous
checkpointing which enables a newly instantiated coordinator
replica to quickly catch up to the state of the leader. Rather
than reading and executing the log from the beginning of time,
a new replica can read the current state of the system via
the client and broker keys up to some fixed point in time,
then resume reading the log from that same point in time.
To maintain consistency between the continuous checkpoint
and the log, we make use of the fact that Etcd internally
maintains a sequential log of events (a consequence of using
Raft). Each modification to the Etcd store is marked with
a revision number which indicates the order in which the
modifications occurred. By choosing some revision number
and reading all client/broker state up to and including that

revision, then reading all log entries after that revision, it is
ensured that the replica switches from reading the checkpoint
to reading the log in a consistent manner; see Figure 4. Note
that this works even if the client or broker key was overwritten
(i.e. if a change to the state occurred which was then written to
Etcd) because Etcd stores versioned copies of key-value pairs.

To clear old checkpoint versions and unnecessary log
entries, the leader periodically performs garbage collection.
Replicas periodically write the sequence number of the last
log entry they have processed to a specific key in Etcd. The
leader periodically checks these values and instructs Etcd to
delete entries which both replicas have already read, as well
as instructing Etcd to perform a “compaction” up to this point,
which removes old versions of keys which are no longer
needed.

D. Broker Fault-Tolerance

In addition to being resilient to coordinator failures, we
require that our system continue functioning and all clients
continue to be able to participate in the face of a broker failure.
To this end, and with low client complexity in mind as a
goal, we have designed a very simple fail-over protocol which
allows the client to continue to operate on another broker
during the period in which its local broker is not available.

In addition to being aware of its local broker as described
in Section IV-B, each client must know the external address
of the coordinator; this can be accomplished using the same
discovery method used to find the local broker. First, a client
attempts to contact its local broker, Broker A. If the client is
unable to do so, it sends a request to the coordinator, which
will supply it with the address of some other broker B which
can service its needs until Broker A is available again. The
client connects to Broker B and continues as usual. When
Broker A becomes available, the coordinator instructs Broker
B to sever its connection to the client, which will then attempt
to contact Broker A as usual. This can be summarized by the
following pseudocode:

whi le c l i e n t a c t i v e :
s u c c e s s := c o n n e c t t o (l o c a l b r o k e r a d d r e s s)
i f s u c c e s s :

/ / p r o c e s s . . .
e l s e :

b r o k e r a d d r := c o n n e c t t o g e t m e s s a g e (⤦
↪ c o o r d i n a t o r a d d r e s s)

s u c c e s s := c o n n e c t t o (b r o k e r a d d r)
i f n o t s u c c e s s :

c o n t in u e
/ / p r o c e s s . . .

E. Design Discussion

This design allows us to meet all of our goals. We have
high availability via fault tolerance for both broker and coor-
dinator failures. The necessary code for clients is very simple;
publishers need to know how to send publication messages,
subscribers need to know how to send query messages and
receive publication messages and subscription difference mes-
sages (e.g. publisher A just became relevant to your query),

Fig. 5: Microbenchmark: standalone CQBS broker forwarding la-
tency with increasing concurrency.

and both need to know how to ask the coordinator for a fail-
over broker. We also have scalability in terms of number of
messages that can be sent through the system by removing
any coordination from the normal message forwarding path,
which can be scaled arbitrarily with the number of brokers.

One aspect on which this design is lacking is that the coordi-
nator is a bottleneck for changes to the state of the system (i.e.
clients entering or leaving and publishers changing metadata).
We assume that in comparison to the rate of messages being
sent in the system, changes to the set of connected clients and
to the metadata associated with publishers is relatively slow,
so we consider this design to be acceptable. Part of the reason
for choosing this design was its relative simplicity; we have
considered two alternate designs which were considered and
which we hope to evaluate as future work (see Section VI-B)..

V. EVALUATION

Here we present the evaluation of a distributed CQBS
broker. All brokers and coordinators machines were chosen
to emulate commodity hardware; for CQBS to be an effective
solution, it must not rely on intractably large resources. Hence,
we chose to use the t2.medium AWS instance type with
2 vCPUs and 4 GB RAM, running Ubuntu 14.04. As we
will demonstrate below, the CQBS system is amenable to
commodity systems because its performance is limited by the
serialization of the etcd log, and not by memory, CPU, disk,
or network bandwidth.

A. Single-Broker Performance

First, we examine the latencies of the CQBS broker’s
forwarding mechanism in isolation—without the communi-
cation overhead imposed by the fully replicated system. We
run a single broker on a t2.medium instance, backed by
MongoDB. Using a ratio of 10 publishers to one subscriber,
we run three benchmarks with 1, 10 and 100 subscribers (with
10, 100 and 1,000 publishers accordingly). Each publisher
sends 5 messages per second; after the initial registration
message (marked by the high latencies at the beginning

Fig. 6: Microbenchmark: coordinator latency in the face of failures.
Red dots indicate running a single-node coordinator with no repli-
cation or fault tolerance; green dots indicate running a full three-
node coordinator with fault tolerance via Etcd. At the blue line at
approximately 280 seconds, the system switches from adding new
publishers to existing publishers changing their metadata. At the gap
seen in the replicated results at approximately 325 seconds, the leader
node of the coordinator cluster was shut down.

of each benchmark), each publisher sends only its stream
UUID and an increasing counter as its value. Each group of
publishers/subscribers use entirely isolated sets of keys, so
that they do not explicitly interfere with each other in the
broker. These three microbenchmarks are shown in Figure 5,
and demonstrate that the latency is fairly consistent as the
amount of concurrency scales.

The spikes in latency seen in the N = 1,10 graphs are due
to the pauses enacted by Go’s garbage collection. Fortunately,
these do not affect the vast majority of requests. For the
N = 1,10 cases, the mean latencies, 95th percentile laten-
cies and standard deviation are 4.67ms/4.85ms/0.55ms and
4.62ms/4.77ms/0.37ms respectively. For the N = 100 case,
the garbage collection becomes more visible in the variability
of response times, with mean, 95th percentile and standard
deviation latencies of 13.58ms/8.87ms/67.13ms. The troughs
in the N = 100 case are an odd phenomenon, most likely
caused by garbage collection in the single Go process used to
generate the 100 subscribers and 1000 publishers, generating
approximately 5000 messages per second.

The microbenchmark demonstrates that a single broker
can quite easily handle a constant load of publishers and
subscribers with low latency, even on commodity hardware.

B. Coordinator Performance

Next we examine the latency of the central coordinator’s
query evaluation and decision making processes. We run the
coordinator in two different modes; one with a single-machine
coordinator which has no fault tolerance and does not use Etcd,
and one with a full three-node coordinator cluster which is
fully replicated via Etcd. In both cases the coordinator nodes
are run on t2.medium instances. We start 10 “dummy”
brokers which act as if they have publishers and subscribers
attached to them. These brokers load the system with a total of

500 subscribers, each of which subscribes to 10% of the total
publishers in the system at any given time. At the start of
the experiment there are no publishers in the system. New
publishers are added to the system at intervals uniformly
randomly spread between 50 and 500ms, until there are a
total of 1000 publishers in the system. At this point, no new
publishers enter the system, but the existing publishers start to
change their metadata at the same frequency, causing the set
of subscribers to which they are relevant to change over time.
We measure the latency of handling the new publisher joining
the system, which is defined as the time elapsed between when
the publication message is first sent to the coordinator until
the time at which a subscriber receives a notification about the
new publisher’s presence.

In the case of the fully replicated coordinator cluster, we
also force the leader of the cluster to fail, causing one of the
replicas to become the new leader, and causing all brokers to
have to reconnect to this new leader.

Latency results are shown in Figure 6; each dot represents
the latency from the viewpoint of a subscriber which received
a notification about a new publisher. For the replicated and
unreplicated cases respectively, the mean and 95th latencies
are 95.5ms/191.2ms and 24.7ms/57.3ms. We see that in
both the replicated and unreplicated cases, latency increases
as more and more publishers are added to the system (before
280 seconds), and levels off once the publishers are only
changing their metadata (after 280 seconds). We also see that
the unreplicated coordinator is over an order of magnitude
faster in the best cases, and the highest latencies experienced
by the unreplicated coordinator are similar to the lowest
latencies experienced by the replicated coordinator. No request
to the replicated coordinator takes less than 30–40ms, which
is approximately the latency of an Etcd store operation in
our experimental setup. This is indicative of the fact that the
serialization process through Etcd is a significant bottleneck
in our system that severely limits throughput and degrades
latency, and indicates that moving Etcd storage farther from
the hot path of coordinator decisions could be very beneficial;
this is discussed further in Section VI-B.

At approximately 325 seconds we force one of the leaders to
fail. This can be seen on the plot as a gap in latencies, since no
messages could be sent during this time. The approximately 15
seconds for brokers to reconnect is primarily due to the latency
of switching over the Elastic IP address via Amazon AWS API
calls, as discussed in Section IV-C. The large spike in a small
number of latencies immediately following is due to the fact
that some brokers were able to reconnect more quickly, so
they began sending messages destined for brokers which had
not yet reconnected. However, once all brokers were able to
reconnect, we see that the system is able to settle back into a
stable state with reasonable levels of latency.

C. Full-System Performance

To evaluate the overhead of the continuous syndication
mechanism, we construct a three broker, three coordinator
cluster, with every component running on a different ma-

Fig. 7: Benchmark: forwarding latency with 30 subscribers and
360 publishers in a 3 broker, 3 coordinator system. Each publisher
changes metadata every 30–60 seconds, causing the broker to reeval-
uate roughly a third of all subscriptions every few seconds.

chine. We then introduce 10 subscribers at every broker; each
subscribes to 4 local publishers (same broker) and 4 remote
publishers at each of the other two brokers for a total of 12
subscriptions. In total, there are 120 publishers per broker, with
a total of 30 subscribers and 360 publishers in the benchmark.
Each publisher changes its metadata every 30–60 seconds,
causing the publishers to cycle among the subscribers. The
results are illustrated in Figure 7, which illustrates the limita-
tions of serializing the processing of all metadata changes and
coordinator updates. While the 95th percentile latency is only
7.59ms, the mean latency over the experiment was 129.60ms
with a standard deviation of 891ms. This variability is caused
when several metadata updates arrive at the coordinator in
quick succession: the coordinator buffers these changes until it
can process them sequentially, making sure that the forwarding
tables are correct and consistent. Because no related messages
can be forwarded until the forwarding changes are known,
a queue of metadata changes causes cascading delays until
the system can catch up. This phenomenon is most prominent
around samples 800, 1500, 3000 and 4000. The “waterfall” at
the beginning of the stream is caused by all 30 subscribers
and 360 publishers querying and registering at the same time,
placing a large load on MongoDB and the etcd log.

When considered in conjunction with the microbenchmark
above, it is clear that the serialization of the metadata changes
and coordinator updates is the limiting factor in system
performance. However, in the authors’ experience with real
world sensor systems using similar systems, these high rates
of change are rarely seen: it is important to note that these
loads are intentionally unrealistic to find the bottlenecks in
the system.

D. Client Complexity

One goal of this system was to maintain a low level of client
complexity. To evaluate this, we have written clients in the Go
and Python languages. Publishers are capable of publishing

TABLE II: Lines of non-comment, non-whitespace code used to
implement programmable clients in Python and Go. Base Code is
the basic code necessary to communicate with the system, Failover
is the code necessary to communicate with the coordinator to handle
broker failures, and Subscriber/Publisher are the code necessary to
implement subscriber- and publisher-specific functionality on top of
the shared code.

Language Base Code Failover Subscriber Publisher Total
Go 175 111 65 69 420

Python 105 60 28 33 226

values and modifying their metadata, and subscribers are
capable of submitting queries and attacking handler functions
to respond to inbound published messages and notifications
about changes to the set of publishers which they are currently
subscribed to. Both types of clients are capable of contacting
the coordinator to seamlessly handle the failure of their local
broker.

We present figures for the number of lines of code necessary
to create clients in both Go and Python in Table II. The
Python client was easily developed in under one day of effort,
indicative of the simple nature of the communication protocol
and the ease with which it could be implemented on any
number of platforms and devices. In this regard we consider
ourselves highly successful, providing very high availability
while managing to require extremely simple client logic.

VI. FUTURE WORK

A. Comparative Evaluation

While researching previous systems, we found many that
purport to solve similar problems or had similar approaches
(Section II); however, many of these systems are difficult
to evaluate for at least one of the following reasons: they
are an aging research system that no longer has an actively
maintained codebase, the distributed nature was never fully
explained or implemented, or most commonly, emulating the
desired behavior to directly compare to our CQBS system
involved an inordinate amount of implementation. For these
reasons, we decided to focus our evaluation on the behavior
of our own system, and defer an explorative comparison to
other systems for future work.

B. Alternate Designs

Currently, a full Raft transaction is performed through Etcd
on every change to the system state. While this provided a
relatively simple design with strong consistency guarantees, it
incurs a rather high latency that does not parallelize due to
the serial nature of Raft transactions. One alternate method
to explore would be to use Raft only for leader elections, and
have the leader stream events directly to the other coordinators
rather than submitting them to the Etcd log. It may be possible
to achieve higher throughput using, for example, a 2-phase
commit protocol.

Currently, the full state of the system is stored only at
the coordinator, which can become a scalability bottleneck.
We have considered one alternate design which is essentially
the opposite of this, with the coordinator storing no system

state beyond the set of connected brokers. On inbound queries
and metadata changes, a broker would broadcast to all other
brokers, allowing them to evaluate the changes and set up new
forwarding routes as necessary. This is unfortunately expensive
as it requires a broadcast, but it does away with the necessity
for replication via Etcd since brokers can recreate the state
of their system via information they receive when clients
reconnect to them, which may be a desirable tradeoff.

Another option we considered that provides a tradeoff
between our current design and the one described above would
be to have each broker store only its own state, and have the
coordinator store only some sort of heuristic data. A broker
would forward messages to the coordinator, which would not
contain the full system state, but have enough information
to narrow the possibly affected brokers to a smaller subset
as opposed to having to broadcast to the entire system.
This could, perhaps, mean storing ranges of metadata values
that publishers at brokers contain. This pushes off the query
processing effort onto the brokers and avoids full system
broadcasts, making it scalable, but unfortunately still requires
the coordinator to have a consistent view of the system to
avoid the situation where the coordinator doesn’t forward a
message to a broker which it should have. However, as this
view of the system is only required for performance rather
than correctness (since all messages could still be broadcast),
it may prove to be a desirable point in the design space.

VII. CONCLUSION

This paper presents the design and implementation of a
distributed broker that implements continuous query-based
syndication over richly-defined streams. The CQBS broker,
which is implemented in Go, offers more expressive power
while remaining tractable to implement on embedded, con-
strained clients typical of the Internet of Things. CQBS strikes
a middle ground between the fast but restricted descriptive
power of topic-based pub-sub systems and the rich descriptive
power but heavyweight nature of content-based pub-sub. On
top of this, we demonstrate how the system can be made highly
available using a logically-centralized replicated coordinator to
maintain consistency between distributed brokers.

REFERENCES

[1] redislabs, Salvatore Sanfilippo, “redis pubsub,”
http://redis.io/topics/pubsub, 2016.

[2] D. Locke, “Mq telemetry transport (mqtt) v3. 1 protocol specification,”
IBM developerWorks Technical Library], available at http://www. ibm.
com/developerworks/webservices/library/ws-mqtt/index. html, 2010.

[3] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-SA publish/-
subscribe protocol for Wireless Sensor Networks,” in Communication
systems software and middleware and workshops, 2008. comsware 2008.
3rd international conference on. IEEE, 2008, pp. 791–798.

[4] P. Saint-Andre, “Extensible messaging and presence protocol (xmpp):
Core,” 2011.

[5] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing.” NetDB, 2011.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Achieving scalability
and expressiveness in an internet-scale event notification service,” in
Proceedings of the nineteenth annual ACM symposium on Principles of
distributed computing. ACM, 2000, pp. 219–227.

[7] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java
message service,” Sun Microsystems Inc., Santa Clara, CA, 2002.

[8] S. Vinoski, “Corba: integrating diverse applications within dis-
tributed heterogeneous environments,” Communications Magazine,
IEEE, vol. 35, no. 2, pp. 46–55, 1997.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[10] A. Rowe, M. E. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. H.
Garrett Jr, J. M. Moura, and L. Soibelman, “Sensor andrew: Large-
scale campus-wide sensing and actuation,” IBM Journal of Research
and Development, vol. 55, no. 1.2, pp. 6–1, 2011.

[11] P. Millard, P. Saint-Andre, and R. Meijer, “Xep-0060: Publish-
subscribe,” XMPP Standards Foundation, vol. 1, p. 13, 2010.

[12] M. Horstmann and M. Kirtland, “Dcom architecture,” Microsoft Corpo-
ration, July, 1997.

[13] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic sensor web,” Internet
Computing, IEEE, vol. 12, no. 4, pp. 78–83, 2008.

[14] “Go Programming Language,” http://golang.org/.
[15] M. Welsh, D. Culler, and E. Brewer, “Seda: an architecture for well-

conditioned, scalable internet services,” ACM SIGOPS Operating Sys-
tems Review, vol. 35, no. 5, pp. 230–243, 2001.

[16] D. Vyukov, “Go Escape Analysis Flaws,”
https://docs.google.com/document/d/1CxgUBPlx9iJzkz9JWkb6tIpTe5
q32QDmz8l0BouG0Cw/preview, February 2015.

[17] MongoDB Inc., “MongoDB,” https://www.mongodb.com, 2016.
[18] CoreOS, “Etcd,” https://coreos.com/etcd/, 2016.
[19] D. Ongaro and J. Ousterhout, “In search of an understandable consensus

algorithm,” in Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIX ATC’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 305–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2643634.2643666

