
EECS 262a
Advanced Topics in Computer Systems

Lecture 26

seL4 Kernel verification
April 27th, 2016

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

4/27/2016 2cs262a-S16 Lecture-26

Today’s Paper
• seL4: Formal Verification of an OS Kernel, Gerwin Klein, Kevin

Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, Simon Winwood. Appeared in Proceedings of
the ACM Symposium on Operating Systems Principles, 2009

• Thoughts?

4/27/2016 3cs262a-S16 Lecture-26

Microkernel Structure

• Moves as much from the kernel into “user” space
– Small core OS running at kernel level
– OS Services built from many independent user-level processes
– Communication between modules with message passing

• Benefits:
– Easier to extend a microkernel
– Easier to port OS to new architectures
– More reliable (less code is running in kernel mode)
– Fault Isolation (parts of kernel protected from other parts)
– More secure

• Detriments:
– Performance overhead severe for naïve implementation

Figure ©Wikipedia

M
on

ol
it
hi
c

Ke
rn

el

M
icrokernel

4/27/2016 4cs262a-S16 Lecture-26

On the cost of micro-kernels:

• Above: Ultrix (TAN) vs Mach (Reddish-brown)
• Cost of external pagers: page fault of first-generation microkernels

took up to 1000µs!
• See optional paper “Toward Real Microkernels” by Leidtke
• After many iterations, L4 became a “best-in-class” microkernel

– Fast IPC
– Better resource control than simple pagers (“Address Space Managers”)
– Other optimizations

4/27/2016 5cs262a-S16 Lecture-26

L4 MicroKernel

• Original L4 kernel: Jochen Liedtke
– Derived from L3 kernel
– Developed at GMD (Germany)
– Designed to have fast IPC, better memory management,

• Picked up in several commercial usages

4/27/2016 6cs262a-S16 Lecture-26

Layers of Proof Techniques

• Results (including follow-on results)
– Functional correctness verification in Isabelle/HOL framework
– Functional correctness for hand-optimized IPC
– Correctness of access-control enforcement
– Automatic poof of refinement between compiled binary and C implementation
– Automatic static analysis of worst-case execution time for sys calls

4/27/2016 7cs262a-S16 Lecture-26

In a nutshell

• Apply automatic techniques for “proof” of correctness
– Series of refinements from Abstract Specification  Executable

Specification  C implementation
– Utilized Isabelle/HOL theorem prover

• Three different implementations
– Spanning “obvious to humans” and “efficient”

4/27/2016 8cs262a-S16 Lecture-26

Three Implementations
• Abstract Specification: Isabelle/HOL code

– Describes what system does without saying how it is done
– Written as series of assertions about what should be true

• Executable Specification: Haskel
– Fill in details left open at abstract level
– Specify how the kernel works (as opposed to what I does)
– Deterministic execution (except for underlying machine)
– Data structures have explicit data types
– Controlled subset of Haskel

• The Detailed Implementation: C
– Translation from C into Isabelle requires controlled subset of C99

» No address-of operator & on local (stack) variables
» Only 1 function call in expressions or need proof of side-effect freedom
» No function calls through pointers
» No goto, switch statements with fall-through

• Machine model: need model of how hardware behaves

4/27/2016 9cs262a-S16 Lecture-26

Example: Scheduling

• Figure 3: Isabell/High-
order logic (HOL)
code for scheduler at
abstract level

• Figure 4: Haskell Code for Scheduler

4/27/2016 10cs262a-S16 Lecture-26

Challenges
• Smaller Kernel  Increased

Interdependence of components
– Radical size reduction in microkernel

leads to high degree of dependence of
remaining components

– Proof techniques still possible

• Design special versions of each
of the languages

• Design multiple implementations
each in different languages

• Huge number of invariants is moving from Abstract
specification to Executable specification

– Low-level memory invariants
– Typing invariants
– Data structure Invariants
– Algorithmic Invariants

4/27/2016 11cs262a-S16 Lecture-26

Experience and Lessons Learned
• Performance

– Optimized IPC path is well performing (via micro-benchmarks)
– Other performance not characterized in this paper

• Verification effort: extremely high!
– Three phases, each with non-trivial effort
– Overall size of proof (including automatically generated proofs):

200,000 lines of Isabelle script
– Abstract Spec: 4 person months (4 pm)
– Haskell prototype: 2 person years (2 py)
– Executable spec translated from Haskel prototype: 3 pm
– Initial C translation+implementation: 2pm
– Cost of the proof: 20py (seL4 specific, 11py)

• What about future: 8py for new kernel from scratch!
• Cost of change

– Simple or independent small features not huge, say 1 person week
– Cost to add new features can be very large: up to 2py!

4/27/2016 12cs262a-S16 Lecture-26

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

4/27/2016 13cs262a-S16 Lecture-26

Final Project Timing
• Poster Session:

– Next Thursday (5/5) from 10:30 – 12:30
– Plan on staying whole time, but might be shorter

• Final paper:
– Due Tuesday 5/10 @ AOE (by 5am)
– 10 pages, 2- column, conference format
– Must have a related work section!
– Also, plan on a future work and/or discussion section
– Make sure that your METRICs of success are clear and available

4/27/2016 14cs262a-S16 Lecture-26

Thank you! You have all been great!

