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Today’s Papers
• The Byzantine Generals Problem, Leslie Lamport, Robert Shostak, and 

Marshall Pease. Appears in ACM Transactions on Programming Languages 
and Systems (TOPLAS), Vol. 4, No. 3, July 1982, pp 382-401 

• Practical Byzantine Fault Tolerance, M. Castro and B. Liskov. Appears In 
Proceedings of the USENIX Symposium on Operating Systems Design and 
Implementation (OSDI), 1999.

• Thoughts?
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Motivation

• Coping with failures in computer systems
• Failed component sends conflicting information to 

different parts of system.
• Agreement in the presence of faults.
• P2P Networks?

– Good nodes have to “agree to do the same thing”.
– Faulty nodes generate corrupted and misleading 

messages.
– Non-malicious: Software bugs, hardware failures, 

power failures
– Malicious reasons: Machine compromised.
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Problem Definition
• Generals = Computer Components
• The abstract problem…

– Each division of Byzantine army is directed by its own general. 
– There are n Generals, some of which are traitors.
– All armies are camped outside enemy castle, observing enemy.
– Communicate with each other by messengers.
– Requirements: 

» G1: All loyal generals decide upon the same plan of action
» G2: A small number of traitors cannot cause the loyal generals to 

adopt a bad plan
– Note: We do not have to identify the traitors.
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Recall: The Path of an OceanStore Update
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Recall: Archival Dissemination of Fragments
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Differing Degrees of Responsibility

• Inner-ring provides quality of service
– Handles of live data and write access control
– Focus utility resources on this vital service
– Compromised servers must be detected quickly
– Byzantine Agreement important here!

• Caching service can be provided by anyone
– Data encrypted and self-verifying
– Pay for service “Caching Kiosks”?

• Archival Storage and Repair
– Read-only data: easier to authenticate and repair
– Tradeoff redundancy for responsiveness

• Could be provided by different companies!
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Naïve solution

• ith general sends v(i) to all other generals 
• To deal with two requirements:

– All generals combine their information v(1), v(2), .., v(n) 
in the same way

– Majority (v(1), v(2), …, v(n)), ignore minority traitors
• Naïve solution does not work:

– Traitors may send different values to different generals.
– Loyal generals might get conflicting values from traitors

• Requirement: Any two loyal generals must use the same 
value of v(i) to decide on same plan of action.
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Reduction of General Problem

• Insight: We can restrict ourselves to the problem of one 
general sending its order to others.

• Byzantine Generals Problem (BGP): 
– A commanding general (commander) must send an order to his 

n-1 lieutenants. 
• Interactive Consistency Conditions:

– IC1: All loyal lieutenants obey the same order.
– IC2: If the commanding general is loyal, then every loyal 

lieutenant obeys the order he sends.
• Note: If General is loyal, IC2  IC1.
• Original problem: each general sends his value v(i) by 

using the above solution, with other generals acting as 
lieutenants.
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3-General Impossibly Example

• 3 generals, 1 traitor among them.
• Two messages: Attack or Retreat
• Shaded – Traitor 
• L1 sees (A,R). Who is the traitor? C or L2?
• Fig 1: L1 has to attack to satisfy IC2.
• Fig 2: L1 attacks, L2 retreats. IC1 violated.
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General Impossibility

• In general, no solutions with fewer than 3m+1 
generals can cope with m traitors.

• Proof by contradiction.
– Assume there is a solution for 3m Albanians with m 

traitors.
– Reduce to 3-General problem.

- Solution to 3m 
problem => Solution 
to 3-General 
problem!!
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Solution I – Oral Messages

• If there are 3m+1 generals, solution allows up to m traitors. 
• Oral messages – the sending of content is entirely under 

the control of sender.
• Assumptions on oral messages:

– A1 – Each message that is sent is delivered correctly.
– A2 – The receiver of a message knows who sent it.
– A3 – The absence of a message can be detected.

• Assures:
– Traitors cannot interfere with communication as third party.
– Traitors cannot send fake messages
– Traitors cannot interfere by being silent.

• Default order to “retreat” for silent traitor.
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Oral Messages (Cont)
• Algorithm OM(0)

– Commander send his value to every lieutenant.
– Each lieutenant (L) use the value received from commander, or 

RETREAT if no value is received.

• Algorithm OM(m), m>0
– Commander sends his value to every Lieutenant (vi)
– Each Lieutenant acts as commander for OM(m-1) and sends vi to 

the other n-2 lieutenants (or RETREAT)
– For each i, and each j ≠ i,  let vj be the value lieutenant i receives 

from lieutenant j in step (2) using OM(m-1). Lieutenant i uses the 
value majority (v1, …, vn-1). 

– Why j ≠ i? “Trust myself more than what others said I said.”
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Restate Algorithm

• OM(M):
– Commander sends out command.
– Each lieutenant acts as commander in OM(m-1). 

Sends out command to other lieutenants.
– Use majority to compute value based on commands 

received by other lieutenants in OM(m-1)
• Revisit Interactive Consistency goals:

– IC1: All loyal lieutenants obey the same command.
– IC2: If the commanding general is loyal, then every 

loyal lieutenant obeys the command he sends.
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Example (n=4, m=1)

• Algorithm OM(1): L3 is a traitor.

• L1 and L2 both receive v,v,x. (IC1 is met.)

• IC2 is met because L1 and L2 obeys C
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Example (n=4, m=1)

• Algorithm OM(1): Commander is a traitor.

• All lieutenants receive x,y,z. (IC1 is met).

• IC2 is irrelevant since commander is a traitor.
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Expensive Communication
• OM(m) invokes n-1 OM(m-1)
• OM(m-1) invokes n-2 OM(m-2)
• OM(m-2) invokes n-3 OM(m-3)
• …
• OM(m-k) will be called (n-1)…(n-k) times
• O(nm) – Expensive!
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Solution II: Signed messages

• Previous algorithm allows a traitor to lie about the 
commander’s orders (command). We prevent that 
with signatures to simplify the problem.

• By simplifying the problem, we can cope with any 
number of traitors as long as their maximum number 
(m) is known.

• Additional Assumption A4:
– A loyal general’s signature cannot be forged.
– Anyone can verify authenticity of general’s signature.

• Use a function choice(…) to obtain a single order
– choice(V) = v if v if the only elem. in V
– choice(V) = RETREAT if V is empty
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Signed Messages (Cont)
• Each lieutenant maintains a set V of properly signed 

orders received so far.
• The commander sends a signed order to lieutenants  
• A lieutenant receives an order from someone (either from 

commander or other lieutenants),
– Verifies authenticity and puts it in V. 
– If there are less than m distinct signatures on the order

» Augments orders with signature
» Relays messages to lieutenants who have not seen the order.

• When lieutenant receives no new messages, and use 
choice(V) as the desired action. 

• If you want to protect against more traitors, increase m
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Algorithm’s Intuition

• All loyal lieutenants compute the same set of V 
eventually, thus choice(V) is the same (IC1)

• If the commander is loyal, the algorithm works 
because all loyal lieutenants will have the properly 
signed orders by round 1 (IC2)

• What if the commander is not loyal? 

V = “attack, retreat” => Commander is a 
traitor.
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Missing Communication Paths
• What if not all generals can reach all other generals 

directly?
• P-regular graph – Each node has p regular neighbors.
• 3m-regular graph has minimum of 3m+1 nodes
• Paper shows algorithm for variant of oral message 

algorithm – OM(m,p). Essentially same algorithm except 
that each lieutenant forwards orders to neighbors.

• Proofs that OM(m,3m) solves BGP for at most m traitors.
• I.e. if the communication graph is 3m-regular, and there 

are at most m traitors, the problem can still be solved.
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?
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BREAK
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Bad Assumption: Benign Faults

• Traditional replication assumes:
– replicas fail by stopping or omitting steps

• Invalid with malicious attacks:

– compromised replica may behave arbitrarily
– single fault may compromise service
– decreased resiliency to malicious attacks

client

server

replicas
attacker replaces

replica’s code
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BFT Tolerates Byzantine Faults

• Byzantine fault tolerance: 
– no assumptions about faulty behavior

• Tolerates successful attacks
– service available when hacker controls replicas

client

server

replicas
attacker replaces

replica’s code
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Byzantine-Faulty Clients
• Bad assumption: client faults are benign

– clients easier to compromise than replicas 

• BFT tolerates Byzantine-faulty clients:
– access control
– narrow interfaces
– enforce invariants

• Support for complex service operations is important

server

replicas

attacker replaces

client’s code
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Bad Assumption: Synchrony
• Synchrony  known bounds on:

– delays between steps
– message delays

• Invalid with denial-of-service attacks:
– bad replies due to increased delays 

• Assumed by most Byzantine fault tolerance
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Asynchrony
• No bounds on delays
• Problem: replication is impossible

Solution in BFT:
• provide safety without synchrony

– guarantees no bad replies

• assume eventual time bounds for liveness
– may not reply with active denial-of-service attack
– will reply when denial-of-service attack ends 
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Algorithm Properties
• Arbitrary replicated service

– complex operations 
– mutable shared state

• Properties (safety and liveness):
– system behaves as correct centralized service
– clients eventually receive replies to requests

• Assumptions:
– 3f+1 replicas to tolerate f Byzantine faults (optimal)
– strong cryptography
– only for liveness: eventual time bounds

clients

replicas
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State machine replication:
– deterministic replicas start in same state
– replicas execute same requests in same order
– correct replicas produce identical replies

• Hard: ensure requests execute in same order

Algorithm 

replicasclient
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Ordering Requests

Primary-Backup:
• View designates the primary replica

• Primary picks ordering
• Backups ensure primary behaves correctly

– certify correct ordering
– trigger view changes to replace faulty primary

view

replicasclient
primary backups
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Rough Overview of Algorithm

• A client sends a request for a service to the 
primary

replicasclient
primary backups
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Rough Overview of Algorithm

• A client sends a request for a service to the 
primary

• The primary mulicasts the request to the backups

replicasclient
primary backups
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Rough Overview of Algorithm

• A client sends a request for a service to the 
primary

• The primary mulicasts the request to the backups
• Replicas execute request and sent a reply to the 

client

replicasclient
primary backups
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Rough Overview of Algorithm

• A client sends a request for a service to the 
primary

• The primary mulicasts the request to the backups
• Replicas execute request and sent a reply to the 

client
• The client waits for f+1 replies from different 

replicas with the same result; this is the result of 
the operation 

view

replicasclient
primary backups

f+1 matching 
replies
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Quorums and Certificates

3f+1 replicas

quorums have at least 2f+1 replicas

quorum A quorum B

quorums intersect in at least one correct replica

• Certificate = set with messages from a quorum

• Algorithm steps are justified by certificates
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Algorithm Components
• Normal case operation

• View changes

• Garbage collection

• Recovery

All have to be designed to work together
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Normal Case Operation

• Three phase algorithm:
– pre-prepare picks order of requests
– prepare ensures order within views
– commit ensures order across views

• Replicas remember messages in log

• Messages are authenticated 
– •(k) denotes a message sent by k
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Pre-prepare Phase

request : m

assign sequence number n to request m in view v

primary = replica 0

replica 1

replica 2

replica 3
fail

multicast <PRE-PREPARE,v,n,m>(0)

backups accept pre-prepare if:

• in view v

• never accepted pre-prepare for v,n with different request
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Prepare Phase

m pre-prepare prepare
replica 0

replica 1

replica 2

replica 3 fail

multicast <PREPARE,v,n,D(m),1>(1)

digest of m

accepted �PRE-PREPARE,v,n,m��0

all collect pre-prepare and 2f matching 
prepares

P-certificate(m,v,n)
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Order Within View

If it were false: 
replicas

quorum for

P-certificate(m’,v,n)
quorum for

P-certificate(m,v,n)

one correct replica in common  m = m’

No P-certificates with the same view and 
sequence number and different requests
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Commit Phase

Request m executed after:

• having  C-certificate(m,v,n)

• executing requests with sequence number less than n

replica has 
P-certificate(m,v,n)

m pre-prepare prepare

replica 0

replica 1

replica 2

replica 3 fail

commit
multicast <COMMIT,v,n,D(m),2>(2)

all collect 2f+1 matching commits

C-certificate(m,v,n)

replies
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View Changes

• Provide liveness when primary fails: 

– timeouts trigger view changes
– select new primary ( view number mod 3f+1)

• But also need to: 
– preserve safety
– ensure replicas are in the same view long enough
– prevent denial-of-service attacks
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View Change Protocol

replica 0 = primary 
v
replica 1= primary v+1

replica 2

replica 3

fail

send P-certificates: <VIEW-CHANGE,v+1,P,2>(2)

primary collects 

VC-messages in X: <NEW-VIEW,v+1,X,O>(1)

pre-prepares messages 

for v+1 view in O with the same sequence number
backups multicast prepare messages for pre-prepares in O

2f VC messages
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View Change Safety

• Intuition: if replica has C-certificate(m,v,n) then

any quorum Q
quorum for

C-certificate(m,v,n)

correct replica in Q has P-certificate(m,v,n)

Goal: No C-certificates with the same 
sequence number and different requests
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BFS: A Byzantine-Fault-Tolerant NFS

No synchronous writes – stability through replication

andrew
benchmark

kernel NFS client

relay

replication
library

snfsd
replication
library

kernel VM

snfsd
replication
library

kernel VM

replica 0

replica n
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Andrew Benchmark
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• BFS-nr is exactly like BFS but without replication

• 30 times worse with digital signatures

Configuration
• 1 client, 4 replicas

• Alpha 21064, 133 MHz

• Ethernet 10 Mbit/s
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BFS is Practical

0

10

20

30

40

50

60

70

BFS NFS

• NFS is the Digital Unix NFS V2 implementation

Configuration
• 1 client, 4 replicas

• Alpha 21064, 133 MHz

• Ethernet 10 Mbit/s

• Andrew benchmarkEl
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?


