
EECS 262a
Advanced Topics in Computer Systems

Lecture 25

Byzantine Agreement
April 25th, 2016
John Kubiatowicz

Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

4/25/2016 2cs262a-S16 Lecture-25

Today’s Papers
• The Byzantine Generals Problem, Leslie Lamport, Robert Shostak, and

Marshall Pease. Appears in ACM Transactions on Programming Languages
and Systems (TOPLAS), Vol. 4, No. 3, July 1982, pp 382-401

• Practical Byzantine Fault Tolerance, M. Castro and B. Liskov. Appears In
Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 1999.

• Thoughts?

4/25/2016 3cs262a-S16 Lecture-25

Motivation

• Coping with failures in computer systems
• Failed component sends conflicting information to

different parts of system.
• Agreement in the presence of faults.
• P2P Networks?

– Good nodes have to “agree to do the same thing”.
– Faulty nodes generate corrupted and misleading

messages.
– Non-malicious: Software bugs, hardware failures,

power failures
– Malicious reasons: Machine compromised.

4/25/2016 4cs262a-S16 Lecture-25

Problem Definition
• Generals = Computer Components
• The abstract problem…

– Each division of Byzantine army is directed by its own general.
– There are n Generals, some of which are traitors.
– All armies are camped outside enemy castle, observing enemy.
– Communicate with each other by messengers.
– Requirements:

» G1: All loyal generals decide upon the same plan of action
» G2: A small number of traitors cannot cause the loyal generals to

adopt a bad plan
– Note: We do not have to identify the traitors.

4/25/2016 5cs262a-S16 Lecture-25

Recall: The Path of an OceanStore Update

4/25/2016 6cs262a-S16 Lecture-25

Recall: Archival Dissemination of Fragments

4/25/2016 7cs262a-S16 Lecture-25

Differing Degrees of Responsibility

• Inner-ring provides quality of service
– Handles of live data and write access control
– Focus utility resources on this vital service
– Compromised servers must be detected quickly
– Byzantine Agreement important here!

• Caching service can be provided by anyone
– Data encrypted and self-verifying
– Pay for service “Caching Kiosks”?

• Archival Storage and Repair
– Read-only data: easier to authenticate and repair
– Tradeoff redundancy for responsiveness

• Could be provided by different companies!

4/25/2016 8cs262a-S16 Lecture-25

Naïve solution

• ith general sends v(i) to all other generals
• To deal with two requirements:

– All generals combine their information v(1), v(2), .., v(n)
in the same way

– Majority (v(1), v(2), …, v(n)), ignore minority traitors
• Naïve solution does not work:

– Traitors may send different values to different generals.
– Loyal generals might get conflicting values from traitors

• Requirement: Any two loyal generals must use the same
value of v(i) to decide on same plan of action.

4/25/2016 9cs262a-S16 Lecture-25

Reduction of General Problem

• Insight: We can restrict ourselves to the problem of one
general sending its order to others.

• Byzantine Generals Problem (BGP):
– A commanding general (commander) must send an order to his

n-1 lieutenants.
• Interactive Consistency Conditions:

– IC1: All loyal lieutenants obey the same order.
– IC2: If the commanding general is loyal, then every loyal

lieutenant obeys the order he sends.
• Note: If General is loyal, IC2  IC1.
• Original problem: each general sends his value v(i) by

using the above solution, with other generals acting as
lieutenants.

4/25/2016 10cs262a-S16 Lecture-25

3-General Impossibly Example

• 3 generals, 1 traitor among them.
• Two messages: Attack or Retreat
• Shaded – Traitor
• L1 sees (A,R). Who is the traitor? C or L2?
• Fig 1: L1 has to attack to satisfy IC2.
• Fig 2: L1 attacks, L2 retreats. IC1 violated.

4/25/2016 11cs262a-S16 Lecture-25

General Impossibility

• In general, no solutions with fewer than 3m+1
generals can cope with m traitors.

• Proof by contradiction.
– Assume there is a solution for 3m Albanians with m

traitors.
– Reduce to 3-General problem.

- Solution to 3m
problem => Solution
to 3-General
problem!!

4/25/2016 12cs262a-S16 Lecture-25

Solution I – Oral Messages

• If there are 3m+1 generals, solution allows up to m traitors.
• Oral messages – the sending of content is entirely under

the control of sender.
• Assumptions on oral messages:

– A1 – Each message that is sent is delivered correctly.
– A2 – The receiver of a message knows who sent it.
– A3 – The absence of a message can be detected.

• Assures:
– Traitors cannot interfere with communication as third party.
– Traitors cannot send fake messages
– Traitors cannot interfere by being silent.

• Default order to “retreat” for silent traitor.

4/25/2016 13cs262a-S16 Lecture-25

Oral Messages (Cont)
• Algorithm OM(0)

– Commander send his value to every lieutenant.
– Each lieutenant (L) use the value received from commander, or

RETREAT if no value is received.

• Algorithm OM(m), m>0
– Commander sends his value to every Lieutenant (vi)
– Each Lieutenant acts as commander for OM(m-1) and sends vi to

the other n-2 lieutenants (or RETREAT)
– For each i, and each j ≠ i, let vj be the value lieutenant i receives

from lieutenant j in step (2) using OM(m-1). Lieutenant i uses the
value majority (v1, …, vn-1).

– Why j ≠ i? “Trust myself more than what others said I said.”

4/25/2016 14cs262a-S16 Lecture-25

Restate Algorithm

• OM(M):
– Commander sends out command.
– Each lieutenant acts as commander in OM(m-1).

Sends out command to other lieutenants.
– Use majority to compute value based on commands

received by other lieutenants in OM(m-1)
• Revisit Interactive Consistency goals:

– IC1: All loyal lieutenants obey the same command.
– IC2: If the commanding general is loyal, then every

loyal lieutenant obeys the command he sends.

4/25/2016 15cs262a-S16 Lecture-25

Example (n=4, m=1)

• Algorithm OM(1): L3 is a traitor.

• L1 and L2 both receive v,v,x. (IC1 is met.)

• IC2 is met because L1 and L2 obeys C

4/25/2016 16cs262a-S16 Lecture-25

Example (n=4, m=1)

• Algorithm OM(1): Commander is a traitor.

• All lieutenants receive x,y,z. (IC1 is met).

• IC2 is irrelevant since commander is a traitor.

4/25/2016 17cs262a-S16 Lecture-25

Expensive Communication
• OM(m) invokes n-1 OM(m-1)
• OM(m-1) invokes n-2 OM(m-2)
• OM(m-2) invokes n-3 OM(m-3)
• …
• OM(m-k) will be called (n-1)…(n-k) times
• O(nm) – Expensive!

4/25/2016 18cs262a-S16 Lecture-25

Solution II: Signed messages

• Previous algorithm allows a traitor to lie about the
commander’s orders (command). We prevent that
with signatures to simplify the problem.

• By simplifying the problem, we can cope with any
number of traitors as long as their maximum number
(m) is known.

• Additional Assumption A4:
– A loyal general’s signature cannot be forged.
– Anyone can verify authenticity of general’s signature.

• Use a function choice(…) to obtain a single order
– choice(V) = v if v if the only elem. in V
– choice(V) = RETREAT if V is empty

4/25/2016 19cs262a-S16 Lecture-25

Signed Messages (Cont)
• Each lieutenant maintains a set V of properly signed

orders received so far.
• The commander sends a signed order to lieutenants
• A lieutenant receives an order from someone (either from

commander or other lieutenants),
– Verifies authenticity and puts it in V.
– If there are less than m distinct signatures on the order

» Augments orders with signature
» Relays messages to lieutenants who have not seen the order.

• When lieutenant receives no new messages, and use
choice(V) as the desired action.

• If you want to protect against more traitors, increase m

4/25/2016 20cs262a-S16 Lecture-25

Algorithm’s Intuition

• All loyal lieutenants compute the same set of V
eventually, thus choice(V) is the same (IC1)

• If the commander is loyal, the algorithm works
because all loyal lieutenants will have the properly
signed orders by round 1 (IC2)

• What if the commander is not loyal?

V = “attack, retreat” => Commander is a
traitor.

4/25/2016 21cs262a-S16 Lecture-25

Missing Communication Paths
• What if not all generals can reach all other generals

directly?
• P-regular graph – Each node has p regular neighbors.
• 3m-regular graph has minimum of 3m+1 nodes
• Paper shows algorithm for variant of oral message

algorithm – OM(m,p). Essentially same algorithm except
that each lieutenant forwards orders to neighbors.

• Proofs that OM(m,3m) solves BGP for at most m traitors.
• I.e. if the communication graph is 3m-regular, and there

are at most m traitors, the problem can still be solved.

4/25/2016 22cs262a-S16 Lecture-25

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

4/25/2016 23cs262a-S16 Lecture-25

BREAK

4/25/2016 24cs262a-S16 Lecture-25

Bad Assumption: Benign Faults

• Traditional replication assumes:
– replicas fail by stopping or omitting steps

• Invalid with malicious attacks:

– compromised replica may behave arbitrarily
– single fault may compromise service
– decreased resiliency to malicious attacks

client

server

replicas
attacker replaces

replica’s code

4/25/2016 25cs262a-S16 Lecture-25

BFT Tolerates Byzantine Faults

• Byzantine fault tolerance:
– no assumptions about faulty behavior

• Tolerates successful attacks
– service available when hacker controls replicas

client

server

replicas
attacker replaces

replica’s code

4/25/2016 26cs262a-S16 Lecture-25

Byzantine-Faulty Clients
• Bad assumption: client faults are benign

– clients easier to compromise than replicas

• BFT tolerates Byzantine-faulty clients:
– access control
– narrow interfaces
– enforce invariants

• Support for complex service operations is important

server

replicas

attacker replaces

client’s code

4/25/2016 27cs262a-S16 Lecture-25

Bad Assumption: Synchrony
• Synchrony  known bounds on:

– delays between steps
– message delays

• Invalid with denial-of-service attacks:
– bad replies due to increased delays

• Assumed by most Byzantine fault tolerance

4/25/2016 28cs262a-S16 Lecture-25

Asynchrony
• No bounds on delays
• Problem: replication is impossible

Solution in BFT:
• provide safety without synchrony

– guarantees no bad replies

• assume eventual time bounds for liveness
– may not reply with active denial-of-service attack
– will reply when denial-of-service attack ends

4/25/2016 29cs262a-S16 Lecture-25

Algorithm Properties
• Arbitrary replicated service

– complex operations
– mutable shared state

• Properties (safety and liveness):
– system behaves as correct centralized service
– clients eventually receive replies to requests

• Assumptions:
– 3f+1 replicas to tolerate f Byzantine faults (optimal)
– strong cryptography
– only for liveness: eventual time bounds

clients

replicas

4/25/2016 30cs262a-S16 Lecture-25

State machine replication:
– deterministic replicas start in same state
– replicas execute same requests in same order
– correct replicas produce identical replies

• Hard: ensure requests execute in same order

Algorithm

replicasclient

4/25/2016 31cs262a-S16 Lecture-25

Ordering Requests

Primary-Backup:
• View designates the primary replica

• Primary picks ordering
• Backups ensure primary behaves correctly

– certify correct ordering
– trigger view changes to replace faulty primary

view

replicasclient
primary backups

4/25/2016 32cs262a-S16 Lecture-25

Rough Overview of Algorithm

• A client sends a request for a service to the
primary

replicasclient
primary backups

4/25/2016 33cs262a-S16 Lecture-25

Rough Overview of Algorithm

• A client sends a request for a service to the
primary

• The primary mulicasts the request to the backups

replicasclient
primary backups

4/25/2016 34cs262a-S16 Lecture-25

Rough Overview of Algorithm

• A client sends a request for a service to the
primary

• The primary mulicasts the request to the backups
• Replicas execute request and sent a reply to the

client

replicasclient
primary backups

4/25/2016 35cs262a-S16 Lecture-25

Rough Overview of Algorithm

• A client sends a request for a service to the
primary

• The primary mulicasts the request to the backups
• Replicas execute request and sent a reply to the

client
• The client waits for f+1 replies from different

replicas with the same result; this is the result of
the operation

view

replicasclient
primary backups

f+1 matching
replies

4/25/2016 36cs262a-S16 Lecture-25

Quorums and Certificates

3f+1 replicas

quorums have at least 2f+1 replicas

quorum A quorum B

quorums intersect in at least one correct replica

• Certificate = set with messages from a quorum

• Algorithm steps are justified by certificates

4/25/2016 37cs262a-S16 Lecture-25

Algorithm Components
• Normal case operation

• View changes

• Garbage collection

• Recovery

All have to be designed to work together

4/25/2016 38cs262a-S16 Lecture-25

Normal Case Operation

• Three phase algorithm:
– pre-prepare picks order of requests
– prepare ensures order within views
– commit ensures order across views

• Replicas remember messages in log

• Messages are authenticated
– •(k) denotes a message sent by k

4/25/2016 39cs262a-S16 Lecture-25

Pre-prepare Phase

request : m

assign sequence number n to request m in view v

primary = replica 0

replica 1

replica 2

replica 3
fail

multicast <PRE-PREPARE,v,n,m>(0)

backups accept pre-prepare if:

• in view v

• never accepted pre-prepare for v,n with different request
4/25/2016 40cs262a-S16 Lecture-25

Prepare Phase

m pre-prepare prepare
replica 0

replica 1

replica 2

replica 3 fail

multicast <PREPARE,v,n,D(m),1>(1)

digest of m

accepted �PRE-PREPARE,v,n,m��0

all collect pre-prepare and 2f matching
prepares

P-certificate(m,v,n)

4/25/2016 41cs262a-S16 Lecture-25

Order Within View

If it were false:
replicas

quorum for

P-certificate(m’,v,n)
quorum for

P-certificate(m,v,n)

one correct replica in common  m = m’

No P-certificates with the same view and
sequence number and different requests

4/25/2016 42cs262a-S16 Lecture-25

Commit Phase

Request m executed after:

• having C-certificate(m,v,n)

• executing requests with sequence number less than n

replica has
P-certificate(m,v,n)

m pre-prepare prepare

replica 0

replica 1

replica 2

replica 3 fail

commit
multicast <COMMIT,v,n,D(m),2>(2)

all collect 2f+1 matching commits

C-certificate(m,v,n)

replies

4/25/2016 43cs262a-S16 Lecture-25

View Changes

• Provide liveness when primary fails:

– timeouts trigger view changes
– select new primary ( view number mod 3f+1)

• But also need to:
– preserve safety
– ensure replicas are in the same view long enough
– prevent denial-of-service attacks

4/25/2016 44cs262a-S16 Lecture-25

View Change Protocol

replica 0 = primary
v
replica 1= primary v+1

replica 2

replica 3

fail

send P-certificates: <VIEW-CHANGE,v+1,P,2>(2)

primary collects

VC-messages in X: <NEW-VIEW,v+1,X,O>(1)

pre-prepares messages

for v+1 view in O with the same sequence number
backups multicast prepare messages for pre-prepares in O

2f VC messages

4/25/2016 45cs262a-S16 Lecture-25

View Change Safety

• Intuition: if replica has C-certificate(m,v,n) then

any quorum Q
quorum for

C-certificate(m,v,n)

correct replica in Q has P-certificate(m,v,n)

Goal: No C-certificates with the same
sequence number and different requests

4/25/2016 46cs262a-S16 Lecture-25

BFS: A Byzantine-Fault-Tolerant NFS

No synchronous writes – stability through replication

andrew
benchmark

kernel NFS client

relay

replication
library

snfsd
replication
library

kernel VM

snfsd
replication
library

kernel VM

replica 0

replica n

4/25/2016 47cs262a-S16 Lecture-25

Andrew Benchmark

0

10

20

30

40

50

60

70

BFS BFS-nr

• BFS-nr is exactly like BFS but without replication

• 30 times worse with digital signatures

Configuration
• 1 client, 4 replicas

• Alpha 21064, 133 MHz

• Ethernet 10 Mbit/s

El
ap

se
d

tim
e

(s
ec

on
ds

)

4/25/2016 48cs262a-S16 Lecture-25

BFS is Practical

0

10

20

30

40

50

60

70

BFS NFS

• NFS is the Digital Unix NFS V2 implementation

Configuration
• 1 client, 4 replicas

• Alpha 21064, 133 MHz

• Ethernet 10 Mbit/s

• Andrew benchmarkEl
ap

se
d

tim
e

(s
ec

on
ds

)

4/25/2016 49cs262a-S16 Lecture-25

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

