
EECS 262a
Advanced Topics in Computer Systems

Lecture 24

Paxos/Megastore
April 20th, 2016

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

5/20/2016 2cs262a-S16 Lecture-24

Today’s Papers
• Paxos Made Live - An Engineering Perspective, Tushar Chandra, Robert

Griesemer, and Joshua Redstone. Appears in Proceedings of the
Symposium on Principles of Distributed Computing (PODC), 2007

• Megastore: Providing Scalable, Highly Available Storage for Interactive
Services, Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey
Khorlin, James Larson, Jean Michel Léon, Yawei Li, Alexander Lloyd, Vadim
Yushprakh. Appears in Proceedings of the 5th Biennial Conference on
Innovative Data Systems Research (CIDR ’11), January 2011

• Thoughts?

5/20/2016 3cs262a-S16 Lecture-24

Google Chubby
• A coarse-grained lock and small file storage service

– Other (Google) distributed systems can use this to synchronize access to
shared resources

• Intended for use by “loosely-coupled distributed systems”
– GFS: Elect a master
– Bigtable: master election, client discovery, table service locking
– Well-known location for bootstrapping larger systems
– Partitioning workloads

• Goals:
– High availability
– Reliability

• Anti-goals:
– High performance, Throughput, Storage capacity

5/20/2016 4cs262a-S16 Lecture-24

Distributed Consensus

replica replica

replica replica

Master
replica

One Chubby “Cell”

All client traffic

• Chubby cell is usually 5 replicas
– 3 must be alive for cell to be viable

• How do replicas in Chubby agree on their own master, official
lock values?

– Distributed commit algorithm

5/20/2016 5cs262a-S16 Lecture-24

What about Two Phase Commit?
• Commit request/Voting phase

– Coordinator sends query to commit
– Cohorts prepare and reply – single abort vote causes complete abort

• Commit/Completion phase
– Success: Commit and acknowledge
– Failure: Rollback and acknowledge

• Disadvantage: Blocking protocol
– Handles coordinator failures really poorly – blocks
– Handles cohort failure poorly during voting phase – aborts

5/20/2016 6cs262a-S16 Lecture-24

Basic Paxos (Quorum-based Consensus)
• Prepare and Promise

– Proposer selects proposal number N and sends promise to acceptors
– Acceptors accept or deny the promise

• Accept! and Accepted
– Proposer sends out value
– Acceptors respond to proposer and learners

• Paxos algorithm properties
– Family of algorithms (by Leslie Lamport) designed to provide distributed

consensus in a network of several replicas
– Enables reaching consensus on a single binding of variable to value

(“fact”)
– Tolerates delayed or reordered messages and replicas that fail by

stopping
– Tolerates up to N/2 replica failure (i.e., F faults with 2F+1 replicas)

5/20/2016 7cs262a-S16 Lecture-24

Message Flow: Basic Paxos
• Proposer – An agent that proposes a fact
• Leader – the authoritative proposer
• Acceptor – holds agreed-upon facts in its memory
• Learner – May retrieve a fact from the system

• Client Proposer Acceptor Learner
• | | | | | | |
• X-------->| | | | | | Request
• | X--------->|->|->| | | Prepare(N)
• | |<---------X--X--X | |

Promise(N,{Va,Vb,Vc})
• | X--------->|->|->| | | Accept!(N,Vn)
• | |<---------X--X--X------>|->| Accepted(N,Vn)
• |<---------------------------------X--X Response

5/20/2016 8cs262a-S16 Lecture-24

Paxos Assumptions
• Replica assumptions

– Operate at arbitrary speed
– Independent, random failures
– Replicas with stable storage may rejoin protocol after failure
– Do not lie, collude, or attempt to maliciously subvert the protocol

• Network assumptions
– All processors can communicate with (“see”) one another
– Messages are sent asynchronously and may take arbitrarily long to

deliver
– Order of messages is not guaranteed: they may be lost, reordered, or

duplicated
– Messages, if delivered, are not corrupted in the process

5/20/2016 9cs262a-S16 Lecture-24

Basic Paxos – Majority consensus

• Determines the authoritative value for a single variable
• Each proposer makes a proposal to some majority (quorum) of the

acceptors; acceptors respond with latest value
• A majority (quorum) of acceptors must accept a proposal for the

proposed value to be chosen as the consensus value
• If P1 and P2 are making different proposals, then there must be at

least one acceptor that they share in common – this common
acceptor decides which proposal prevails

AAA … AA …

P1 P2

majority

majority

arbitrator

5/20/2016 10cs262a-S16 Lecture-24

Choosing a value

• Since different proposers (leaders) may be proposing at same time,
protocol uses disjoint proposal numbers (e.g. put identity in LSB)

• An acceptor will accept proposal with largest proposal number
• A value is chosen once majority (quorum) of acceptors have

accepted a proposal with that value
• During failed rounds (not majority acceptance), responding acceptors

keep track of their previous “votes” to help protocol converge on
single value – even in presence of multiple proposers (leaders)

[V1, N1]

[VC, NC]

[Vk, Nk][V2, N2]
[VC, Nk+1] [VC, Nk+2]

5/20/2016 11cs262a-S16 Lecture-24

Step 1: Prepare

Acceptor Acceptor Acceptor

Proposer
1

Proposer
2

PREPARE j PREPARE k

k > j

5/20/2016 12cs262a-S16 Lecture-24

Step 2: Promise

• PROMISE x –
Acceptor will accept
proposals only
numbered x or
higher

• Proposer 1 is
ineligible because a
quorum has voted
for a higher number
than j

5/20/2016 13cs262a-S16 Lecture-24

Step 3: Accept!

5/20/2016 14cs262a-S16 Lecture-24

Step 4: Accepted

5/20/2016 15cs262a-S16 Lecture-24

MultiPaxos

• Within each instance (basic) Praxos is used to arrive at a
consensus of the value to be used by all replicas

• The sequence of instances determines a sequence of
values accepted by all replicas

instance

… vnv3v1 v2

consensus

values

5/20/2016 16cs262a-S16 Lecture-24

Paxos in Chubby
• MultiPaxos:

– Steps 1 (prepare) and 2 (promise) done once
– Steps 3 (accept!) and 4 (accepted) repeated multiple times by same leader

• Replicas in a cell initially use Paxos to establish the leader
– Majority of replicas must agree

• Optimization: Master Lease
– Replicas promise not to try to elect new master for at least a few seconds
– Master lease is periodically renewed

• Master failure
– If replicas lose contact with master, they wait for grace period (4-6 secs)
– On timeout, hold new election

5/20/2016 17cs262a-S16 Lecture-24

Architecture

5/20/2016 18cs262a-S16 Lecture-24

From Theory to Practice:
Fault-tolerant LOG implement with Paxos

• Disk Corruption
– Need to recognize and handle subtle corruption in stable state

• Use of Master Leases
– Grant leadership for fixed period of time
– Allows clients to read latest value from Master
– Prevents inefficient oscillation in algorithm

• Use of Epochs
– Recognize when leader changes
– Chubby semantics requires abort in these circumstances

• Group membership
– Use of Paxos protocol to select servers that are members of Paxos group

• Snapshot integration with Paxos
• MultiOp

– Allows implementation of atomic operations on log
– If (guard[database]) then {t_op} else {f_op}

5/20/2016 19cs262a-S16 Lecture-24

Building a Correct System
• Simple one-page pseudocode for Paxos algorithm == thousands of

lines of C++ code
– Created simple state machine specification language and compiler
– Resulting code is “Correct by construction”

• Aggressive testing strategy
– Tests for safety (consistent) and liveness (consistent and making progress)
– Added entry points for test harnesses
– Reproducible simulation environment

» Injection of random errors in network and hardware
» Use of pseudo-random seed provided reproducibility

• Data structure and database corruption
– Aggressive, liberal usage of assert statements (makes Chubby fail-stop)
– Added lots of checksum checks

• Upgrades and rollbacks are hard
– Fix buggy scripts!
– Recognize differences between developers and operators

• Forced to “add concurrency” as project progressed
5/20/2016 20cs262a-S16 Lecture-24

Reliability
• Started out using replicated Berkeley DB (“3DB”)

– Ill-defined, unproven, buggy replication protocol

• Replaced with custom write-thru logging DB

• Entire database periodically sent to GFS
– In a different data center

• Chubby replicas span multiple racks

5/20/2016 21cs262a-S16 Lecture-24

Summary
• Simple protocols win again

• Reuse of functionality
– Chubby uses GFS
– GFS uses Chubby

• Many challenges going from theoretical algorithm to
practical implementation

– No tools for implementing fault-tolerant protocols
– Test, test, and test again (critical component!)
– Everything can be corrupted so checksum everything
– People are fallible (so are scripts!)

5/20/2016 22cs262a-S16 Lecture-24

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

5/20/2016 23cs262a-S16 Lecture-24

BREAK

5/20/2016 24cs262a-S16 Lecture-24

Google Megastore – Motivation
• Storage requirements of today’s interactive online

applications
– Scalability (a billion internet users)
– Rapid Development
– Responsiveness (low latency)
– Durability and Consistency (never lose data)
– Fault Tolerant (no unplanned/planned downtime)
– Easy Operations (minimize confusion, support is expensive)

• These requirements are in conflict!

5/20/2016 25cs262a-S16 Lecture-24

Technology Options

Wide-Area

Replication

Scalable

ACID

Transactions

MySQL
Failover

Bigtable

MySQL

Eventual
Consistency

?
Clustering

Quorum
Voting

Rich feature set

Expressive language

Hard to scale

Highly scalable

Limited API

Loose consistency models

Megastore

5/20/2016 26cs262a-S16 Lecture-24

Megastore
• Started in 2006 for app development at Google

• Service layered on:
– Bigtable (NoSQL scalable data store per datacenter)
– Chubby (Config data, config locks)

• Turnkey scaling (apps, users)

• Developer-friendly features

• Wide-area synchronous replication
– Partition by “Entity Group”

5/20/2016 27cs262a-S16 Lecture-24

Data Model
• Between abstract tuples of RDBMS and concrete row-

column storage of NoSQL

• Tables are entity group root tables or child tables

• Entity Group – consists of a root entity along with all child
entities

• There can be several root tables – leading to several
classes of Entity Groups

5/20/2016 28cs262a-S16 Lecture-24

Entity Groups
• Entity groups are sub-databases

5/20/2016 29cs262a-S16 Lecture-24

Entity Groups
• Cheap transactions within an entity group (common)

Entity Group acts as mini-DB (ACID semantics)
Uses Write Ahead Logging
Store multiple data per cell by timestamp (Bigtable)
Multiversion concurrency using timestamps (Bigtable)

5/20/2016 30cs262a-S16 Lecture-24

Entity Groups
• Expensive or loosely-consistent operations across Entity

Groups (rare)

5/20/2016 31cs262a-S16 Lecture-24

Entity Group Examples

Application Entity Groups Cross-EG Ops

Email User accounts none

Blogs Users, Blogs
Access control,

notifications,
global indexes

Mapping Local patches Patch-spanning
ops

Social Users, Groups
Messages,

relationships,
notifications

Resources Sites Shipments

5/20/2016 32cs262a-S16 Lecture-24

Achieving Technical Goals (I)
• Scalability

– Bigtable within datacenters – easy to add EGs (storage, throughput)
– Performance maximized by partitioning based on EGs
– Transactions within an EG – single phase using Paxos
– Transactions across entity groups – two phase using Asynchronous

Message Queue
– Indexes – ACID within Entity Group,

Looser semantics across EGs

• Availability
– Fault Tolerance

through replication
– Fault Tolerant log

replication of logs
(adapted from Paxos)

5/20/2016 33cs262a-S16 Lecture-24

Achieving Technical Goals (II)

• ACID transactions
– Write-ahead log per Entity Group
– 2PC or Queues between Entity Groups

• Wide-Area replication
– Paxos with tweaks for optimal latency

5/20/2016 34cs262a-S16 Lecture-24

Paxos and Megastore
• Basic Paxos not used (poor match for high-latency links)

– Writes require at least two inter-replica roundtrips to achieve consensus
(prepare round, accept round)

– Reads require one inter-replica roundtrip (prepare round)

• Approaches using a Master replica
– Master participates in all writes (state is always up-to-date)
– Master serves reads (current consensus state) without additional comm
– Writes are single roundtrip – piggyback prepare for next write on accepted
– Batch writes for efficiency

• Issues with using a Master
– Need to place transactions (readers) near master replica to avoid latency
– Master must have sufficient processing resources (side effect: replicas

waste resources since they must be capable of becoming masters)
– Master failover requires lots of timers and a complex state machine (side

effect: user visible outages)

5/20/2016 35cs262a-S16 Lecture-24

Megastore’s Tweaks
• Coordinators

– Tracks set of entity groups for which its replica has observed all Paxos writes

• Fast Reads
– Local reads from any replica avoid inter-replica RPCs
– Yield better utilization, low latencies in all regions, fine-grained read failover,

simpler programming experience

• Fast Writes
– Uses same pre-preparing optimization as Master approaches (accepted

implies next prepare)
– Uses leaders (coordinators) instead of masters and runs a Paxos instance for

each log position – leader arbitrates which writer succeeds

• Replica Types
– Witness Replicas: participate in voting (tie-breakers) and store log entries (no

data)
– Read-only Replicas: non-voting replicas containing snapshots

5/20/2016 36cs262a-S16 Lecture-24

Megastore Architecture

5/20/2016 37cs262a-S16 Lecture-24

Megastore Reads

5/20/2016 38cs262a-S16 Lecture-24

Megastore Writes

5/20/2016 39cs262a-S16 Lecture-24

Availability and Performance

5/20/2016 40cs262a-S16 Lecture-24

Benefits
• For admins

– Linear scaling, transparent rebalancing (Bigtable)
– Instant transparent failover
– Symmetric deployment

• For developers
– ACID transactions (read-modify-write)
– Many features (indexes, backup, encryption, scaling)
– Single-system image makes code simple
– Little need to handle failures

• For end Users
– Fast up-to-date reads, acceptable write latency
– Consistency

5/20/2016 41cs262a-S16 Lecture-24

Summary
• Constraints acceptable for most apps

– Entity Group partitioning
– High write latency
– Limited per-EG throughput

• In production use for over 4 years

• No current query language
– Apps must implement query plans
– Apps have fine-grained control of physical placement

• Available on Google App Engine as HRD (High
Replication Datastore)

5/20/2016 42cs262a-S16 Lecture-24

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

