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Today’s Papers
• Bigtable: a distributed storage system for structured data. Appears in 

Proceedings of the 7th Conference on USENIX Symposium on Operating 
Systems Design and Implementation (OSDI), 2006

• Pond: the OceanStore Prototype. Appears in Proceedings of the 2nd USENIX 
Conference on File and Storage Technologies (FAST), 2003

• Thoughts?
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BigTable
• Distributed storage system for managing 

structured data
• Designed to scale to a very large size

– Petabytes of data across thousands of servers
• Hugely successful within Google – used for many 

Google projects
– Web indexing, Personalized Search, Google Earth, 

Google Analytics, Google Finance, …
• Highly-available, reliable, flexible, high-

performance solution for all of Google’s products
• Offshoots/followons: 

– Spanner: Time-based consistency
– LevelDB: Open source incorporating aspects of Big Table
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Motivation
• Lots of (semi-)structured data at Google

– URLs:
» Contents, crawl metadata, links, anchors, pagerank, …

– Per-user data:
» User preference settings, recent queries/search results, …

– Geographic locations:
» Physical entities (shops, restaurants, etc.), roads, satellite 

image data, user annotations, …

• Big Data scale
– Billions of URLs, many versions/page (~20K/version)
– Hundreds of millions of users, thousands or q/sec
– 100TB+ of satellite image data
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What about a Parallel DBMS?
• Data is too large scale!

• Using a commercial approach would be too 
expensive

– Building internally means system can be applied 
across many projects for low incremental cost

• Low-level storage optimizations significantly 
improve performance

– Difficult to do when running on a DBMS
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Goals
• A general-purpose data-center storage system
• Asynchronous processes continuously updating 

different pieces of data
– Access most current data at any time
– Examine changing data (e.g., multiple web page crawls)

• Need to support:
– Durability, high availability, and very large scale
– Big or little objects
– Very high read/write rates (millions of ops per second)
– Ordered keys and notion of locality

» Efficient scans over all or interesting subsets of data
» Efficient joins of large one-to-one and one-to-many 

datasets
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BigTable

• Distributed multi-level map
• Fault-tolerant, persistent
• Scalable

– Thousands of servers
– Terabytes of in-memory data
– Petabyte of disk-based data
– Millions of reads/writes per second, efficient scans

• Self-managing
– Servers can be added/removed dynamically
– Servers adjust to load imbalance
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Building Blocks
• Building blocks:

– Google File System (GFS): Raw storage
– Scheduler: schedules jobs onto machines
– Lock service: distributed lock manager
– MapReduce: simplified large-scale data processing

• BigTable uses of building blocks:
– GFS: stores persistent data (SSTable file format for 

storage of data)
– Scheduler: schedules jobs involved in BigTable serving
– Lock service: master election, location bootstrapping 
– Map Reduce: often used to read/write BigTable data
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BigTable Data Model
• A big sparse sparse, distributed persistent multi-

dimensional sorted map
– Rows are sort order
– Atomic operations on single rows
– Scan rows in order
– Locality by rows first

• Columns: properties of the row
– Variable schema: easily create new columns
– Column families: groups of columns

» For access control (e.g. private data)
» For locality (read these columns together, with nothing else)
» Harder to create new families

• Multiple entries per cell using timestamps
– Enables multi-version concurrency control across rows
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Basic Data Model
• Multiple entries per cell using timestamps

– Enables multi-version concurrency control across rows

(row, column, timestamp)  cell contents

• Good match for most Google applications:
– Large collection of web pages and related information
– Use URLs as row keys
– Various aspects of web page as column names
– Store contents of web pages in the contents: column under the 

timestamps when they were fetched
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Rows
• Row creation is implicit upon storing data

– Rows ordered lexicographically
– Rows close together lexicographically usually on one or a small number 

of machines

• Reads of short row ranges are efficient and typically 
require communication with a small number of machines

• Can exploit this property by selecting row keys so they get 
good locality for data access

– Example: 
math.gatech.edu, math.uga.edu, phys.gatech.edu, phys.uga.edu
VS 
edu.gatech.math, edu.gatech.phys, edu.uga.math, edu.uga.phys
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Columns
• Columns have two-level name structure:

» family:optional_qualifier

• Column family
– Unit of access control
– Has associated type information

• Qualifier gives unbounded columns
– Additional levels of indexing, if desired
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Timestamps
• Used to store different versions of data in a cell

– New writes default to current time, but timestamps for writes can also be 
set explicitly by clients

• Lookup options:
– “Return most recent K values”
– “Return all values in timestamp range (or all values)”

• Column families can be marked w/ attributes:
– “Only retain most recent K values in a cell”
– “Keep values until they are older than K seconds”
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Basic Implementation
• Writes go to log then to in-memory table “memtable” 

(key, value)
• Periodically: move in memory table to disk => SSTable(s)

– “Minor compaction”
» Frees up memory
» Reduces recovery time (less log to scan)

– SSTable = immutable ordered subset of table: range of keys and subset 
of their columns

» One locality group per SSTable (for columns)
– Tablet = all of the SSTables for one key range + the memtable

» Tablets get split when they get too big
» SSTables can be shared after the split (immutable)

– Some values may be stale (due to new writes to those keys)
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Basic Implementation
• Reads: maintain in-memory map of keys to {SSTables, 

memtable}
– Current version is in exactly one SSTable or memtable
– Reading based on timestamp requires multiple reads
– May also have to read many SSTables to get all of the columns

• Scan = merge-sort like merge of SSTables in order
– “Merging compaction” – reduce number of SSTables
– Easy since they are in sorted order

• Compaction
– SSTables similar to segments in LFS
– Need to “clean” old SSTables to reclaim space

» Also to actually delete private data
– Clean by merging multiple SSTables into one new one

» “Major compaction” => merge all tables
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Locality Groups
• Group column families together into an SSTable

– Avoid mingling data, ie page contents and page metadata
– Can keep some groups all in memory

• Can compress locality groups
• Bloom Filters on locality groups – avoid searching 

SSTable
– Efficient test for set membership: member(key)  true/false

» False => definitely not in the set, no need for lookup
» True => probably is in the set (do lookup to make sure and get value)

– Generally supports adding elements, but not removing them
» … but some tricks to fix this (counting)
» … or just create a new set once in a while
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Bloom Filters
• Basic version:

– m bit positions
– k hash functions
– for insert: compute k bit locations, set them to 1
– for lookup: compute k bit locations

» all = 1 => return true (may be wrong)
» any = 0 => return false

– 1% error rate ~ 10 bits/element
» Good to have some a priori idea of the target set size

• Use in BigTable
– Avoid reading all SSTables for elements that are not present (at least 

mostly avoid it)
» Saves many seeks
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Three Part Implementation
• Client library with the API (like DDS)
• Tablet servers that serve parts of several tables
• Master that tracks tables and tablet servers

– Assigns tablets to tablet servers
– Merges tablets
– Tracks active servers and learns about splits
– Clients only deal with master to create/delete tables and column family 

changes
– Clients get data directly from servers

• All Tables Are Part of One Big System
– Root table points to metadata tables

» Never splits => always three levels of tablets
– These point to user tables
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Many Tricky Bits
• SSTables work in 64k blocks

– Pro: caching a block avoid seeks for reads with locality
– Con: small random reads have high overhead and waste memory

» Solutions? 

• Compression: compress 64k blocks
– Big enough for some gain
– Encoding based on many blocks => better than gzip
– Second compression within a block

• Each server handles many tablets
– Merges logs into one giant log

» Pro: fast and sequential
» Con: complex recovery

• Recover tablets independently, but their logs are mixed…
– Solution in paper: sort the log first, then recover...

• Long time source of bugs

– Could we keep the logs separate?
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Lessons learned
• Interesting point – only implement some of the 

requirements, since the last is probably not needed
• Many types of failure possible
• Big systems need proper systems-level monitoring

– Detailed RPC trace of specific requests
– Active monitoring of all servers

• Value simple designs
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?
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BREAK
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OceanStore Vision: Utility Infrastructure

Pac
Bell

Sprint

IBM
AT&T

Canadian
OceanStore

IBM

• Data service provided by storage federation
• Cross-administrative domain 
• Contractual Quality of Service (“someone to sue”)
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What are the advantages of a utility?
• For Clients:

– Outsourcing of Responsibility
» Someone else worries about quality of service 

– Better Reliability
» Utility can muster greater resources toward durability
» System not disabled by local outages
» Utility can focus resources (manpower) at security-vulnerable aspects 

of system
– Better data mobility

» Starting with secure network modelsharing

• For Utility Provider:
– Economies of scale

» Dynamically redistribute resources between clients
» Focused manpower can serve many clients simultaneously
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Key Observation:
Want Automatic Maintenance

• Can’t possibly manage billions of servers by hand!
• System should automatically:

– Adapt to failure 
– Exclude malicious elements
– Repair itself 
– Incorporate new elements 

• System should be secure and private
– Encryption, authentication

• System should preserve data over the long term (accessible
for 100s of years):

– Geographic distribution of information
– New servers added/Old servers removed
– Continuous Repair  Data survives for long term
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• Untrusted Infrastructure: 
– The OceanStore is comprised of untrusted components
– Individual hardware has finite lifetimes
– All data encrypted within the infrastructure

• Mostly Well-Connected:
– Data producers and consumers are connected to a high-bandwidth network 

most of the time
– Exploit multicast for quicker consistency when possible

• Promiscuous Caching:
– Data may be cached anywhere, anytime 

• Responsible Party:
– Some organization (i.e. service provider) guarantees that your data is 

consistent and durable
– Not trusted with content of data, merely its integrity

OceanStore Assumptions
Peer-to-peer

Quality-of-Service
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Recall: Routing to Objects (Tapestry)

GUID1

DOLR

GUID1GUID2
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OceanStore Data Model
• Versioned Objects

– Every update generates a new version
– Can always go back in time (Time Travel)

• Each Version is Read-Only
– Can have permanent name
– Much easier to repair

• An Object is a signed mapping between permanent name 
and latest version

– Write access control/integrity involves managing these mappings

Comet Analogy updates

versions
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Self-Verifying Objects

Data

Block
s

VGUIDi VGUIDi + 1

d2 d4d3 d8d7d6d5 d9d1

Data 

B -
Tree

Indirect

Blocks

M

d'8 d'9

M
backpointe
r

copy on 
write

copy on 
write

AGUID = 
hash{name+keys}

Updates
Heartbeats +

Read-Only Data

Heartbeat: {AGUID,VGUID, Timestamp}signed
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Two Types of OceanStore Data
• Active Data: “Floating Replicas”

– Per object virtual server
– Interaction with other replicas for consistency
– May appear and disappear like bubbles

• Archival Data: OceanStore’s Stable Store
– m-of-n coding: Like hologram

» Data coded into n fragments, any m of which are sufficient to reconstruct 
(e.g m=16, n=64)

» Coding overhead is proportional to nm (e.g 4)
– Fragments are cryptographically self-verifying

• Most data in the OceanStore is archival!
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The Path of an 
OceanStore Update

Second-Tier
Caches

Inner-Ring
Servers

Clients
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Byzantine Agreement
• Guarantees all non-faulty replicas agree

– Given N =3f +1 replicas, up to f may be faulty/corrupt

• Expensive
– Requires O(N 2) communication

• Combine with primary-copy replication
– Small number participate in Byzantine agreement
– Multicast results of decisions to remainder

• Threshold Signatures
– Need at least f signature shares to generate a complete signature
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OceanStore API:
Universal Conflict Resolution

• Consistency is form of optimistic concurrency 
– Updates contain predicate-action pairs 
– Each predicate tried in turn:

» If none match, the update is aborted
» Otherwise, action of first true predicate is applied

• Role of Responsible Party (RP):
– Updates submitted to RP which chooses total order

IMAP/SMTPNFS/AFS NTFS (soon?)HTTPNative Clients

1. Conflict Resolution
2. Versioning/Branching 
3. Access control
4. Archival Storage

OceanStore
API
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Peer-to-Peer Caching:
Automatic Locality Management

• Self-Organizing mechanisms to place replicas
• Automatic Construction of Update Multicast

Primary Copy
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Archival Dissemination
of Fragments

Archival
Servers

Archival
Servers
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Aside: Why erasure coding?
High Durability/overhead ratio!

• Exploit law of large numbers for durability!
• 6 month repair, FBLPY:

– Replication: 0.03
– Fragmentation: 10-35

Fraction Blocks Lost 

Per Year (FBLPY)
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Extreme Durability

• Exploiting Infrastructure for Repair
– DOLR permits efficient heartbeat mechanism to notice:

» Servers going away for a while
» Or, going away forever!

– Continuous sweep through data also possible
– Erasure Code provides Flexibility in Timing

• Data transferred from physical medium to physical medium
– No “tapes decaying in basement”
– Information becomes fully Virtualized

• Thermodynamic Analogy: Use of Energy (supplied by 
servers) to Suppress Entropy
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Differing Degrees of Responsibility

• Inner-ring provides quality of service
– Handles of live data and write access control
– Focus utility resources on this vital service
– Compromised servers must be detected quickly

• Caching service can be provided by anyone
– Data encrypted and self-verifying
– Pay for service “Caching Kiosks”?

• Archival Storage and Repair
– Read-only data: easier to authenticate and repair
– Tradeoff redundancy for responsiveness

• Could be provided by different companies!
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OceanStore Prototype (Pond)
• All major subsystems operational

– Self-organizing Tapestry base
– Primary replicas use Byzantine agreement
– Secondary replicas self-organize into multicast tree
– Erasure-coding archive
– Application interfaces: NFS, IMAP/SMTP, HTTP

• 280K lines of Java (J2SE v1.3)
– JNI libraries for cryptography, erasure coding

• PlanetLab Deployment (FAST 2003, “Pond” paper)
– 220 machines at 100 sites 

in North America, Europe, 
Australia, Asia, etc. 

– 1.26Ghz PIII (1GB RAM), 
1.8Ghz PIV (2GB RAM)

– OceanStore code running 
with 1000 virtual-node 
emulations
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Event-Driven Architecture

• Data-flow style
– Arrows Indicate flow of messages

• Potential to exploit small multiprocessors at each 
physical node

World
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Why aren’t we using
Pond every Day?
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• Had Reasonable Stability: 
– In simulation
– Or with small error rate

• But trouble in wide area:
– Nodes might be lost and

never reintegrate
– Routing state might 

become stale or be lost
• Why?

– Complexity of algorithms 
– Wrong design paradigm: 

strict rather than loose state
– Immediate repair of faults

• Ultimately, Tapestry Routing Framework succumbed to: 
– Creeping Featurism (designed by several people)
– Fragilility under churn
– Code Bloat 

Problem #1: DOLR is Great Enabler—
but only if it is stable
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• Simple, Stable, Targeting Failure
• Rethinking of design of Tapestry:

– Separation of correctness from performance
– Periodic recovery instead of reactive recovery
– Network understanding

(e.g. timeout calculation)
– Simpler Node Integration

(smaller amount of state)

• Extensive testing under 
Churn and partition

• Bamboo is so stable that
it is part of the OpenHash
public DHT infrastructure.

• In wide use by many researchers

Answer: Bamboo!
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Problem #2: Pond Write Latency
• Byzantine algorithm adapted from Castro & Liskov

– Gives fault tolerance, security against compromise
– Fast version uses symmetric cryptography

• Pond uses threshold signatures instead
– Signature proves that f +1 primary replicas agreed
– Can be shared among secondary replicas
– Can also change primaries w/o changing public key

• Big plus for maintenance costs
– Results good for all time once signed
– Replace faulty/compromised servers transparently
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Closer Look: Write Cost
• Small writes

– Signature dominates
– Threshold sigs. slow!
– Takes 70+ ms to sign
– Compare to 5 ms

for regular sigs.

• Large writes
– Encoding dominates
– Archive cost per byte
– Signature cost per write

• Answer: Reduction in overheads
– More Powerful Hardware at Core
– Cryptographic Hardware

» Would greatly reduce write cost
» Possible use of ECC or other signature method

– Offloading of Archival Encoding

Phase
4 kB 

write
2 MB 
write

Validate 0.3 0.4
Serialize 6.1 26.6
Apply 1.5 113.0
Archive 4.5 566.9
Sign Result 77.8 75.8

(times in milliseconds)
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Problem #3: Efficiency
• No resource aggregation 

– Small blocks spread widely
– Every block of every file on different set of servers
– Not uniquely OceanStore issue!

• Answer: Two-Level Naming
– Place data in larger chunks (‘extents’)
– Individual access of blocks by name within extents

– Bonus: Secure Log good interface for secure archive
– Antiquity: New Prototype for archival storage
– Similarity to SSTable use in BigTable?

get( E1,R1 )

V2 R2 I3 B6 B5 V1 R1 I2 B4 B3 I1 B2 B1

E0E1

4/18/2016 47cs262a-S16 Lecture-23

Problem #4: Complexity
• Several of the mechanisms were complex

– Ideas were simple, but implementation was complex
– Data format combination of live and archival features
– Byzantine Agreement hard to get right

• Ideal layering not obvious at beginning of project:
– Many Applications Features placed into Tapestry
– Components not autonomous, i.e. able to be tied in at any moment and 

restored at any moment

• Top-down design lost during thinking and 
experimentation

• Everywhere: reactive recovery of state
– Original Philosophy: Get it right once, then repair
– Much Better: keep working toward ideal 

(but assume never make it)
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Other Issues/Ongoing Work at Time:
• Archival Repair Expensive if done incorrectly:

– Small blocks consume excessive storage and 
network bandwidth

– Transient failures consume unnecessary repair bandwidth
– Solutions: collect blocks into extents and use threshold repair

• Resource Management Issues
– Denial of Service/Over Utilization of Storage serious threat
– Solution: Exciting new work on fair allocation

• Inner Ring provides incomplete solution:
– Complexity with Byzantine agreement algorithm is a problem
– Working on better Distributed key generation
– Better Access control + secure hardware + simpler Byzantine 

Algorithm?
• Handling of low-bandwidth links and Partial Disconnection

– Improved efficiency of data storage
– Scheduling of links
– Resources are never unbounded

• Better Replica placement through game theory?
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Follow-on Work
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Bamboo  OpenDHT
• PL deployment running for several months
• Put/get via RPC over TCP
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OceanStore Archive  Antiquity
• Secure Log: 

– Can only modify at one point – log head.  
» Makes consistency easier

– Self-verifying
» Every entry securely points to previous forming Merkle chain
» Prevents substitution attacks

– Random read access – can still read efficiently
• Simple and secure primitive for storage

– Log identified by cryptographic key pair
– Only owner of private key can modify log
– Thin interface, only append()

• Amenable to secure, durable implementation
– Byzantine quorum of storage servers

» Can survive failures at O(n) cost instead of O(n2) cost
– Efficiency through aggregation

» Use of Extents and Two-Level naming
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Storage System
V1 R1 I2 B4 B3 I1 B2 B1

V1
R1

I2
B4

B3
I1

B2
B1

V1 R1 I2 B4 B3 I1 B2 B1

Antiquity Architecture:
Universal Secure Middleware

App

App

Server

App

Replicated
Service

• Data Source
– Creator of data

• Client
– Direct user of system

» “Middleware”
» End-user, Server, 

Replicated service
– append()’s to log
– Signs requests

• Storage Servers
– Store log replicas on disk
– Dynamic Byzantine quorums

» Consistency and durability
• Administrator

– Selects storage servers
• Prototype operational on PlanetLab
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Is the Pond paper a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?


