
EECS 262a
Advanced Topics in Computer Systems

Lecture 22

P2P Storage: Dynamo
April 13th, 2016

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

4/13/2016 2cs262a-S16 Lecture-22

Reprise: Stability under churn (Tapestry)

(May 2003: 1.5 TB over 4 hours)
DOLR Model generalizes to many simultaneous apps

4/13/2016 3cs262a-S16 Lecture-22

Churn (Optional Bamboo paper last time)

Authors Systems Observed Session Time
SGG02 Gnutella, Napster 50% < 60 minutes
CLL02 Gnutella, Napster 31% < 10 minutes
SW02 FastTrack 50% < 1 minute
BSV03 Overnet 50% < 60 minutes
GDS03 Kazaa 50% < 2.4 minutes

Chord is a “scalable protocol for
lookup in a dynamic peer-to-peer
system with frequent node arrivals
and departures”
-- Stoica et al., 2001

4/13/2016 4cs262a-S16 Lecture-22

A Simple lookup Test
• Start up 1,000 DHT nodes on ModelNet network

– Emulates a 10,000-node, AS-level topology
– Unlike simulations, models cross traffic and packet loss
– Unlike PlanetLab, gives reproducible results

• Churn nodes at some rate
– Poisson arrival of new nodes
– Random node departs on every new arrival
– Exponentially distributed session times

• Each node does 1 lookup every 10 seconds
– Log results, process them after test

4/13/2016 5cs262a-S16 Lecture-22

Early Test Results

• Tapestry had trouble under this level of stress
– Worked great in simulations, but not as well on more realistic

network
– Despite sharing almost all code between the two!

• Problem was not limited to Tapestry consider Chord:

4/13/2016 6cs262a-S16 Lecture-22

Handling Churn in a DHT

• Forget about comparing different impls.
– Too many differing factors
– Hard to isolate effects of any one feature

• Implement all relevant features in one DHT
– Using Bamboo (similar to Pastry)

• Isolate important issues in handling churn
1. Recovering from failures
2. Routing around suspected failures
3. Proximity neighbor selection

4/13/2016 7cs262a-S16 Lecture-22

Reactive Recovery: The obvious technique

• For correctness, maintain leaf set during churn
– Also routing table, but not needed for correctness

• The Basics
– Ping new nodes before adding them
– Periodically ping neighbors
– Remove nodes that don’t respond

• Simple algorithm
– After every change in leaf set, send to all neighbors
– Called reactive recovery

4/13/2016 8cs262a-S16 Lecture-22

The Problem With Reactive Recovery

• Under churn, many pings and change messages
– If bandwidth limited, interfere with each other
– Lots of dropped pings looks like a failure

• Respond to failure by sending more messages
– Probability of drop goes up
– We have a positive feedback cycle (squelch)

• Can break cycle two ways
1. Limit probability of “false suspicions of failure”
2. Recovery periodically

4/13/2016 9cs262a-S16 Lecture-22

Periodic Recovery

• Periodically send whole leaf
set to a random member

– Breaks feedback loop
– Converges in O(log N)

• Back off period on message
loss

– Makes a negative feedback
cycle (damping)

4/13/2016 10cs262a-S16 Lecture-22

Conclusions/Recommendations

• Avoid positive feedback cycles in recovery
– Beware of “false suspicions of failure”
– Recover periodically rather than reactively

• Route around potential failures early
– Don’t wait to conclude definite failure
– TCP-style timeouts quickest for recursive routing
– Virtual-coordinate-based timeouts not prohibitive

• PNS can be cheap and effective
– Only need simple random sampling

4/13/2016 11cs262a-S16 Lecture-22

Today’s Paper
• Dynamo: Amazon’s Highly Available Key-value Store, Giuseppe DeCandia,

Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and
Werner Vogels. Appears in Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI), 2007

• Thoughts?

4/13/2016 12cs262a-S16 Lecture-22

The “Traditional” approaches to storage
• Relational Database systems

– Clustered - Traditional Enterprise RDBMS provide the ability to
cluster and replicate data over multiple servers – providing reliability

» Oracle, Microsoft SQL Server and even MySQL have traditionally
powered enterprise and online data clouds

– Highly Available – Provide Synchronization (“Always Consistent”),
Load-Balancing and High-Availability features to provide nearly 100%
Service Uptime

– Structured Querying – Allow for complex data models and structured
querying – It is possible to off-load much of data processing and
manipulation to the back-end database

• However, Traditional RDBMS clouds are: EXPENSIVE!
To maintain, license and store large amounts of data

– The service guarantees of traditional enterprise relational databases
like Oracle, put high overheads on the cloud

– Complex data models make the cloud more expensive to maintain,
update and keep synchronized

– Load distribution often requires expensive networking equipment
– To maintain the “elasticity” of the cloud, often requires expensive

upgrades to the network

4/13/2016 13cs262a-S16 Lecture-22

The Solution: Simplify
• Downgrade some of the service guarantees of traditional

RDBMS
– Replace the highly complex data models with a simpler one

» Classify services based on complexity of data model they require
– Replace the “Always Consistent” guarantee synchronization

model with an “Eventually Consistent” model
» Classify services based on how “updated” their data sets must be

• Redesign or distinguish between services that require a
simpler data model and lower expectations on
consistency

4/13/2016 14cs262a-S16 Lecture-22

Many Systems in this space:
• Amazon’s Dynamo – Used by Amazon’s EC2 Cloud Hosting

Service. Powers their Elastic Storage Service called S2 as well
as their E-commerce platform

Offers a simple Primary-key based data model. Stores vast amounts of
information on distributed, low-cost virtualized nodes

• Google’s BigTable – Google’s principle data cloud, for their
services – Uses a more complex column-family data model compared
to Dynamo, yet much simpler than traditional RMDBS

Google’s underlying file-system provides the distributed architecture on
low-cost nodes

• Facebook’s Cassandra – Facebook’s principle data cloud, for
their services.

This project was recently open-sourced. Provides a data-model similar
to Google’s BigTable, but the distributed characteristics of Amazon’s
Dynamo

4/13/2016 15cs262a-S16 Lecture-22

Why Peer-to-Peer ideas for storage?
• Incremental Scalability

– Add or remove nodes as necessary
» Systems stays online during changes

– With many other systems:
» Must add large groups of nodes at once
» System downtime during change in active set of nodes

• Low Management Overhead (related to first property)
– System automatically adapts as nodes die or are added
– Data automatically migrated to avoid failure or take advantage of new

nodes
• Self Load-Balance

– Automatic partitioning of data among available nodes
– Automatic rearrangement of information or query loads to avoid hot-

spots
• Not bound by commercial notions of semantics

– Can use weaker consistency when desired
– Can provide flexibility to vary semantics on a per-application basis
– Leads to higher efficiency or performance

4/13/2016 16cs262a-S16 Lecture-22

Recall: Consistent hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 160-bit

ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

4/13/2016 17cs262a-S16 Lecture-22

Recall: Lookup with Leaf Set

0…

10…

110…

111…

Lookup ID

Source• Assign IDs to nodes
– Map hash values to

node with closest ID
• Leaf set is successors

and predecessors
– All that’s needed for

correctness
• Routing table matches

successively longer
prefixes

– Allows efficient lookups
• Data Replication:

– On leaf set
4/13/2016 18cs262a-S16 Lecture-22

Advantages/Disadvantages of
Consistent Hashing

• Advantages:
– Automatically adapts data partitioning as node membership changes
– Node given random key value automatically “knows” how to participate in

routing and data management
– Random key assignment gives approximation to load balance

• Disadvantages
– Uneven distribution of key storage natural consequence of random node

names  Leads to uneven query load
– Key management can be expensive when nodes transiently fail

» Assuming that we immediately respond to node failure, must transfer state to
new node set

» Then when node returns, must transfer state back
» Can be a significant cost if transient failure common

• Disadvantages of “Scalable” routing algorithms
– More than one hop to find data  O(log N) or worse
– Number of hops unpredictable and almost always > 1

» Node failure, randomness, etc

4/13/2016 19cs262a-S16 Lecture-22

Dynamo Goals
• Scale – adding systems to network causes minimal

impact
• Symmetry – No special roles, all features in all nodes
• Decentralization – No Master node(s)
• Highly Available – Focus on end user experience
• SPEED – A system can only be as fast as the lowest level
• Service Level Agreements – System can be adapted to

an application’s specific needs, allows flexibility

4/13/2016 20cs262a-S16 Lecture-22

Dynamo Assumptions
• Query Model – Simple interface exposed to application level

– Get(), Put()
– No Delete()
– No transactions, no complex queries

• Atomicity, Consistency, Isolation, Durability
– Operations either succeed or fail, no middle ground
– System will be eventually consistent, no sacrifice of availability to

assure consistency
– Conflicts can occur while updates propagate through system
– System can still function while entire sections of network are down

• Efficiency – Measure system by the 99.9th percentile
– Important with millions of users, 0.1% can be in the 10,000s

• Non Hostile Environment
– No need to authenticate query, no malicious queries
– Behind web services, not in front of them

4/13/2016 21cs262a-S16 Lecture-22

Service Level Agreements (SLA)
• Application can deliver its

functionality in a bounded time:
– Every dependency in the platform

needs to deliver its functionality
with even tighter bounds.

• Example: service guaranteeing
that it will provide a response
within 300ms for 99.9% of its
requests for a peak client load
of 500 requests per second

• Contrast to services which
focus on mean response time

Service-oriented architecture of

Amazon’s platform
4/13/2016 22cs262a-S16 Lecture-22

Partitioning and Routing Algorithm
• Consistent hashing:

– the output range of a hash function
is treated as a fixed circular space
or “ring”.

• Virtual Nodes:
– Each physical node can be responsible

for more than one virtual node
– Used for load balancing

• Routing: “zero-hop”
– Every node knows about every other node
– Queries can be routed directly to the root node for given key
– Also – every node has sufficient information to route query to all nodes

that store information about that key

4/13/2016 23cs262a-S16 Lecture-22

Advantages of using virtual nodes

• If a node becomes unavailable the
load handled by this node is evenly
dispersed across the remaining
available nodes.

• When a node becomes available
again, the newly available node
accepts a roughly equivalent
amount of load from each of the
other available nodes.

• The number of virtual nodes that a
node is responsible can decided
based on its capacity, accounting
for heterogeneity in the physical
infrastructure.

4/13/2016 24cs262a-S16 Lecture-22

Replication
• Each data item is replicated

at N hosts.
• “preference list”: The list of

nodes responsible for storing
a particular key

– Successive nodes not guaranteed
to be on different physical nodes

– Thus preference list includes physically distinct nodes

• Replicas synchronized via anti-entropy protocol
– Use of Merkle tree for each unique range
– Nodes exchange root of trees for shared key range

4/13/2016 25cs262a-S16 Lecture-22

Data Versioning
• A put() call may return to its caller before the update has

been applied at all the replicas
• A get() call may return many versions of the same object.
• Challenge: an object having distinct version sub-histories, which

the system will need to reconcile in the future.

• Solution: uses vector clocks in order to capture causality between
different versions of the same object.

4/13/2016 26cs262a-S16 Lecture-22

Vector Clock
• A vector clock is a list of (node, counter) pairs.
• Every version of every object is associated with one

vector clock.
• If the counters on the first object’s clock are less-than-or-

equal to all of the nodes in the second clock, then the first
is an ancestor of the second and can be forgotten.

4/13/2016 27cs262a-S16 Lecture-22

Vector clock example

4/13/2016 28cs262a-S16 Lecture-22

Conflicts (multiversion data)
• Client must resolve conflicts

– Only resolve conflicts on reads
– Different resolution options:

» Use vector clocks to decide based on history
» Use timestamps to pick latest version

– Examples given in paper:
» For shopping cart, simply merge different versions
» For customer’s session information, use latest version

– Stale versions returned on reads are updated (“read repair”)
• Vary N, R, W to match requirements of applications

– High performance reads: R=1, W=N
– Fast writes with possible inconsistency: W=1
– Common configuration: N=3, R=2, W=2

• When do branches occur?
– Branches uncommon: 0.0006% of requests saw > 1 version over 24 hours
– Divergence occurs because of high write rate (more coordinators), not

necessarily because of failure

4/13/2016 29cs262a-S16 Lecture-22

Execution of get () and put () operations
• Route its request through a generic load balancer that will

select a node based on load information
– Simple idea, keeps functionality within Dynamo

• Use a partition-aware client library that routes requests
directly to the appropriate coordinator nodes

– Requires client to participate in protocol
– Much higher performance

4/13/2016 30cs262a-S16 Lecture-22

Sloppy Quorum
• R/W is the minimum number of nodes that must

participate in a successful read/write operation.
• Setting R + W > N yields a quorum-like system.
• In this model, the latency of a get (or put) operation is

dictated by the slowest of the R (or W) replicas. For this
reason, R and W are usually configured to be less than N,
to provide better latency.

4/13/2016 31cs262a-S16 Lecture-22

Hinted handoff

• Assume N = 3. When B is
temporarily down or
unreachable during a
write, send replica to E

• E is hinted that the
replica belongs to B and
it will deliver to B when B
is recovered.

• Again: “always writeable”

4/13/2016 32cs262a-S16 Lecture-22

Implementation
• Java

– Event-triggered framework similar to SEDA

• Local persistence component allows for different storage
engines to be plugged in:

– Berkeley Database (BDB) Transactional Data Store: object of tens
of kilobytes

– MySQL: object of > tens of kilobytes
– BDB Java Edition, etc.

4/13/2016 33cs262a-S16 Lecture-22

Summary of techniques used in
Dynamo and their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with reconciliation
during reads

Version size is decoupled from
update rates.

Handling temporary failures Sloppy Quorum and hinted handoff Provides high availability and
durability guarantee when some of

the replicas are not available.

Recovering from permanent
failures Anti-entropy using Merkle trees Synchronizes divergent replicas in

the background.

Membership and failure detection Gossip-based membership protocol
and failure detection.

Preserves symmetry and avoids
having a centralized registry for
storing membership and node

liveness information.

4/13/2016 34cs262a-S16 Lecture-22

Evaluation

4/13/2016 35cs262a-S16 Lecture-22

Evaluation: Relaxed durabilityperformance

4/13/2016 36cs262a-S16 Lecture-22

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

