Today’s Papers

e Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications, lon
EECS 2623 Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
H H Frank Dabek, Hari Balakrishnan, Appears in Proceedings of the IEEE/ACM
Advanced TOpICS n CompUter SyStems Transactions on Networking, Vol. 11, No. 1, pp. 17-32, February 2003
Lecture 21 » Tapestry: A Resilient Global-scale Overlay for Service Deployment, Ben Y. Zhao,

Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John D.
Kubiatowicz. Appears in IEEE Journal on Selected Areas in Communications, Vol 22,
No. 1, January 2004

Chord/Tapestry

H th
Apr|I 121%™, 2016 e Today: Peer-to-Peer Networks

John Kubiatowicz
Electrical Engineering and Computer Sciences e Thoughts?
University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

4/11/2016 cs262a-516 Lecture-21

Peer-to-Peer: Fully equivalent components Research Community View of Peer-to-Peer

mY PROJTECT 135
A WHOLE NEl!
PARADIGM

e Old View:
— Abunch of flakey high-school students stealing music
* New View:

— A philosophy of systems design at extreme scale
— Probabilistic design when it is appropriate

e Peer-to-Peer has many interacting components
— View system as a set of equivalent nodes
» “All nodes are created equal”
— Any structure on system must be self-organizing
» Not based on physical characteristics, location, or ownership

— New techniques aimed at unreliable components
A rethinking (and recasting) of distributed algorithms

Use of Physical, Biological, and Game-Theoretic techniques to achieve guarantees

4/11/2016 cs262a-516 Lecture-21 3 4/11/2016 cs262a-516 Lecture-21

Early 2000: Why the hype???
* File Sharing: Napster (+Gnutella, KaZaa, etc)

— Is this peer-to-peer? Hard to say.
— Suddenly people could contribute to active global network
» High coolness factor
— Served a high-demand niche: online jukebox
e Anonymity/Privacy/Anarchy: FreeNet, Publis, etc
— Libertarian dream of freedom from the man
» (ISPs? Other 3-letter agencies)
— Extremely valid concern of Censorship/Privacy
- Insearch of copyright violators, RIAA challenging rights to privacy
e Computing: The Grid
— Scavenge numerous free cycles of the world to do work
— Seti@Home most visible version of this
* Management: Businesses
— Businesses have discovered extreme distributed computing
— Does P2P mean “self-configuring” from equivalent resources?
— Bound up in “Autonomic Computing Initiative”?

4/11/2016 cs262a-516 Lecture-21 5

The lookup problem

Key="title"

Value=MP3 data...
Publishe

Client
Lookup(“title™)

4/11/2016 cs262a-516 Lecture-21

Centralized lookup (Napster)

Client
Lookup(“title™)

SetLoc(“title”,N4)
Key="title"

Value=MP3 data...

Simple, but O(N) state and a single point of failure

4/11/2016 cs262a-516 Lecture-21 7

Flooded queries (Gnutella)

5) Client
Lookup(“title™)

Key="title"
Value=MP3 da

Robust, but worst case O(N) messages per lookup

4/11/2016 cs262a-516 Lecture-21

Routed queries (Freenet, Chord, Tapestry, etc.)

Publisher@| N
Key="title"

Value=MP3 datal.

N5 Client
Lookup(“title")

Can be O(log N) messages per lookup (or even O(1))

Potentially complex routing state and maintenance.

4/11/2016 cs262a-516 Lecture-21 9

Chord IDs

4/11/2016

Key identifier = 160-bit SHA-1(key)
Node identifier = 160-bit SHA-1(IP address)
Both are uniformly distributed

Both exist in the same ID space

How to map key IDs to node IDs?

cs262a-516 Lecture-21

10

Consistent hashing [Karger 97]

Key 5— | K
Node 105

N105 K20

Circular 160-bit
ID space

N32

N90

K80

A key is stored at its successor: node with next higher ID

4/11/2016 cs262a-516 Lecture-21 11

Basic lookup

K80

4/11/2016

N105

“N90 has K80"

N90

\ =

N120 |——_

N10

cs262a-516 Lecture-21

“Where is key 802"

N32

12

Simple lookup algorithm
Lookup(my-id, key-id)
N =my successor

“Finger table” allows log(N)-time lookups

. . : Ya &
if my-id < n < key-id
call Lookup(id) on node n // next hop
else 8
return my successor // done
1/16
1/32
1/64
1/12
e Correctness depends only on successors N80
4/11/2016 cs262a-516 Lecture-21 13 4/11/2016 cs262a-516 Lecture-21 14
Finger i points to successor of n+2! L
gerip Lookup with fingers

N120
— .y,

112

1/8

4/11/2016 cs262a-516 Lecture-21 15

Lookup(my-id, key-id)
look in local finger table for
highest node n s.t. my-id < n < key-id

if n exists
call Lookup(id) on node n /I next hop
else
return my successor /[done
4/11/2016 cs262a-516 Lecture-21 16

Lookups take O(log(N)) hops
N110 N10 K19

N20

Joining: linked list insert

N99
N36
Lookup(K19)

1. Lookup(36)
K30
K38

N80
N60
4/11/2016 cs262a-516 Lecture-21 17 4/11/2016 cs262a-516 Lecture-21 18
Join (2) Join (3)
2. N36 sefs its own N36 3. Copy keys 26..36 N36 | K30

successor pointer from N40 to N36
K30 K30
K38 K38

4/11/2016 cs262a-516 Lecture-21 19

4/11/2016 cs262a-516 Lecture-21

20

Join (4)

4. Set N25's successor N36 | K30

pointer

K38

Update finger pointers in the background

Correct successors produce correct lookups

4/11/2016 cs262a-516 Lecture-21

21

Failures might cause incorrect lookup

Lookup(90)

N80 doesn't know correct successor, so incorrect lookup

4/11/2016 cs262a-516 Lecture-21 22

Solution: successor lists

e Each node knows r immediate successors
— After failure, will know first live successor
— Correct successors guarantee correct lookups
— Guarantee is with some probability

e For many systems, talk about “leaf set”

— The leaf set is a set of nodes around the “root” node that can
handle all of the data/queries that the root nodes might handle

e When node fails:
— Leaf set can handle queries for dead node
— Leaf set queried to retreat missing data
— Leaf set used to reconstruct new leaf set

4/11/2016 cs262a-516 Lecture-21

23

Lookup with Leaf Set

e Assign IDs to nodes Source
— Map hash values to node
with closest ID
e Leafsetis successors
and predecessors

— All that’s needed for 110...
correctness
 Routing table matches
successively longer
prefixes
— Allows efficient lookups

Lookup ID

4/11/2016 cs262a-516 Lecture-21 24

Is this a good paper?

* What were the authors’ goals?

e What about the evaluation/metrics?

* Did they convince you that this was a good system/approach?
e Were there any red-flags?

e What mistakes did they make?

* Does the system/approach meet the “Test of Time” challenge?
e How would you review this paper today?

4/11/2016 cs262a-516 Lecture-21 25

Decentralized Object Location
and Routing: (DOLR)

e The core of Tapestry

* Routes messages to endpoints
— Both Nodes and Objects

* Virtualizes resources
— objects are known by name, not location

4/11/2016 cs262a-516 Lecture-21 26

Routing to Data, not endpoints!
Decentralized Object Location and Routing

@ _O

4/11/2016

cssza-!:L: Lecture-21

27

DOLR Identifiers

* ID Space for both nodes and endpoints (objects) : 160-bit
values with a globally defined radix (e.g. hexadecimal to
give 4o-digit IDs)

» Each node is randomly assigned a nodelD

e Each endpoint is assigned a Globally Unique IDentifier
(GUID) from the same ID space

e Typically done using SHA-1

e Applications can also have IDs (application specific),
which are used to select an appropriate process on each
node for delivery

4/11/2016 cs262a-516 Lecture-21 28

DOLR API

PublishObject(Og, A,)

UnpublishObject(Og, A,y)

RouteToObject(Og, Ay)

RouteToNode(N, A4, Exact)

4/11/2016 cs262a-516 Lecture-21

29

Node State

Each node stores a neighbor map similar to Pastry

— Each level stores neighbors that match a prefix up to a certain
position in the ID

— Invariant: If there is a hole in the routing table, there is no such
node in the network

For redundancy, backup neighbor links are stored
— Currently 2

Each node also stores backpointers that point to nodes
that point to it

Creates a routing mesh of neighbors

4/11/2016 cs262a-516 Lecture-21 30

Routing Mesh

4/11/2016 cs262a-516 Lecture-21

31

Routing

Every ID is mapped to a root

An ID’s root is either the node where nodelD = ID or the
“closest” node to which that ID routes

Uses prefix routing (like Pastry)

— Lookup for 42AD: 4*** => 42%* => 42 A% => 4,2AD
If there is an empty neighbor entry, then use surrogate
routing

— Route to the next highest (if no entry for 42**, try 43*%*)

4/11/2016 cs262a-516 Lecture-21 32

Basic Tapestry Mesh
Incremental Prefix-based Routing

3

4/11/2016 5262a-516 Lecture-21 33

Object Publication

e Anode sends a publish message towards the root of the object

e Ateach hop, nodes store pointers to the source node

— Data remains at source. Exploit locality without replication (such as in Pastry,
Freenet)
— With replicas, the pointers are stored in sorted order of network latency

 Soft State — must periodically republish

4/11/2016 cs262a-516 Lecture-21 34

Object Location

* Client sends message towards object’s root
e Each hop checks its list of pointers

— If there is a match, the message is forwarded directly to the object’s location
— Else, the message is routed towards the object’s root
* Because pointers are sorted by proximity, each object lookup
is directed to the closest copy of the data

4/11/2016 cs262a-516 Lecture-21 35

Use of Mesh for Object Location

4/11/2016 5262a-516 Lecture-21 36

Node Insertions

e Ainsertion for new node N must accomplish the following:
— All nodes that have null entries for N need to be alerted of N's presence

» Acknowledged muliticast from the “root” node of N's ID to visit all nodes
with the common prefix

— N may become the new root for some objects. Move those pointers
during the muliticast
— N must build its routing table

» All nodes contacted during muliticast contact N and become its neighbor
set

» lterative nearest neighbor search based on neighbor set
— Nodes near N might want to use N in their routing tables as an
optimization
» Also done during iterative search

Node Deletions

e Voluntary

— Backpointer nodes are notified, which fix their routing tables and
republish objects

* Involuntary
— Periodic heartbeats: detection of failed link initiates mesh repair
(to clean up routing tables)
— Soft state publishing: object pointers go away if not republished
(to clean up object pointers)
¢ Discussion Point: Node insertions/deletions + heartbeats
+ soft state republishing = network overhead. Is it
acceptable? What are the tradeoffs?

4/11/2016 cs262a-516 Lecture-21 37 4/11/2016 cs262a-516 Lecture-21 38
Tapestry Architecture Experimental Results (1)
* 3 environments
P — Single Tapestry Node ----==-==--=--=~ : — Local cluster, PlanetLab, Simulator
| |
| | .
| Decentralized Application—Level Collaborative ! OceanStore, etc * Micro-benchmarks on local cluster
| File System Multicast Text Filtering | ¢ - Message processing overhead
: Application Interface / Upcall API i_ ?oerl\llx\//:rré)(’) » Proportional to processor speed - Can utilize Moore’s Law
| i)
i | — Message throughput
3 Routing Table i route(), etc. 9 . .9 P
! Dynamic Node 1] | Tier 0/1: Routing » Optimal size is 4KB
| _ o anc outer ! : s
3 Management Object Pointer Database 1_ Object Location w Per Msg Processing Latency (Local LAN)
! ! 1
i | P
| Neighbor Link Management i_COnnection Mgmt F) o L
| | e ¥
! | o
i Transport Protocols 3_ TCP, UDP E 1)
| I =}
i ! 2)
I, ! E e g
Y A
) . g ¥ P-III 1Ghz local
e Prototype implemented using Java P-1V 2.4Ghz local
0.01 P-1II 2.3 scaleup
0.0625 025 1 4 16 64 256 1024
Message Size (KB)
4/11/2016 cs262a-516 Lecture-21 39 4/11/2016 CS2b2a-51b Lecture-21 40

Experimental Results (Il)

* Routing/Object location tests
— Routing overhead (PlanetLab)
» About twice as long to route through overlay vs IP
— Object location/optimization (PlanetLab/Simulator)
» Object pointers significantly help routing to close objects
* Network Dynamics
— Node insertion overhead (PlanetLab)
» Sublinear latency to stabilization
» O(LogN) bandwidth consumption

RDP (min, median, 90th percentile)

Object Location with Tapestry

Location Relative Delay Penalty (PlanetLab) Effect of optimization on Routing to Objects RDP (Simulato

25

“~0Dth percentile = 158 16 F % Unoptimized
I\ 4l A Opt(1 back, | near, 1 hop) [+2]
20 \ o ! Opt(1 back, 5 near, 1 hop) [+6]
2 12 Opt(1 back, 1 near, 3 hop) [+6] =
15 o . Opt(l back, 5 near, 3 hop) [+18] ---=
Z 10 AN RDP = 1
\ 5
i g
\ 2
WLl T =
| /Hﬂi g
e N LEE Hf._f—.f.‘.i-ﬁp.fﬁ—.l—}

0 Lo
0 20 40 60 80 100 120 140 160 180 0 50 100 150 200 250

Client to object round-trip (ping) time (in 1 ms buckets) Client to object round-trip (ping) time

. - : e RDP (Relative Delay Penalt
— Node failures, joins, churn (PlanetLab/Simulator) (i i Y Y)
) . X — Under 2 in the wide area
» Brief dip in lookup success rate followed by quick return to near More trouble in local hy?
100% success rate — More trouble in local area — (why?)
» Churn lookup rate near 100% * Optimizations:
— More pointers (in neighbors, etc)
— Detect wide-area links and make sure that pointers on exit nodes to wide area
4/11/2016 cs262a-516 Lecture-21 41 4/11/2016 cs262a-516 Lecture-21 42
- : Possibilities for DOLR?
Stability under extreme circumstances
e Original Tapestry
Route to Node on Planetl.ab — Could be used to route to data or endpoints with locality (not routing to IP
100 L“' ' ' T T ' ' T 800 addresses)
T i § 700 _ . . .
2 90| 1 W Self adapting to changes in underlying system
2 80 1600 % * Pastry
é zg r- i T 4 500 E — Similarities to Tapestry, now in nth generation release
"?‘3, sof ST Churn 1 400 E — Need to build locality layer for true DOLR
40 F i starts 1200 =
‘% 30t} / 50% more E e Bamboo
& 20 H 20% of nodcss Join . 1200 — Similar to Pastry — very stable under churn
- t . .
10 nodes fail "c':;s;ojc: — 100 * Other peer-to-peer options
0 0 20 60 9 120 150 180 210 2400 — Coral: nice stable system with course-grained locality
Time (minutes) — Chord: very simple system with locality optimizations
(May 2003: 1.5 TB over 4 hours)
DOLR Model generalizes to many simultaneous apps
4/11/2016 cs262a-516 Lecture-21 43 4/11/2016 cs262a-516 Lecture-21 JAA

Is this a good paper?

* What were the authors’ goals?

Final topic: Churn (Optional Bamboo paper)

Chord is a “scalable protocol for

« What about the evaluationjmetrics? cokup nadhmamic peeropesr T LA '
* Did they convince you that this was a good system/approach? i”;’t;‘i‘zpaa;“;fS;OOl Time e
e Were there any red-flags? ' ———— f— g
e What mistakes did they make? Join Leave Join Leave
e Does the system/approach meet the “Test of Time” challenge?
* Howwouldyou review this paper today? Authors Systems Observed Session Time
SGG02 Gnutella, Napster 50% < 60 minutes
CLLO2 Gnutella, Napster 31% < 10 minutes
SW02 FastTrack 50% < 1 minute
BSV03 Overnet 50% < 60 minutes
4/11/2016 €5262a-516 Lecture-21 45 4/11/2016 GDS03 ch%zae]-ahs Lecture-21 50% < 2.4 minutes 46
A Simple lookup Test Early Test Results

e Start up 1,000 DHT nodes on ModelNet network
— Emulates a 10,000-node, AS-level topology
— Unlike simulations, models cross traffic and packet loss
— Unlike PlanetLab, gives reproducible results
e Churn nodes at some rate
— Poisson arrival of new nodes
— Random node departs on every new arrival
— Exponentially distributed session times
e Each node does 1 lookup every 10 seconds
— Log results, process them after test

4/11/2016 cs262a-516 Lecture-21 47

 Tapestry had trouble under this level of stress

— Worked great in simulations, but not as well on more realistic
network

— Despite sharing almost all code between the two!

e Problem was not limited to Tapestry consider Chord:

100 ———ywmmr T

& %0 2 3 Chord —+—
§ 6.2h 16h Z 4 Bamboo
=
o 60 31h 47 min 5 3
s 40 = 2
5 s l
2 20 Consistent —— P &
& 0 Completed 25 min = 0
0 50 100 150 200 8 16 32 & 1%

Time (minutes) Median Session Time (min)

4/11/2016 cs262a-516 Lecture-21 48

Handling Churn in a DHT

e Forget about comparing different impls.
— Too many differing factors
- Hard to isolate effects of any one feature

e Implement all relevant features in one DHT
- Using Bamboo (similar to Pastry)

e Isolate importantissues in handling churn
1. Recovering from failures
2. Routing around suspected failures
3. Proximity neighbor selection

4/11/2016 cs262a-516 Lecture-21

Reactive Recovery: The obvious technique

* For correctness, maintain leaf set during churn
— Also routing table, but not needed for correctness
* The Basics
- Ping new nodes before adding them
— Periodically ping neighbors
— Remove nodes that don’t respond
e Simple algorithm
— After every change in leaf set, send to all neighbors
— Called reactive recovery

49 4/11/2016 cs262a-516 Lecture-21 50
Periodic Recovery
The Problem With Reactive Recovery
Lo S 1
_ e Periodically send whole leaf g 7| st | ;
e Under churn, many pings and change messages set to a random member gl . |
- If bandwidth limited, interfere with each other _ Breaks feedback loop z 2 | - | |’” Iw 1
. . . = 4| W, !
- Lots ofdroppe.d pings looks I|ke.a failure — Converges in O(log N) £ ;5 . M' I! f l | |
e Respond to failure by sending more messages e Back off period on message 2 2| | W ‘%‘| | | |
- Probability of drop goes up loss = El} oo SO A ™ RIS &
— We have a positive feedback cycle (squelch) — Makes a negative feedback cycle 0 100 20 30 40 50
. Can break Cyc|e two ways (damping) Time (minutes)
1. Limit probability of “false suspicions of failure” Z 8 Reactive
2. Recovery periodically g 5| [Periade
3 4 {
% 3 | 47 min 23 min .
£, | :
£ Vb ANL |
1::. I | J'a_,.u‘-‘\....»\ |I ‘ .‘Lﬁ' L I'.lh'-,_ 3
e gt PR s R i)
0 10 20 30 40 50
4/11/2016 cs262a-516 Lecture-21 51 4/11/2016 cs262a-516 Lecture-21 Time (minutes) 52

Conclusions/[Recommendations

e Avoid positive feedback cycles in recovery
— Beware of “false suspicions of failure”

— Recover periodically rather than reactively

* Route around potential failures early
— Don't wait to conclude definite failure
— TCP-style timeouts quickest for recursive routing
— Virtual-coordinate-based timeouts not prohibitive

e PNS can be cheap and effective

— Only need simple random sampling

4/11/2016 cs262a-516 Lecture-21 53

