EECS 262a Advanced Topics in Computer Systems Lecture 18

Software Routers/RouteBricks March 30th, 2016

John Kubiatowicz **Electrical Engineering and Computer Sciences** University of California, Berkeley Slides Courtesy: Sylvia Ratnasamy

http://www.eecs.berkeley.edu/~kubitron/cs262

Today's Paper

- RouteBricks: Exploiting Parallelism To Scale Software Routers Mihai Dobrescu and Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall Gianluca Iannaccone, Allan Knies, Maziar Manesh, Sylvia Ratnasamy. Appears in Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP), October 2009
- Thoughts?
- Paper divided into two pieces:
 - Single-Server Router
 - Cluster-Based Routing

3/30/2016 cs262a-S16 Lecture-18

Networks and routers

3/30/2016 cs262a-S16 Lecture-18

Routers forward packets

Router definitions

- N = number of external router `ports'
- R = line rate of a port
- Router capacity = N x R

3/30/2016

cs262a-S16 Lecture-18

5

Networks and routers

Examples of routers (core)

Juniper T640

- R= 2.5/10 Gbps
- NR = 320 Gbps

Cisco CRS-1

- R=10/40 Gbps
- NR = 46 Tbps

72 racks, 1MW

Examples of routers (edge)

Cisco ASR 1006

- R=1/10 Gbps
- NR = 40 Gbps

Juniper M120

- R= 2.5/10 Gbps
- NR = 120 Gbps

3/30/2016 cs262a-S16 Lecture-18 3/30/2016 cs262a-S16 Lecture-18

Examples of routers (small business)

Cisco 3945E

- R = 10/100/1000 Mbps
- NR < 10 Gbps

3/30/2016

3/30/2016

cs262a-S16 Lecture-18

10

cs262a-S16 Lecture-18

Why programmable routers

- New ISP services
 - intrusion detection, application acceleration
- Simpler network monitoring
 - measure link latency, track down traffic
- New protocols
 - IP traceback, Trajectory Sampling, ...

Enable flexible, extensible networks

Building routers

- edge, core
 - ASICs
 - network processors
 - commodity servers ← RouteBricks
- home, small business
 - ASICs
 - network, embedded processors
 - commodity PCs, servers

Challenge: performance

- deployed edge/core routers
 - -port speed (R): 1/10/40 Gbps
 - capacity (NxR): 40Gbps to 40Tbps
- PC-based software routers
 - capacity (NxR), 2007: 1-2 Gbps [Click]
 - capacity (NxR), 2009: 4 Gbps [Vyatta]
- subsequent challenges: power, form-factor,

3/30/2016 cs262a-S16 Lecture-18 11 3/30/2016 cs262a-S16 Lecture-18 12

A single-server router

Packet processing in a server

Per packet,

- 1. core polls input port
- 2. NIC writes packet to memory
- 3. core reads packet
- 4. core processes packet (address lookup, checksum, etc.)
- 5. core writes packet to port

14

16

3/30/2016 cs262a-S16 Lecture-18 13 3/30/2016 cs262a-S16 Lecture-18

Packet processing in a server

Lesson#1: multi-core alone isn't enough

Hardware need: avoid shared-bus servers

3/30/2016 cs262a-S16 Lecture-18

Lesson#2: on cores and ports

How do we assign cores to input and output ports?

3/30/2016 cs262a-S16 Lecture-18 17

Lesson#2: on cores and ports

Problem: locking

Hence, rule: one core per port

3/30/2016 cs262a-S16 Lecture-18 18

Lesson#2: on cores and ports

Problem: cache misses, inter-core communication

Lesson#2: on cores and ports

- two rules:
 - one core per port
 - one core per packet
- problem: often, can't simultaneously satisfy both

Example: when #cores > #ports

• solution: use multi-Q NICs

3/30/2016 cs262a-S16 Lecture-18 20

Multi-Q NICs

- feature on modern NICs (for virtualization)
 - -port associated with multiple queues on NIC
 - -NIC demuxes (muxes) incoming (outgoing) traffic
 - -demux based on hashing packet fields (e.g., source+destination address)

Multi-Q NIC: incoming traffic Multi-Q NIC: outgoing traffic 3/30/2016 Multi-Q NIC: outgoing traffic

Multi-Q NICs

- feature on modern NICs (for virtualization)
- repurposed for routing
 - -rule: one core per port
 - -rule: one core per packet

 if #queues per port == #cores, can always enforce both rules

3/30/2016 cs262a-S16 Lecture-18 22

Lesson#2: on cores and ports

recap:

- use multi-Q NICs
 - with modified NIC driver for lock-free polling of queues
- with
 - one core per queue (avoid locking)
 - one core per packet (avoid cache misses, intercore communication)

Lesson#3: book-keeping

- 1. core polls input port
- 2. NIC writes packet to memory
- 3. core reads packet
- 4. core processes packet
- 5. core writes packet to out port

and packet descriptors

problem: excessive per packet book-keeping overhead

- solution: batch packet operations
 - -NIC transfers packets in batches of 'k'

3/30/2016 cs262a-S16 Lecture-18 23 3/30/2016 cs262a-S16 Lecture-18 2

Recap: routing on a server

Design lessons:

3/30/2016

- 1. parallel hardware
 - » at cores and memory and NICs
- 2. careful queue-to-core allocation
 - » one core per queue, per packet
- 3. reduced book-keeping per packet
 - » modified NIC driver w/ batching

(see paper for "non needs" – careful memory placement, etc.)

cs262a-S16 Lecture-18

Project Feedback from Meetings

- Should have Updated your project descriptions and plan
 - Turn your description/plan into a living document in Google Docs
 - Share Google Docs link with us
 - Update plan/progress throughout the semester
- Questions to address:
 - What is your evaluation methodology?
 - What will you compare/evaluate against? Strawman?
 - What are your evaluation metrics?
 - What is your typical workload? Trace-based, analytical, ...
 - Create a concrete staged project execution plan:
 - » Set reasonable initial goals with incremental milestones always have something to show/results for project

Single-Server Measurements: Experimental setup

- test server: Intel Nehalem (X5560)
 - dual socket, 8x 2.80GHz cores
 - 2x NICs; 2x 10Gbps ports/NIC

3/30/2016 cs262a-S16 Lecture-18 26

Midterm: Over Weekend?

- Out Wednesday
- Due 11:59PM PST a week from Tomorrow (11/11)
- Rules:
 - Open book
 - No collaboration with other students

3/30/2016 cs262a-S16 Lecture-18 27 3/30/2016 cs262a-S16 Lecture-18 28

25

Experimental setup

- test server: Intel Nehalem (X5560)
- software: kernel-mode Click [TOCS'00]
 - with modified NIC driver (batching, multi-Q)

Experimental setup

- test server: Intel Nehalem (X5560)
- software: kernel-mode Click [TOCS'00]
 - with modified NIC driver
- packet processing
 - static forwarding (no header processing)
 - IP routing
 - » trie-based longest-prefix address lookup
 - » ~300,000 table entries [RouteViews]
 - » checksum calculation, header updates, etc.

3/30/2016

cs262a-S16 Lecture-18

29

3/30/2016

cs262a-S16 Lecture-18

30

Experimental setup

- test server: Intel Nehalem (X5560)
- software: kernel-mode Click [TOCS'00]
 - with modified NIC driver
- packet processing
 - static forwarding (no header processing)
 - IP routing
- input traffic

3/30/2016

- all min-size (64B) packets (maximizes packet rate given port speed R) generate/sink test traffic
- realistic mix of packet sizes [Abilene]

Factor analysis: design lessons

Test scenario: static forwarding of min-sized packets

cs262a-S16 Lecture-18 31 3/30/2016 cs262a-S16 Lecture-18 32

Single-server performance

3/30/2016 cs262a-S16 Lecture-18 33

Bottleneck analysis (64B pkts)

Recap: single-server performance

	R	NR
current servers (realistic packet sizes)	1/10 Gbps	36.5 Gbps
current servers (min-sized packets)	1	6.35 (CPUs bottleneck)

Recap: single-server performance

With upcoming servers? (2010) 4x cores, 2x memory, 2x I/O

3/30/2016 cs262a-S16 Lecture-18 35 3/30/2016 cs262a-S16 Lecture-18 35

Recap: single-server performance

	R	NR
current servers (realistic packet sizes)	1/10 Gbps	36.5 Gbps
current servers (min-sized packets)	1	6.35 (CPUs bottleneck)
upcoming servers – estimated (realistic packet sizes)	1/10/40	146
upcoming servers – estimated (min-sized packets)	1/10	25.4

3/30/2016 cs262a-S16 Lecture-18 37

Practical Architecture: Goal

- scale software routers to multiple 10Gbps ports
- example: 320Gbps (32x 10Gbps ports)
 - higher-end of edge routers; lower-end core routers

3/30/2016 cs262a-S16 Lecture-18 38

A cluster-based router today

Interconnecting servers

Challenges

any input can send up to R bps to any output

3/30/2016 cs262a-S16 Lecture-18 39 3/30/2016 cs262a-S16 Lecture-18 4

A naïve solution Nº internal links of capacity R problem: commodity servers cannot accommodate NxR traffic

cs262a-S16 Lecture-18

Interconnecting servers

Challenges

- any input can send up to R bps to any output
 - » but need a low-capacity interconnect (~NR)
 - » i.e., fewer (<N), lower-capacity (<R) links per server
- must cope with overload

3/30/2016 cs262a-S16 Lecture-18 42

Overload

3/30/2016

Interconnecting servers

Challenges

41

- any input can send up to R bps to any output
 - » but need a lower-capacity interconnect
 - » i.e., fewer (<N), lower-capacity (<R) links per server
- must cope with overload
 - » need distributed dropping without global scheduling
 - » processing at servers should scale as R, not NxR

3/30/2016 cs262a-S16 Lecture-18 4

Interconnecting servers

Challenges

- any input can send up to R bps to any output
- must cope with overload

With constraints (due to commodity servers and NICs)

- internal link rates ≤ R
- per-node processing: cxR (small c)
- limited per-node fanout

Solution: Use Valiant Load Balancing (VLB)

3/30/2016 cs262a-S16 Lecture-18

Valiant Load Balancing (VLB)

- Valiant et al. [STOC'81], communication in multiprocessors
- applied to data centers [Greenberg'09], all-optical routers [Kesslassy'03], traffic engineering [Zhang-Shen'04], *etc.*
- idea: random load-balancing across a lowcapacity interconnect

3/30/2016 cs262a-S16 Lecture-18

VLB: operation

VLB: operation

- N² internal links of capacity 2R/N
- each server receives up to 2R bps
- plus R bps from external port
- hence, each server processes up to 3R
- or up to 2R, when traffic is uniform [directVLB, Liu'05] cs262a-S16 Lecture-18

3/30/2016

47

VLB: fanout? (1)

Multiple external ports per server (if server constraints permit)

3/30/2016 cs262a-S16 Lecture-18 49

VLB: fanout? (2)

Use extra servers to form a constant-degree

multi-stage interconnect (e.g., butterfly) 3/30/2016

Authors solution:

- assign maximum external ports per server
- servers interconnected with commodity NIC links
- servers interconnected in a full mesh if possible
- else, introduce extra servers in a k-degree butterfly
- servers run flowlet-based VLB

Scalability

- question: how well does clustering scale for realistic server fanout and processing capacity?
- metric: number of servers required to achieve a target router speed

3/30/2016 cs262a-S16 Lecture-18 51 3/30/2016 cs262a-S16 Lecture-18

Scalability

Assumptions

- 7 NICs per server
- each NIC has 6 x 10Gbps ports or 8 x 1Gbps ports
- current servers
 - one external 10Gbps port per server (i.e., requires that a server process 20-30Gbps)
- upcoming servers
 - two external 10Gbps port per server (i.e., requires that a server process 40-60Gbps)

3/30/2016 cs262a-S16 Lecture-18 53 3/30/2016

Example: 320Gbps

- R=10Gbps, N=32
- with current servers: 1x 10Gbps external port
 - need: 32 servers, 4 NICs/server (1Gbps NICs)

Example: 320Gbps

- R=10Gbps, N=32
- with current servers: 1x 10Gbps external port
 - target: 32 servers
 - 2R/N < 1Gbps → need: 1Gbps internal links</p>
 - 8x 1Gbps ports/NIC → need: 4 NICs per server

Scalability (computed)

	160Gbps	320Gbps	640Gbps	1.28Tbps	2.56Tbps
current servers	16	(32) _↑	→ 128	256	512
upcoming servers	8	16	32	128	256

cs262a-S16 Lecture-18

Transition from mesh to butterfly

Example: can build 320Gbps router with 32 'current' servers

3/30/2016 cs262a-S16 Lecture-18 55 3/30/2016 cs262a-S16 Lecture-18 5

Implementation: the RB8/4

(Intel Niantic NIC)

Specs.

8x 10Gbps external ports

form-factor: 4U

power: 1.2KW

• cost: ~\$10k

Key results (realistic traffic)

• 72 Gbps routing

• reordering: 0-0.15%

validated VLB bounds

Is this a good paper?

- What were the authors' goals?
- What about the evaluation/metrics?
- Did they convince you that this was a good system/approach?
- Were there any red-flags?
- What mistakes did they make?
- Does the system/approach meet the "Test of Time" challenge?
- How would you review this paper today?

3/30/2016 cs262a-S16 Lecture-18 57 3/30/2016 cs262a-S16 Lecture-18