
EECS 262a
Advanced Topics in Computer Systems

Lecture 17

C-Store / DB Cracking
March 28th, 2016

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

3/28/16 2cs262a-S16 Lecture-17

Today’s Papers
• C-Store: A Column-oriented DBMS*

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,
Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, Stan Zdonik.
Appears in Proceedings of the ACM Conference on Very Large
Databases(VLDB), 2005

• Database Cracking+

Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Appears in the
3rd Biennial Conference on Innovative Data Systems Research
(CIDR), January 7-10, 2007

• Wednesday: Comparison of PDBMS, CS, MR

• Thoughts?

*Some slides based on slides from Jianlin Feng, School of Software, Sun Yat-Sen University
+Some slides based on slides from Stratos Idreos, CWI Amsterdam, The Netherlands

3/28/16 3cs262a-S16 Lecture-17

Relational Data: Logical View

Name Age Department Salary
Bob 25 Math 10K
Bill 27 EECS 50K
Jill 24 Biology 80K

3/28/16 4cs262a-S16 Lecture-17

C-Store: A Column-oriented DBMS
• Physical layout:

Row store or Column store

Record 1

Record 2
Column

1

Column

2

Record 3

Column

3

Relation or Tables

3/28/16 5cs262a-S16 Lecture-17

Row Stores
• On-Line Transaction Processing (OLTP)

– ATM, POS in supermarkets

• Characteristics of OLTP applications:
– Transactions that involve small numbers of records (or tuples)
– Frequent updates (including queries)
– Many users
– Fast response times

• OLTP needs a write-optimized row store
– Insert and delete a record in one physical write

• Easy to add new record, but might read unnecessary
data (wasted memory and I/O bandwidth)

3/28/16 6cs262a-S16 Lecture-17

Row Store: Columns Stored Together

Record id = <page id, slot #>

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slotsSlot
Array

Data

3/28/16 7cs262a-S16 Lecture-17

Current DBMS Gold Standard
• Store columns from one record contiguously on disk

• Use B-tree indexing

• Use small (e.g. 4K) disk blocks

• Align fields on byte or word boundaries

• Conventional (row-oriented) query optimizer and
executor (technology from 1979)

• Aries-style transactions

3/28/16 8cs262a-S16 Lecture-17

OLAP and Data Warehouses
• On-Line Analytical Processing (OLAP)

– Flexible reporting for Business Intelligence

• Characteristics of OLAP applications
– Transactions that involve large numbers of records
– Frequent Ad-hoc queries and infrequent updates
– A few decision-making users
– Fast response times

• Data Warehouses facilitate reporting and analysis
– Read-Mostly

• Other read-mostly applications
– Customer Relationship Management (Siebel, Oracle)
– Catalog Search in E-Commerce (Amazon.com, Bestbuy.com)

3/28/16 9cs262a-S16 Lecture-17

Column Stores
• Logical data model: Relational Model

• Key Intuition: Only read relevant columns
– Example: Ad-hoc queries read 2 columns out of 20

• Multiple prior column store implementations
– Sybase IQ (early ’90s, bitmap index)
– Addamark (i.e., SenSage, for Event Log data warehouse)
– KDB (Column-stores for financial services companies)
– MonetDB (Hyper-Pipelining Query Execution, CIDR’05)

• Only read necessary data, but might need multiple
seeks

3/28/16 10cs262a-S16 Lecture-17

Row and Column Stores

3/28/16 11cs262a-S16 Lecture-17

Read-Optimized Databases

• Effect of column-orientation on performance?
– Read-less, seek more so depends on prefetching, query selectivity,

tuple width, competing query traffic

45

…
37

Joe

…
Sue

1

…
2

column stores

1 Joe 45

… … …
2 Sue 37

row stores

Sybase IQ
MonetDB
KDB
C-Store

SQL Server
DB2
Oracle

3/28/16 12cs262a-S16 Lecture-17

Rows versus Columns

1 Joe 45
2 Sue 37
… … … single file

project

Joe 45

1

2

…

Joe

Sue

45

37

…
…

3 files

Joe

45reconstruct

Joe 45

seek

column storesrow stores

3/28/16 13cs262a-S16 Lecture-17

C-Store Technical Ideas
• Column Store with some “novel” ideas (below)

• Only materialized views on
each relation (perhaps many)

• Active data compression

• Column-oriented query
executor and optimizer

• Shared-nothing architecture

• Replication-based concurrency control and recovery

Writeable Store (WS)

Read-optimized Store (RS)

Tuple Mover

Read-optimized Store (RS)
Read-optimized Store (RS)

Read-optimized Store (RS)

3/28/16 14cs262a-S16 Lecture-17

Architecture of Vertica C-Store

3/28/16 15cs262a-S16 Lecture-17

Basic Concepts
• A logical table is physically represented as a set of

projections

• Each projection consists of a set of columns
– Columns are stored separately, along with a common sort order

defined by SORT KEY

• Each column appears in at least one projection

• A column can have different sort orders if it is stored
in multiple projections

3/28/16 16cs262a-S16 Lecture-17

Example C-Store Projection

• LINEITEM(shipdate, quantity, retflag,
suppkey | shipdate, quantity, retflag)

– First sorted by shipdate
– Second sorted by quantity
– Third sorted by retflag

• Sorting increases locality of data
– Favors compression techniques such as Run-

Length Encoding (see Elephant paper)

3/28/16 17cs262a-S16 Lecture-17

C-Store Operators
• Selection

– Produce bitmaps that can be efficiently combined
• Mask

– Materialize a set of values from a column and a bitmap
• Permute

– Reorder a column using a join index
• Projection

– Free operation!
– Two columns in the same order can be concatenated for

free
• Join

– Produces positions rather than values

3/28/16 18cs262a-S16 Lecture-17

Example: Join over Two Columns

3/28/16 19cs262a-S16 Lecture-17

Column Store has High Compressibility
• Each attribute is stored in a separate column

– Related values are compressible (versus values of separate attributes)

• Compression benefits
– Reduces the data sizes
– Improves disk (and memory) I/O performance by:

» reducing seek times (related data stored nearer together)
» reducing transfer times (less data to read/write)
» increasing buffer hit rate (buffer can hold larger fraction of data)

3/28/16 20cs262a-S16 Lecture-17

Compression Methods

• Dictionary

• Bit-pack
– Pack several attributes inside a 4-byte word
– Use as many bits as max-value

• Delta
– Base value per page
– Arithmetic differences

• No Run-Length Encoding (unlike Elephant paper)

… ‘low’ …
… ‘high’ …
… ‘low’ …
… ‘normal’ …

… 00 …
… 10 …
… 00 …
… 01 …

3/28/16 21cs262a-S16 Lecture-17

C-Store Use of Snapshot Isolation
• Snapshot Isolation for Fast OLAP/Data Warehousing

– Allows very fast transactions without locks
– Can read large consistent snapshot of database

• Divide into RS and WS stores
– Read Store is Optimized for Fast Read-Only Transactions
– Write Store is Optimized for Transactional Updates

• Low Water Mark (LWM)
– Represents earliest epoch at which read-only transactions can run
– RS contains tuples added before LWM

• High Water Mark (HWM)
– Represents latest epoch at which read-only transactions can run

3/28/16 22cs262a-S16 Lecture-17

Other Ideas
• K-safety: Can handle up to K-1 failures

– Every piece of data replicated K times
– Different projections sorted in different ways

• Join Tables
– Construct original tuples given covering projects
– Vertica gave up on Join Tables – too expensive, require super-projections

3/28/16 23cs262a-S16 Lecture-17

Evaluation?

• Series of 7 queries against C-Store vs two commercial DBMS
– C-Store faster In all cases, sometimes significantly

• Why so much faster?
– Column Representation – avoid extra reads
– Overlapping projections – multiple orderings of column as appropriate
– Better data compression
– Query operators operating on compressed data

3/28/16 24cs262a-S16 Lecture-17

Summary
• Columns outperform rows in listed workloads

– Reasons:
» Column representation avoids reads of unused attributes
» Query operators operate on compressed representation,

mitigating storage barrier problem
» Avoids memory-bandwidth bottleneck in rows

• Storing overlapping projections, rather than the
whole table allows storage of multiple orderings of a
column as appropriate

• Better compression of data allows more orderings in
the same space

• Results from other papers:
– Prefetching is key to columns outperforming rows
– Systems with competing traffic favor columns

3/28/16 25cs262a-S16 Lecture-17

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

BREAK

3/28/16 27cs262a-S16 Lecture-17

DB Physical Organization Problem

• Many DBMS perform well and efficiently only
after being tuned by a DBA

• DBA decides:
– Which indexes to build?
– On which data parts?
– and when to build them?

3/28/16 28cs262a-S16 Lecture-17

Timeline
• Sample workload

• Analyze performance

• Prepare estimated physical design

• Queries

Very complex and time consuming process!
What about:

• Dynamic, changing workloads?

• Very Large Databases?

3/28/16 29cs262a-S16 Lecture-17

Database Cracking

• Solve challenges of dynamic environments:
– Remove all tuning and physical design steps, but still get

similar performance as a fully tuned system

• How?

• Design new auto-tuning kernels
– DBA with cracking (operators, plans, structures, etc.)

3/28/16 30cs262a-S16 Lecture-17

Database Cracking

• No monitoring
• No preparation
• No external tools
• No full indexes
• No human involvement

• Continuous on-the-fly physical reorganization
– Partial, incremental, adaptive indexing

• Designed for modern column-stores

3/28/16 31cs262a-S16 Lecture-17

Cracking Example
• Each query is treated as an advice on how data should be stored

– Triggers physical re‐organization of the database

Q1: select * from R

where R.A > 10

and R.A < 14

Column A

13

16

4

9

2

12

7

1

19

3

14

11

8

6

3/28/16 32cs262a-S16 Lecture-17

Cracking Design
• The first time a range query is posed on an attribute

A, a cracking DBMS makes a copy of column A,
called the cracker column of A

• A cracker column is continuously physically re-
organized based on queries that need to touch
attribute such as the result is in a contiguous space

• For each cracker column, there is a cracker index

3/28/16 33cs262a-S16 Lecture-17

Cracking Algorithms
• Two types of cracking algorithms based on select’s

where clause

where X < # where # < X < #
Split a piece into Split a piece into
two new pieces three new pieces

3/28/16 34cs262a-S16 Lecture-17

Cracker Select Operator
• Traditional select operator

– Scans the column
– Returns a new column that contains the qualifying values

• The cracker select operator
– Searches the cracker index
– Physically re-organizes the pieces found
– Updates the cracker index
– Returns a slice of the cracker column as the result

• More steps but faster because analyzes less data

3/28/16 35cs262a-S16 Lecture-17

Cracker
Column A

4

9

2

7

1

3

8

6

13

12

11

16

19

14

Cracking Example
• Each query is treated as advice on how data should be stored

– Physically reorganize based on the selection predicate

Q1: select * from R

where R.A > 10

and R.A < 14

Column A

13

16

4

9

2

12

7

1

19

3

14

11

8

6

Piece 1:

A ≤ 10

Piece 2:

10 < A < 14

Piece 3:

14 ≤ A

3/28/16 36cs262a-S16 Lecture-17

Cracker
Column A

4

9

2

7

1

3

8

6

13

12

11

16

19

14

Cracking Example
• Each query is treated as advice on how data should be stored

– Physically reorganize based on the selection predicate

Q1: select * from R

where R.A > 10

and R.A < 14

Column A

13

16

4

9

2

12

7

1

19

3

14

11

8

6

Piece 1:

A ≤ 10

Piece 2:

10 < A < 14

Piece 3:

14 ≤ A

3/28/16 37cs262a-S16 Lecture-17

Cracker
Column A

4

9

2

7

1

3

8

6

13

12

11

16

19

14

Cracking Example
• Each query is treated as advice on how data should be stored

– Physically reorganize based on the selection predicate

Q1: select * from R

where R.A > 10

and R.A < 14

Column A

13

16

4

9

2

12

7

1

19

3

14

11

8

6

Piece 1:

A ≤ 10

Piece 2:

10 < A < 14

Piece 3:

14 ≤ A

Gain knowledge on
how to organize data

on-the-fly within
the select-operator

Improve data
access for

future queries

3/28/16 38cs262a-S16 Lecture-17

Cracker
Column A

4

9

2

7

1

3

8

6

13

12

11

16

19

14

Cracking Example
• Each query is treated as advice on how data should be stored

– Physically reorganize based on the selection predicate

Q1: select * from R

where R.A > 10

and R.A < 14

Column A

13

16

4

9

2

12

7

1

19

3

14

11

8

6

Piece 1:

A ≤ 10

Piece 2:

10 < A < 14

Piece 3:

14 ≤ A

Q1

Q2: select * from R

where R.A > 7

and R.A ≤16

3/28/16 39cs262a-S16 Lecture-17

Cracker
Column A

4

9

2

7

1

3

8

6

13

12

11

16

19

14

Cracking Example
• Each query is treated as advice on how data should be stored

– Physically reorganize based on the selection predicate

Q1: select * from R

where R.A > 10

and R.A < 14

Column A

13

16

4

9

2

12

7

1

19

3

14

11

8

6

Piece 1:

A ≤ 10

Piece 2:

10 < A < 14

Piece 3:

14 ≤ A

Q1

Q2: select * from R

where R.A > 7

and R.A ≤16

Cracker
Column A

4

2

1

3

6

7

9

8

13

12

11

14

16

19

Piece 1:

A ≤ 7

Piece 3:

10<A<14

Piece 4:

14≤A≤16

Q2
Piece 2:

7 < A ≤10

Piece 5:

16 < A 3/28/16 40cs262a-S16 Lecture-17

Cracker
Column A

4

9

2

7

1

3

8

6

13

12

11

16

19

14

Cracking Example
• Each query is treated as advice on how data should be stored

– Physically reorganize based on the selection predicate

Q1: select * from R

where R.A > 10

and R.A < 14

Column A

13

16

4

9

2

12

7

1

19

3

14

11

8

6

Piece 1:

A ≤ 10

Piece 2:

10 < A < 14

Piece 3:

14 ≤ A

Q1

Q2: select * from R

where R.A > 7

and R.A ≤16

Cracker
Column A

4

2

1

3

6

7

9

8

13

12

11

14

16

19

Piece 1:

A ≤ 7

Piece 3:

10<A<14

Piece 4:

14≤A≤16

Q2
Piece 2:

7 < A ≤10

Piece 5:

16 < A

3/28/16 41cs262a-S16 Lecture-17

Cracker
Column A

4

9

2

7

1

3

8

6

13

12

11

16

19

14

Cracking Example
• Each query is treated as advice on how data should be stored

– Physically reorganize based on the selection predicate

Q1: select * from R

where R.A > 10

and R.A < 14

Column A

13

16

4

9

2

12

7

1

19

3

14

11

8

6

Piece 1:

A ≤ 10

Piece 2:

10 < A < 14

Piece 3:

14 ≤ A

Q1

Q2: select * from R

where R.A > 7

and R.A ≤16

Cracker
Column A

4

2

1

3

6

7

9

8

13

12

11

14

16

19

Piece 1:

A ≤ 7

Piece 3:

10<A<14

Piece 4:

14≤A≤16

Q2
Piece 2:

7 < A ≤10

Piece 5:

16 < A

Result
tuples

The more cracking,
the more learned

3/28/16 42cs262a-S16 Lecture-17

Self-Organizing Behavior (Count(*) range query)

3/28/16 43cs262a-S16 Lecture-17

Self-Organizing Behavior (TPC-H Query 6)
• TPC-H is an ad-hoc, decision support benchmark

– Business oriented ad-hoc queries, concurrent data modifications

• Example:
– Tell me the amount of revenue increase that would have resulted from eliminating

certain company-wide discounts in a given percentage range in a given year

• Workload:
– Database load
– Execution of 22 read-only

queries in both single
and multi-user mode

– Execution of 2 refresh
functions

3/28/16 44cs262a-S16 Lecture-17

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

