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Today’s Papers
• A Comparison of Approaches to Large-Scale Data Analysis

Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. 
DeWitt, Samuel Madden, Michael Stonebraker. Appears in Proceedings of 
the ACM SIGMOD International Conference on Management of Data, 2009

• Jockey: Guaranteed Job Latency in Data Parallel Clusters
Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and 
Rodrigo Fonseca. Appears in Proceedings of the European Professional 
Society on Computer Systems (EuroSys), 2012 

• Thoughts?
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Two Approaches to Large-Scale Data Analysis
• “Shared nothing”
• MapReduce

– Distributed file system
– Map, Split, Copy, Reduce
– MR scheduler

• Parallel DBMS
– Standard relational tables, (physical location transparent)
– Data are partitioned over cluster nodes
– SQL
– Join processing: T1 joins T2

» If T2 is small, copy T2 to all the machines
» If T2 is large, then hash partition T1 and T2 and send partitions to 

different machines (this is similar to the split-copy in MapReduce)
– Query Optimization
– Intermediate tables not materialized by default 
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Architectural Differences

Parallel DBMS MapReduce

Schema Support O X

Indexing O X

Programming Model Stating what you want
(SQL)

Presenting an algorithm
(C/C++, Java, …)

Optimization O X

Flexibility Spotty UDF Support Good

Fault Tolerance Not as Good Good

Node Scalability <100 >10,000
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Schema Support
• MapReduce

– Flexible, programmers 
write code to interpret 
input data

– Good for single 
application scenario

– Bad if data are shared 
by multiple 
applications.  Must 
address data syntax, 
consistency, etc. 

• Parallel DBMS
– Relational schema 

required
– Good if data are shared 

by multiple applications
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Programming Model & Flexibility
• MapReduce

– Low level: “We argue 
that MR programming 
is somewhat analogous 
to Codasyl
programming…”

– “Anecdotal evidence 
from the MR 
community suggests 
that there is 
widespread sharing of 
MR code fragments to 
do common tasks, such 
as joining data sets.”

– very flexible

• Parallel DBMS
– SQL
– user-defined functions, 

stored procedures, 
user-defined 
aggregates
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Indexing
• MapReduce

– No native index support
– Programmers can 

implement their own 
index support in 
Map/Reduce code

– But hard to share the 
customized indexes in 
multiple applications

• Parallel DBMS
– Hash/b-tree indexes 

well supported
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Execution Strategy & Fault Tolerance
• MapReduce

– Intermediate results are 
saved to local files

– If a node fails, run the 
node-task again on 
another node

– At a mapper machine, 
when multiple reducers 
are reading multiple 
local files, there could 
be large numbers of 
disk seeks, leading to 
poor performance.

• Parallel DBMS
– Intermediate results are 

pushed across network
– If a node fails, must re-

run the entire query
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Avoiding Data Transfers
• MapReduce

– Schedule Map close to 
data

– But other than this, 
programmers must 
avoid data transfers 
themselves

• Parallel DBMS
– A lot of optimizations
– Such as determine 

where to perform 
filtering
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Node Scalability
• MapReduce

– 10,000’s of commodity 
nodes

– 10’s of Petabytes of 
data

• Parallel DBMS
– <100 expensive nodes
– Petabytes of data
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Performance Benchmarks
• Benchmark Environment
• Original MR task (Grep)
• Analytical Tasks

– Selection
– Aggregation
– Join
– User-defined-function (UDF) aggregation
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Node Configuration

• 100-node cluster
– Each node: 2.40GHz Intel Core 2 Duo, 64-bit red hat 

enterprise Linux 5 (kernel 2.6.18) w/ 4Gb RAM and two 250GB 
SATA HDDs.

• Nodes interconnected with Cisco Catalyst 
3750E 1Gb/s switches

– Internal switching fabric has 128Gbps
– 50 nodes per switch

• Multiple switches interconnected via 64Gbps 
Cisco StackWise ring  

– The ring is only used for cross-switch communications.
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Tested Systems
• Hadoop (0.19.0 on Java 1.6.0)

– HDFS data block size: 256MB
– JVMs use 3.5GB heap size per node
– “Rack awareness” enabled for data locality
– Three replicas w/o compression: Compression or fewer replicas in 

HDFS does not improve performance

• DBMS-X (a parallel SQL DBMS from a major vendor)
– Row store
– 4GB shared memory for buffer pool and temp space per node
– Compressed table (compression often reduces time by 50%)

• Vertica
– Column store
– 256MB buffer size per node
– Compressed columns by default
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Benchmark Execution
• Data loading time:

– Actual loading of the data
– Additional operations after the loading, such as compressing or 

building indexes

• Execution time
– DBMS-X and vertica:

» Final results are piped from a shell command into a file
– Hadoop:

» Final results are stored in HDFS
» An additional Reduce job step to combine the multiple files into a 

single file
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Performance Benchmarks
• Benchmark Environment
• Original MR task (Grep)
• Analytical Tasks

– Selection
– Aggregation
– Join
– User-defined-function (UDF) aggregation
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Task Description
• From MapReduce paper

– Input data set: 100-byte records
– Look for a three-character pattern
– One match per 10,000 records

• Varying the number of nodes
– Fix the size of data per node (535MB/node)
– Fix the total data size (1TB)
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Data Loading
• Hadoop:

– Copy text files into HDFS in parallel

• DBMS-X:
– Load SQL command executed in parallel: it performs hash 

partitioning and distributes records to multiple machines
– Reorganize data on each node: compress data, build index, 

perform other housekeeping
» This happens in parallel

• Vertica:
– Copy command to load data in parallel
– Data is re-distributed, then compressed
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Data Loading Times

• DBMS-X: grey is loading, white is re-organization after 
loading

– Loading is actually sequential despite parallel load commands
• Hadoop does better because it only copies the data to 

three HDFS replicas
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Execution
• SQL:

– SELECT * FROM data WHERE field LIKE “%XYZ%”
– Full table scan

• MapReduce:
– Map: pattern search
– No reduce
– An additional Reduce job to combine the output into a single file
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Execution time

• Hadoop’s large start-up cost shows up in Figure 4, 
when data per node is small

• Vertica’s good data compression

Combine output

grep
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Performance Benchmarks
• Benchmark Environment
• Original MR task (Grep)
• Analytical Tasks

– Selection
– Aggregation
– Join
– User-defined-function (UDF) aggregation
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Input Data
• Input #1: random HTML documents

– Inside an html doc, links are generated with Zipfian 
distribution

– 600,000 unique html docs with unique urls per node

• Input #2: 155 million UserVisits records
– 20GB/node

• Input #3: 18 million Ranking records
– 1GB/node
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Selection Task
• Find the pageURLs in the rankings table (1GB/node) 

with a pageRank > threshold
– 36,000 records per data file (very selective)

• SQL:
SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

• MR: single Map, no Reduce
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Selection Task

• Hadoop’s start-up cost; DBMS uses index; vertica’s
reliable message layer becomes bottleneck 
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Aggregation Task
• Calculate the total adRevenue generated for each 

sourceIP in the UserVisits table (20GB/node), grouped 
by the sourceIP column.

– Nodes must exchange info for computing groupby
– Generate 53 MB data regardless of number of nodes

• SQL:
SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

• MR: 
– Map: outputs (sourceIP, adRevenue)
– Reduce: compute sum per sourceIP
– “Combine” is used
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Aggregation Task

• DBMS: Local group-by, then the coordinator performs the 
global group-by; performance dominated by data transfer.
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Join Task
• Find the sourceIP that generated the most revenue 

within Jan 15-22, 2000, then calculate the average 
pageRank of all the pages visited by the sourceIP during 
this interval

• SQL:
SELECT INTO Temp sourceIP,

AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM   Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(‘2000-01-15’)
AND Date(‘2000-01-22’)

GROUP BY UV.sourceIP;
SELECT sourceIP, totalRevenue, avgPageRank
FROM Temp
ORDER BY totalRevenue DESC LIMIT 1;
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Map Reduce
• Phase 1: filter UserVisits that are outside the desired 

date range, joins the qualifying records with records 
from the Ranking file

• Phase 2: compute total adRevenue and average 
pageRank per sourceIP

• Phase 3: produce the largest record
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Join Task

• DBMS can use index, both relations are partitioned on the join key; MR 
has to read all data

• MR phase 1 takes an average 1434.7 seconds
– 600 seconds of raw I/O to read the table; 300 seconds to split, 

parse, deserialize; Thus CPU overhead is the limiting factor
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UDF Aggregation Task
• Compute inlink count per document
• SQL:

SELECT INTO Temp F(contents) FROM Documents;
SELECT url, SUM(value) FROM Temp GROUP BY url;

Need a user-defined-function to parse HTML docs (C pgm using 
POSIX regex lib)

Both DBMS’s do not support UDF very well, requiring separate 
program using local disk and bulk loading of the DBMS – why was 
MR always forced to use Reduce to combine results?

• MR:
– A standard MR program

3/16/2016 31Cs262a-S16 Lecture-16

UDF Aggregation

• DBMS: lower – UDF time; upper – other query time
• Hadoop: lower – query time; upper: combine all 

results into one
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Discussion
• Throughput experiments?

• Parallel DBMSs are much more challenging than Hadoop to install and 
configure properly – DBMSs require professional DBAs to 
configure/tune

• Alternatives: Shark (Hive on Spark)
– Eliminates Hadoop task start-up cost and answers queries with sub-second latencies

» 100 node system: 10 second till the first task starts, 25 seconds till all nodes run tasks
– Columnar memory store (multiple orders of magnitude faster than disk

• Compression: does not help in Hadoop?
– An artifact of Hadoop’s Java-based implementation?

• Execution strategy (DBMS), failure model (Hadoop), ease of use (H/D)

• Other alternatives? Apache Hive, Impala (Cloudera) , HadoopDB
(Hadapt), …
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Alternative: HadoopDB?
• The Basic Idea (An Architectural Hybrid of MR & DBMS)

– To use MR as the communication layer above multiple nodes running 
single-node DBMS instances

• Queries expressed in SQL, 
translated into MR by 
extending existing tools

– As much work as possible is 
pushed into the higher 
performing single node databases|

• How many of complaints
from Comparison paper
still apply here?

• Hadapt startup 
commercializing
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?
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BREAK
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Domain for Jockey: Large cluster jobs

• Predictability very important
• Enforcement of Deadlines one way toward 

predictability
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Variable Execution 
Latency: Prevalent

• Even for job with narrowest latency profile
– Over 4.3X variation in latency

• Reasons for latency variation:
– Pipeline complexity
– Noisy execution environment
– Excess resources

4.3x
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Job Model: Graph of Interconnected 
Stages

Stage

Tasks
Job
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Dryad’s Dag Workflow

• Many simultaneous job pipelines executing at once
• Some on behalf of Microsoft, others on behalf of 

customers
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Compound Workflow

• Dependencies mean that deadlines on complete pipeline 
create deadlines on constituent jobs

• Median job’s output used by 10 additional jobs

Deadline

Deadline

DeadlineDeadline

Deadline
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Priorities?  Not expressive enough

Weights?  Difficult for users to set

Utility curves?  Capture deadline & penalty

Best way to express performance targets

• Jockey’s goal:
Maximize utility while minimizing resources 
by dynamically adjusting the allocation
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Application Modeling

• Techniques:
– Job simulator: 

» Input from profiling to a simulator which explores possible scenarios
» Compute 

– Amdahl’s Law
» Time = S + P/N
» Estimate S and P from standpoint of current stage

• Progress metric?  Many explored
– totalworkWithQ: Total time completed tasks spent enqueued or executing

• Optimization: Minimum allocation that maximizes utility
• Control loop design: slack (1.2), hysteresis, dead zone (D)

C(progress, allocation) 
 remaining run time
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JOCKEY – CONTROL LOOP

10 nodes 20 nodes 30 nodes

1% complete 60 minutes 40 minutes 25 minutes

2% complete 59 minutes 39 minutes 24 minutes

3% complete 58 minutes 37 minutes 22 minutes

4% complete 56 minutes 36 minutes 21 minutes

5% complete 54 minutes 34 minutes 20 minutes

Ex: Completion (1%), Deadline(50 min)
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JOCKEY – CONTROL LOOP

10 nodes 20 nodes 30 nodes

1% complete 60 minutes 40 minutes 25 minutes

2% complete 59 minutes 39 minutes 24 minutes

3% complete 58 minutes 37 minutes 22 minutes

4% complete 56 minutes 36 minutes 21 minutes

5% complete 54 minutes 34 minutes 20 minutes

Ex: Completion (3%), Deadline(50 min)



3/16/2016 45Cs262a-S16 Lecture-16

JOCKEY – CONTROL LOOP

10 nodes 20 nodes 30 nodes

1% complete 60 minutes 40 minutes 25 minutes

2% complete 59 minutes 39 minutes 24 minutes

3% complete 58 minutes 37 minutes 22 minutes

4% complete 56 minutes 36 minutes 21 minutes

5% complete 54 minutes 34 minutes 20 minutes

Ex: Completion (5%), Deadline(30 min)
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Jockey in Action

Initial deadline:

140 minutes
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Jockey in Action

New deadline:

70 minutes
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Jockey in Action

48

New deadline:

70 minutes

Release 
resources due 

to excess 
pessimism
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Jockey in Action

“Oracle” allocation:

Total allocation-hours

Deadline
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Jockey in Action

“Oracle” allocation:

Total allocation-hours

Deadline

Available 
parallelism

less than 
allocation
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Jockey in Action

“Oracle” allocation:

Total allocation-hours

Deadline

Allocation 
above oracle
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Evaluation
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1.4x
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Evaluation
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job completion time relative to deadline 

max allocation Jockey 

Allocation from
simulator 

   
Control loop only   

deadline 

Allocated too many

resources

Simulator made good predictions:

80% finish before deadline

Control loop 
is stable and 
successful

Missed 1 of 94 
deadlines
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Evaluation
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?


