
EECS 262a
Advanced Topics in Computer Systems

Lecture 16

Comparison of Parallel DB, CS, MR
and Jockey

March 16th, 2016
John Kubiatowicz

Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

3/16/2016 2Cs262a-S16 Lecture-16

Today’s Papers
• A Comparison of Approaches to Large-Scale Data Analysis

Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, Michael Stonebraker. Appears in Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2009

• Jockey: Guaranteed Job Latency in Data Parallel Clusters
Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and
Rodrigo Fonseca. Appears in Proceedings of the European Professional
Society on Computer Systems (EuroSys), 2012

• Thoughts?

3/16/2016 3Cs262a-S16 Lecture-16

Two Approaches to Large-Scale Data Analysis
• “Shared nothing”
• MapReduce

– Distributed file system
– Map, Split, Copy, Reduce
– MR scheduler

• Parallel DBMS
– Standard relational tables, (physical location transparent)
– Data are partitioned over cluster nodes
– SQL
– Join processing: T1 joins T2

» If T2 is small, copy T2 to all the machines
» If T2 is large, then hash partition T1 and T2 and send partitions to

different machines (this is similar to the split-copy in MapReduce)
– Query Optimization
– Intermediate tables not materialized by default

3/16/2016 4Cs262a-S16 Lecture-16

Architectural Differences

Parallel DBMS MapReduce

Schema Support O X

Indexing O X

Programming Model Stating what you want
(SQL)

Presenting an algorithm
(C/C++, Java, …)

Optimization O X

Flexibility Spotty UDF Support Good

Fault Tolerance Not as Good Good

Node Scalability <100 >10,000

3/16/2016 5Cs262a-S16 Lecture-16

Schema Support
• MapReduce

– Flexible, programmers
write code to interpret
input data

– Good for single
application scenario

– Bad if data are shared
by multiple
applications. Must
address data syntax,
consistency, etc.

• Parallel DBMS
– Relational schema

required
– Good if data are shared

by multiple applications

3/16/2016 6Cs262a-S16 Lecture-16

Programming Model & Flexibility
• MapReduce

– Low level: “We argue
that MR programming
is somewhat analogous
to Codasyl
programming…”

– “Anecdotal evidence
from the MR
community suggests
that there is
widespread sharing of
MR code fragments to
do common tasks, such
as joining data sets.”

– very flexible

• Parallel DBMS
– SQL
– user-defined functions,

stored procedures,
user-defined
aggregates

3/16/2016 7Cs262a-S16 Lecture-16

Indexing
• MapReduce

– No native index support
– Programmers can

implement their own
index support in
Map/Reduce code

– But hard to share the
customized indexes in
multiple applications

• Parallel DBMS
– Hash/b-tree indexes

well supported

3/16/2016 8Cs262a-S16 Lecture-16

Execution Strategy & Fault Tolerance
• MapReduce

– Intermediate results are
saved to local files

– If a node fails, run the
node-task again on
another node

– At a mapper machine,
when multiple reducers
are reading multiple
local files, there could
be large numbers of
disk seeks, leading to
poor performance.

• Parallel DBMS
– Intermediate results are

pushed across network
– If a node fails, must re-

run the entire query

3/16/2016 9Cs262a-S16 Lecture-16

Avoiding Data Transfers
• MapReduce

– Schedule Map close to
data

– But other than this,
programmers must
avoid data transfers
themselves

• Parallel DBMS
– A lot of optimizations
– Such as determine

where to perform
filtering

3/16/2016 10Cs262a-S16 Lecture-16

Node Scalability
• MapReduce

– 10,000’s of commodity
nodes

– 10’s of Petabytes of
data

• Parallel DBMS
– <100 expensive nodes
– Petabytes of data

3/16/2016 11Cs262a-S16 Lecture-16

Performance Benchmarks
• Benchmark Environment
• Original MR task (Grep)
• Analytical Tasks

– Selection
– Aggregation
– Join
– User-defined-function (UDF) aggregation

3/16/2016 12Cs262a-S16 Lecture-16

Node Configuration

• 100-node cluster
– Each node: 2.40GHz Intel Core 2 Duo, 64-bit red hat

enterprise Linux 5 (kernel 2.6.18) w/ 4Gb RAM and two 250GB
SATA HDDs.

• Nodes interconnected with Cisco Catalyst
3750E 1Gb/s switches

– Internal switching fabric has 128Gbps
– 50 nodes per switch

• Multiple switches interconnected via 64Gbps
Cisco StackWise ring

– The ring is only used for cross-switch communications.

3/16/2016 13Cs262a-S16 Lecture-16

Tested Systems
• Hadoop (0.19.0 on Java 1.6.0)

– HDFS data block size: 256MB
– JVMs use 3.5GB heap size per node
– “Rack awareness” enabled for data locality
– Three replicas w/o compression: Compression or fewer replicas in

HDFS does not improve performance

• DBMS-X (a parallel SQL DBMS from a major vendor)
– Row store
– 4GB shared memory for buffer pool and temp space per node
– Compressed table (compression often reduces time by 50%)

• Vertica
– Column store
– 256MB buffer size per node
– Compressed columns by default

3/16/2016 14Cs262a-S16 Lecture-16

Benchmark Execution
• Data loading time:

– Actual loading of the data
– Additional operations after the loading, such as compressing or

building indexes

• Execution time
– DBMS-X and vertica:

» Final results are piped from a shell command into a file
– Hadoop:

» Final results are stored in HDFS
» An additional Reduce job step to combine the multiple files into a

single file

3/16/2016 15Cs262a-S16 Lecture-16

Performance Benchmarks
• Benchmark Environment
• Original MR task (Grep)
• Analytical Tasks

– Selection
– Aggregation
– Join
– User-defined-function (UDF) aggregation

3/16/2016 16Cs262a-S16 Lecture-16

Task Description
• From MapReduce paper

– Input data set: 100-byte records
– Look for a three-character pattern
– One match per 10,000 records

• Varying the number of nodes
– Fix the size of data per node (535MB/node)
– Fix the total data size (1TB)

3/16/2016 17Cs262a-S16 Lecture-16

Data Loading
• Hadoop:

– Copy text files into HDFS in parallel

• DBMS-X:
– Load SQL command executed in parallel: it performs hash

partitioning and distributes records to multiple machines
– Reorganize data on each node: compress data, build index,

perform other housekeeping
» This happens in parallel

• Vertica:
– Copy command to load data in parallel
– Data is re-distributed, then compressed

3/16/2016 18Cs262a-S16 Lecture-16

Data Loading Times

• DBMS-X: grey is loading, white is re-organization after
loading

– Loading is actually sequential despite parallel load commands
• Hadoop does better because it only copies the data to

three HDFS replicas

3/16/2016 19Cs262a-S16 Lecture-16

Execution
• SQL:

– SELECT * FROM data WHERE field LIKE “%XYZ%”
– Full table scan

• MapReduce:
– Map: pattern search
– No reduce
– An additional Reduce job to combine the output into a single file

3/16/2016 20Cs262a-S16 Lecture-16

Execution time

• Hadoop’s large start-up cost shows up in Figure 4,
when data per node is small

• Vertica’s good data compression

Combine output

grep

3/16/2016 21Cs262a-S16 Lecture-16

Performance Benchmarks
• Benchmark Environment
• Original MR task (Grep)
• Analytical Tasks

– Selection
– Aggregation
– Join
– User-defined-function (UDF) aggregation

3/16/2016 22Cs262a-S16 Lecture-16

Input Data
• Input #1: random HTML documents

– Inside an html doc, links are generated with Zipfian
distribution

– 600,000 unique html docs with unique urls per node

• Input #2: 155 million UserVisits records
– 20GB/node

• Input #3: 18 million Ranking records
– 1GB/node

3/16/2016 23Cs262a-S16 Lecture-16

Selection Task
• Find the pageURLs in the rankings table (1GB/node)

with a pageRank > threshold
– 36,000 records per data file (very selective)

• SQL:
SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

• MR: single Map, no Reduce

3/16/2016 24Cs262a-S16 Lecture-16

Selection Task

• Hadoop’s start-up cost; DBMS uses index; vertica’s
reliable message layer becomes bottleneck

3/16/2016 25Cs262a-S16 Lecture-16

Aggregation Task
• Calculate the total adRevenue generated for each

sourceIP in the UserVisits table (20GB/node), grouped
by the sourceIP column.

– Nodes must exchange info for computing groupby
– Generate 53 MB data regardless of number of nodes

• SQL:
SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

• MR:
– Map: outputs (sourceIP, adRevenue)
– Reduce: compute sum per sourceIP
– “Combine” is used

3/16/2016 26Cs262a-S16 Lecture-16

Aggregation Task

• DBMS: Local group-by, then the coordinator performs the
global group-by; performance dominated by data transfer.

3/16/2016 27Cs262a-S16 Lecture-16

Join Task
• Find the sourceIP that generated the most revenue

within Jan 15-22, 2000, then calculate the average
pageRank of all the pages visited by the sourceIP during
this interval

• SQL:
SELECT INTO Temp sourceIP,

AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(‘2000-01-15’)
AND Date(‘2000-01-22’)

GROUP BY UV.sourceIP;
SELECT sourceIP, totalRevenue, avgPageRank
FROM Temp
ORDER BY totalRevenue DESC LIMIT 1;

3/16/2016 28Cs262a-S16 Lecture-16

Map Reduce
• Phase 1: filter UserVisits that are outside the desired

date range, joins the qualifying records with records
from the Ranking file

• Phase 2: compute total adRevenue and average
pageRank per sourceIP

• Phase 3: produce the largest record

3/16/2016 29Cs262a-S16 Lecture-16

Join Task

• DBMS can use index, both relations are partitioned on the join key; MR
has to read all data

• MR phase 1 takes an average 1434.7 seconds
– 600 seconds of raw I/O to read the table; 300 seconds to split,

parse, deserialize; Thus CPU overhead is the limiting factor
3/16/2016 30Cs262a-S16 Lecture-16

UDF Aggregation Task
• Compute inlink count per document
• SQL:

SELECT INTO Temp F(contents) FROM Documents;
SELECT url, SUM(value) FROM Temp GROUP BY url;

Need a user-defined-function to parse HTML docs (C pgm using
POSIX regex lib)

Both DBMS’s do not support UDF very well, requiring separate
program using local disk and bulk loading of the DBMS – why was
MR always forced to use Reduce to combine results?

• MR:
– A standard MR program

3/16/2016 31Cs262a-S16 Lecture-16

UDF Aggregation

• DBMS: lower – UDF time; upper – other query time
• Hadoop: lower – query time; upper: combine all

results into one

3/16/2016 32Cs262a-S16 Lecture-16

Discussion
• Throughput experiments?

• Parallel DBMSs are much more challenging than Hadoop to install and
configure properly – DBMSs require professional DBAs to
configure/tune

• Alternatives: Shark (Hive on Spark)
– Eliminates Hadoop task start-up cost and answers queries with sub-second latencies

» 100 node system: 10 second till the first task starts, 25 seconds till all nodes run tasks
– Columnar memory store (multiple orders of magnitude faster than disk

• Compression: does not help in Hadoop?
– An artifact of Hadoop’s Java-based implementation?

• Execution strategy (DBMS), failure model (Hadoop), ease of use (H/D)

• Other alternatives? Apache Hive, Impala (Cloudera) , HadoopDB
(Hadapt), …

3/16/2016 33Cs262a-S16 Lecture-16

Alternative: HadoopDB?
• The Basic Idea (An Architectural Hybrid of MR & DBMS)

– To use MR as the communication layer above multiple nodes running
single-node DBMS instances

• Queries expressed in SQL,
translated into MR by
extending existing tools

– As much work as possible is
pushed into the higher
performing single node databases|

• How many of complaints
from Comparison paper
still apply here?

• Hadapt startup
commercializing

3/16/2016 34Cs262a-S16 Lecture-16

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

3/16/2016 35Cs262a-S16 Lecture-16

BREAK

3/16/2016 36Cs262a-S16 Lecture-16

Domain for Jockey: Large cluster jobs

• Predictability very important
• Enforcement of Deadlines one way toward

predictability

3/16/2016 37Cs262a-S16 Lecture-16

Variable Execution
Latency: Prevalent

• Even for job with narrowest latency profile
– Over 4.3X variation in latency

• Reasons for latency variation:
– Pipeline complexity
– Noisy execution environment
– Excess resources

4.3x

3/16/2016 38Cs262a-S16 Lecture-16

Job Model: Graph of Interconnected
Stages

Stage

Tasks
Job

3/16/2016 39Cs262a-S16 Lecture-16

Dryad’s Dag Workflow

• Many simultaneous job pipelines executing at once
• Some on behalf of Microsoft, others on behalf of

customers
3/16/2016 40Cs262a-S16 Lecture-16

Compound Workflow

• Dependencies mean that deadlines on complete pipeline
create deadlines on constituent jobs

• Median job’s output used by 10 additional jobs

Deadline

Deadline

DeadlineDeadline

Deadline

3/16/2016 41Cs262a-S16 Lecture-16

Priorities? Not expressive enough

Weights? Difficult for users to set

Utility curves? Capture deadline & penalty

Best way to express performance targets

• Jockey’s goal:
Maximize utility while minimizing resources
by dynamically adjusting the allocation

3/16/2016 42Cs262a-S16 Lecture-16

Application Modeling

• Techniques:
– Job simulator:

» Input from profiling to a simulator which explores possible scenarios
» Compute

– Amdahl’s Law
» Time = S + P/N
» Estimate S and P from standpoint of current stage

• Progress metric? Many explored
– totalworkWithQ: Total time completed tasks spent enqueued or executing

• Optimization: Minimum allocation that maximizes utility
• Control loop design: slack (1.2), hysteresis, dead zone (D)

C(progress, allocation)
 remaining run time

3/16/2016 43Cs262a-S16 Lecture-16

JOCKEY – CONTROL LOOP

10 nodes 20 nodes 30 nodes

1% complete 60 minutes 40 minutes 25 minutes

2% complete 59 minutes 39 minutes 24 minutes

3% complete 58 minutes 37 minutes 22 minutes

4% complete 56 minutes 36 minutes 21 minutes

5% complete 54 minutes 34 minutes 20 minutes

Ex: Completion (1%), Deadline(50 min)

3/16/2016 44Cs262a-S16 Lecture-16

JOCKEY – CONTROL LOOP

10 nodes 20 nodes 30 nodes

1% complete 60 minutes 40 minutes 25 minutes

2% complete 59 minutes 39 minutes 24 minutes

3% complete 58 minutes 37 minutes 22 minutes

4% complete 56 minutes 36 minutes 21 minutes

5% complete 54 minutes 34 minutes 20 minutes

Ex: Completion (3%), Deadline(50 min)

3/16/2016 45Cs262a-S16 Lecture-16

JOCKEY – CONTROL LOOP

10 nodes 20 nodes 30 nodes

1% complete 60 minutes 40 minutes 25 minutes

2% complete 59 minutes 39 minutes 24 minutes

3% complete 58 minutes 37 minutes 22 minutes

4% complete 56 minutes 36 minutes 21 minutes

5% complete 54 minutes 34 minutes 20 minutes

Ex: Completion (5%), Deadline(30 min)

3/16/2016 46Cs262a-S16 Lecture-16

Jockey in Action

Initial deadline:

140 minutes

3/16/2016 47Cs262a-S16 Lecture-16

Jockey in Action

New deadline:

70 minutes

3/16/2016 48Cs262a-S16 Lecture-16

Jockey in Action

48

New deadline:

70 minutes

Release
resources due

to excess
pessimism

3/16/2016 49Cs262a-S16 Lecture-16

Jockey in Action

“Oracle” allocation:

Total allocation-hours

Deadline
3/16/2016 50Cs262a-S16 Lecture-16

Jockey in Action

“Oracle” allocation:

Total allocation-hours

Deadline

Available
parallelism

less than
allocation

3/16/2016 51Cs262a-S16 Lecture-16

Jockey in Action

“Oracle” allocation:

Total allocation-hours

Deadline

Allocation
above oracle

3/16/2016 52Cs262a-S16 Lecture-16

Evaluation

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130%

C
D

F

job completion time relative to deadline

 Jockey

deadline

Jobs which met the SLO

1.4x

3/16/2016 53Cs262a-S16 Lecture-16

Evaluation

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130%

C
D

F

job completion time relative to deadline

max allocation Jockey

Allocation from
simulator

Control loop only

deadline

Allocated too many

resources

Simulator made good predictions:

80% finish before deadline

Control loop
is stable and
successful

Missed 1 of 94
deadlines

3/16/2016 54Cs262a-S16 Lecture-16

Evaluation

0%

5%

10%

15%

20%

0% 25% 50% 75% 100%

fra
ct

io
n

of
 d

ea
dl

in
es

 m
is

se
d

fraction of allocation above oracle

Allocation from simulator

max allocation

Control loop only

Jockey

3/16/2016 55Cs262a-S16 Lecture-16

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

