
EECS 262a 
Advanced Topics in Computer Systems

Lecture 15

PDBMS / Spark
March 14th, 2016

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

3/14/2016 2Cs262a-S16 Lecture-15

Today’s Papers
• Parallel Database Systems: The Future of High Performance 

Database Systems
Dave DeWitt and Jim Gray. Appears in Communications of the ACM, 
Vol. 32, No. 6, June 1992

• Spark: Cluster Computing with Working Sets
M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker and I. Stoica. 
Appears in Proceedings of HotCloud 2010, June 2010. 

– M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-
memory cluster computing, NSDI 2012.

• Monday: Column Store DBs
• Wednesday: Comparison of PDBMS, CS, MR

• Thoughts?

3/14/2016 3Cs262a-S16 Lecture-15

DBMS Historical Context
• Mainframes traditionally used for large DB/OLTP apps

– Very expensive: $25,000/MIPS, $1,000/MB RAM

• Parallel DBs: “An idea whose time has passed” 1983 
paper by DeWitt

• Lots of dead end research into specialized storage tech
– CCD and bubble memories, head-per-track disks, optical disks

• Disk throughput doubling, but processor speeds 
growing faster

– Increasing processing – I/O gap

• 1992: Rise of parallel DBs – why??
3/14/2016 4Cs262a-S16 Lecture-15

Parallel Databases

• Side benefit of Relational Data Model: 
parallelism

– Relational queries are trivially parallelizable
– Uniform operations applied to uniform streams of data

• Two types of parallelism

– Pipeline: can sort in parallel with scan’s output
– Isolated partitions are ideal for parallelism



3/14/2016 5Cs262a-S16 Lecture-15

Speedup and Scaleup
• Broad issues in many types of parallel systems

• Speedup (fixed problem size) vs. Scaleup (problem &HW grow) 
– Linear Speedup – N-times larger system yields a speedup of N
– Linear Scaleup – N-times larger system runs N-times larger job in same time as 

original system
– Near-Linear Scaleup – “ignore” overhead of non-linear operators (e.g., nlog(n) 

sort yields deviation from linear scaleup)

• Barriers to parallelism: Startup, Interference and Skew
– Startup: scheduling delays
– Interference: overhead of shared resource contention
– Skew: Variance in partitioned operator service times

3/14/2016 6Cs262a-S16 Lecture-15

Hardware Architectures
• Insight: Build parallel DBs using cheap microprocessors

– Many microprocessors        >>                 one mainframe
– $250/MIPS, $100/MB RAM << $25,000/MIP, $1,000/MB RAM

• Three HW architectures (Figs 4 and 5):
– Shared-memory: common global mem and disks (IBM/370, DEC VAX)

» Limited to 32 CPUs, have to code/schedule cache affinity
– Shared-disks: private memory, common disks (DEC VAXcluster)

» Limited to small clusters, have to code/schedule system affinity
– Shared-nothing: private memory and disks, high-speed network 

interconnect (Teradata, Tandem, nCUBE)
» 200+ node clusters shipped, 2,000 node Intel hypercube cluster
» Hard to program completely isolated applications (except DBs!)

• Real issue is interference (overhead)
– 1% overhead limits speedup to 37x: 1,000 node cluster has 4% 

effective power of single processor system!

3/14/2016 7Cs262a-S16 Lecture-15

DB Dataflow Model
• The rise of SQL!

– Relational data model operators take relations as input and 
produce relations as output

– Iterators and pipelines enable operators to be composed into 
dataflow graphs 

– Dataflow graph operations can be executed in parallel

• Porting applications is trivial
– No work required to yield near-linear speedups and scaleups
– This is why DBs adopted large-scale parallel processing much 

earlier than systems

3/14/2016 8Cs262a-S16 Lecture-15

Hard Challenges
• DB layout – partitioning data across machines

– Round-Robin partitioning: good for reading entire relation, bad for 
associative and range queries by an operator

– Hash-partitioning: good for assoc. queries on partition attribute and 
spreads load, bad for assoc. on non-partition attribute and range queries

– Range-partitioning: good for assoc. accesses on partition attribute and 
range queries but can have hot spots (data skew or execution skew) if 
uniform partitioning criteria

• Choosing parallelism within a relational operator
– Balance amount of parallelism versus interference

• Specialized parallel relational operators
– Sort-merge and Hash-join operators

• Other “hard stuff”: query optimization, mixed workloads, 
UTILITIES!



3/14/2016 9Cs262a-S16 Lecture-15

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?

BREAK

3/14/2016 11Cs262a-S16 Lecture-15

Typical Web Application

Web 
Servers

(e.g. Apache)

Storage
(e.g. MySQL)

Archival & 
Analytics

(e.g. MapReduce)

transactions

logs updates

Reporting

Spam detection

Ad targeting

Use of external data 
(e.g. Google)

Ad-hoc queries 
about site usage

…

snapshots

3/14/2016 12Cs262a-S16 Lecture-15

Example: Facebook Lexicon

www.facebook.com/lexicon (now defunct) 



3/14/2016 13Cs262a-S16 Lecture-15

Typical Hadoop (MapReduce) Cluster

• 40 nodes/rack, 1000-4000 nodes in cluster
• 1 Gbps bandwidth in rack, 8 Gbps out of rack
• Node specs (Facebook):

8-16 cores, 32 GB RAM, 8×1.5 TB disks, no RAID

Aggregation switch

Rack switch

3/14/2016 14Cs262a-S16 Lecture-15

Challenges

• Cheap nodes fail, especially when you have many
– Mean time between failures for 1 node = 3 years
– MTBF for 1000 nodes = 1 day
– Implication: Applications must tolerate faults

• Commodity network = low bandwidth
– Implication: Push computation to the data

• Nodes can also “fail” by going slowly (execution 
skew)

– Implication: Application must tolerate & avoid 
stragglers

3/14/2016 15Cs262a-S16 Lecture-15

MapReduce
• First widely popular programming model for data-

intensive apps on commodity clusters

• Published by Google in 2004
– Processes 20 PB of data / day

• Popularized by open-source Hadoop project
– 40,000 nodes at Yahoo!, 70 PB at Facebook

3/14/2016 16Cs262a-S16 Lecture-15

MapReduce Programming Model
• Data type: key-value records

• Map function:
(Kin, Vin)  list(Kinter, Vinter)

• Reduce function:
(Kinter, list(Vinter))  list(Kout, Vout)



3/14/2016 17Cs262a-S16 Lecture-15

Word Count Execution

the quick

brown fox

the fox ate 
the mouse

how now

brown 
cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 1

fox, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

3/14/2016 18Cs262a-S16 Lecture-15

MapReduce Execution Details

• Mappers preferentially scheduled on same node or same 
rack as their input block

– Minimize network use to improve performance

• Mappers save outputs to local disk before serving to 
reducers

– Allows recovery if a reducer crashes

3/14/2016 19Cs262a-S16 Lecture-15

Fault Tolerance in MapReduce
1. If a task crashes:

– Retry on another node
» OK for a map because it had no dependencies
» OK for reduce because map outputs are on disk

– If the same task repeatedly fails, fail the job

Note: For fault tolerance to work, tasks 
must be deterministic and side-effect-free

3/14/2016 20Cs262a-S16 Lecture-15

Fault Tolerance in MapReduce
2. If a node crashes:

– Relaunch its current tasks on other nodes
– Relaunch any maps the node previously ran

» Necessary because their output files are lost



3/14/2016 21Cs262a-S16 Lecture-15

Fault Tolerance in MapReduce
3. If a task is going slowly – straggler (execution skew):

– Launch second copy of task on another node
– Take output of whichever copy finishes first

• Critical for performance in large clusters

3/14/2016 22Cs262a-S16 Lecture-15

Takeaways
• By providing a data-parallel programming model, 

MapReduce can control job execution in useful ways:
– Automatic division of job into tasks
– Placement of computation near data
– Load balancing
– Recovery from failures & stragglers

3/14/2016 23Cs262a-S16 Lecture-15

Issues with MapReduce
• Hard to express more complex programs

– E.g. word count + a sort to find the top words
– Need to write many different map and reduce functions that are split 

up all over the program
– Must write complex operators (e.g. join) by hand

Map

Map

Map

Reduce

Reduce

Input Output

3/14/2016 24Cs262a-S16 Lecture-15

Issues with MapReduce
• Acyclic data flow from stable storage to stable 

storage  poor support for applications that need to 
reuse pieces of data (I/O bottleneck and compute 
overhead)

– Iterative algorithms (e.g. machine learning, graphs)
– Interactive data mining (e.g. Matlab, Python, SQL)
– Stream processing (e.g., continuous data mining)

St
ag

e 
1

St
ag

e 
2

St
ag

e 
3

Iterative job

Query 1

Query 2

Query 3

Interactive mining

Jo
b 

1

Jo
b 

2

…

Stream processing



3/14/2016 25Cs262a-S16 Lecture-15

Example: Iterative Apps

Input

iteration 1

iteration 2

iteration 3

result 1

result 2

result 3

.  .  .

iter. 1 iter. 2 .  .  
.

Input

3/14/2016 26Cs262a-S16 Lecture-15

Distributed
memory

Input

iteration 1

iteration 2

iteration 3

.  .  .

iter. 1 iter. 2 .  .  
.

Input

Goal: Keep Working Set in RAM

one-time
processing

3/14/2016 27Cs262a-S16 Lecture-15

Spark Goals
• Support iterative and stream jobs (apps with data 

reuse) efficiently:
– Let them keep data in memory

• Experiment with programmability
– Leverage Scala to integrate cleanly into programs
– Support interactive use from Scala interpreter

• Retain MapReduce’s fine-grained fault-tolerance and 
automatic scheduling benefits of MapReduce

3/14/2016 28Cs262a-S16 Lecture-15

Key Idea: Resilient Distributed 
Datasets (RDDs)

• Restricted form of distributed shared memory
– Read-only (immutable), partitioned collections of records
– Caching hint tells system to retain RDD in memory
– Can only be created through deterministic transformations (map, group-by, 

join, …)

• Allows efficient implementation & recovery
– Key idea: rebuild lost data using lineage
– Enables hint model that allows memory to be reused if necessary
– No cost if nothing fails

• Rich enough to capture many models:
– Data flow models: MapReduce, Dryad, SQL, …
– Specialized models for iterative apps: Pregel, Hama, …



3/14/2016 29Cs262a-S16 Lecture-15

Distributed
memory

Input

iteration 1

iteration 2

iteration 3

.  .  .

iter. 1 iter. 2 .  .  
.

Input

RDD Recovery

one-time
processing

3/14/2016 30Cs262a-S16 Lecture-15

Programming Model

• Driver program
– Implements high-level control flow of an application 
– Launches various operations in parallel

• Resilient distributed datasets (RDDs)
– Immutable, partitioned collections of objects
– Created through parallel transformations (map, filter, groupBy, 

join, …) on data in stable storage
– Can be cached for efficient reuse

• Parallel actions on RDDs
– Foreach, reduce, collect

• Shared variables
– Accumulators (add-only), Broadcast variables (read-only)

3/14/2016 31Cs262a-S16 Lecture-15

Parallel Operations

• reduce – Combines dataset elements using 
an associative function to produce a result at 
the driver program

• collect – Sends all elements of the dataset to 
the driver program (e.g., update an array in 
parallel with parallelize, map, and collect)

• foreach – Passes each element through a 
user provided function

• No grouped reduce operation
3/14/2016 32Cs262a-S16 Lecture-15

Shared Variables

• Broadcast variables
– Used for large read-only data (e.g., lookup table) in multiple 

parallel operations – distributed once instead of packaging 
with every closure

• Accumulators
– Variables that works can only “add” to using an associative 

operation, and only the driver program can read



3/14/2016 33Cs262a-S16 Lecture-15

RDD Fault Tolerance

RDDs maintain lineage information that can be used to 
reconstruct lost partitions

Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

.cache()

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

CachedRDD

3/14/2016 34Cs262a-S16 Lecture-15

Architecture

Driver program connects 
to Mesos and schedules 
tasks
Workers run tasks, report 
results and variable 
updates
Data shared with 
HDFS/NFS
No communication 
between workers for now

Driver

Workers

HDFS
user code, 

broadcast 
vars

tasks,

results

Mesos

local 
cache

3/14/2016 35Cs262a-S16 Lecture-15

Spark Version of Word Count
file = spark.textFile("hdfs://...")

file.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)

3/14/2016 36Cs262a-S16 Lecture-15

Spark Version of Log Mining

Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in <1 sec 
(vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)



3/14/2016 37Cs262a-S16 Lecture-15

Logistic Regression

Goal: find best line separating two sets of points

target

random initial line

3/14/2016 38Cs262a-S16 Lecture-15

Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)

3/14/2016 39Cs262a-S16 Lecture-15

Job Execution

Big Dataset

Slave 4Slave 3Slave 2Slave 1

Master

R1 R2 R3 R4

aggregat
e

update
param

param

Spark
3/14/2016 40Cs262a-S16 Lecture-15

Job Execution

Slave 4Slave 3Slave 2Slave 1

Master

R1 R2 R3 R4

aggregat
e

update
param

param

Master

aggregat
e

param

Map 4Map 3Map 2Map 1

Reduce

aggregat
e

Map 8Map 7Map 6Map 5

Reduce

param

� � �
Spark Hadoop / Dryad



3/14/2016 41Cs262a-S16 Lecture-15

Performance

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 5 10 20 30

R
un

ni
ng

 T
im

e 
(s

)

Number of Iterations

Hadoop
Spark

127 s / iteration

first iteration 174 
s

further iterations
6 s

3/14/2016 42Cs262a-S16 Lecture-15

Interactive Spark

Modified Scala interpreter to allow Spark to be used 
interactively from the command line
Required two changes:

– Modified wrapper code generation so that each “line” typed has 
references to objects for its dependencies

– Place generated classes in distributed filesystem

Enables in-memory exploration of big data

3/14/2016 43Cs262a-S16 Lecture-15

What RDDs are Not Good For
• RDDs work best when an application applies the 

same operation to many data records
– Our approach is to just log the operation, not the data

• Will not work well for apps where processes 
asynchronously update shared state

– Storage system for a web application
– Parallel web crawler
– Incremental web indexer (e.g. Google’s Percolator)

3/14/2016 44Cs262a-S16 Lecture-15

Milestones

• 2010: Spark open sourced
• Feb 2013: Spark Streaming alpha open sourced
• Jun 2013: Spark entered Apache Incubator
• Aug 2013: Machine Learning library for Spark



3/14/2016 45Cs262a-S16 Lecture-15

Frameworks Built on 
Spark

• MapReduce
• HaLoop

– Iterative MapReduce from UC Irvine / U Washington

• Pregel on Spark (Bagel)
– Graph processing framework from 

Google based on BSP message-passing 
model

• Hive on Spark (Shark)
– In progress

3/14/2016 46Cs262a-S16 Lecture-15

3/14/2016 47Cs262a-S16 Lecture-15

Summary
• Spark makes distributed datasets a first-class 

primitive to support a wide range of apps

• RDDs enable efficient recovery through lineage, 
caching, controlled partitioning, and debugging

3/14/2016 48Cs262a-S16 Lecture-15

Meta Summary
• Three approaches to parallel and distributed systems

– Parallel DBMS
– Map Reduce variants (Spark, …)
– Column-store DBMS (Monday 3/28)

• Lots of on-going “discussion” about best approach
– We’ll have ours on Wednesday 



3/14/2016 49Cs262a-S16 Lecture-15

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?


