
EECS 262a 
Advanced Topics in Computer Systems

Lecture 14

Lamport Clocks and OCC
March 9th, 2016

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

3/9/2016 2cs262a-S16 Lecture-14

Today’s Papers
• Time, Clocks, and the Ordering of Events in a Distributed System

Leslie Lamport. Appears in Communications of the ACM, Vol 21, No. 7, pp
558-565, July 1978

• Efficient Optimistic Concurrency Control Using Loosely Synchronized 
Clocks
Atul Adya, Robert Gruber, Barbara Liskov, Umesh Maheshwari. Appears in 
Proceedings of ACM SIGMOD international conference on Management of 
Data,1995

• Thoughts?

3/9/2016 3cs262a-S16 Lecture-14

Time
• One dimension. It can not move backward. 

It can not stop.
• It is derived from concept of the order in 

which events occur.
• The concepts “before” and “after” need to 

be reconsidered in a distributed system.

3/9/2016 4cs262a-S16 Lecture-14

Distributed System

• A distributed system consists of collection of distinct 
processes which are spatially separated, and which 
communicate with one another by exchanging 
messages.

• It could be a network of interconnected computers, like 
Internet, or just a single computer with separate 
processes.

• It is sometimes impossible to say that one of two events 
occurred first in a distributed system. “happened 
before” is a partial ordering of the events in the system.



3/9/2016 5cs262a-S16 Lecture-14

The Partial Ordering
• The system described in paper:

– System is composed of a collection of processes.
– Each process consists of a sequence of events.
– A single process is defined to be a set of events with an a priori total 

ordering

• Events:
– Program Events
– Message Events

• Messages carry dependencies between processes

3/9/2016 6cs262a-S16 Lecture-14

Definition of “happened before”
• The relation “→” on the set of events of a system is 

the smallest relation satisfying the following three 
conditions: 
1. If a and b are events in the same process, and a comes before b, 

then a→b. 
2. If a is the sending of a message by one process and b is the 

receipt of the same message by another processes, then a→b. 
3. If a→b and b→c then a→c.

• Two distinct events a and b are said to be 
concurrent if a —/→b and b —/→ a.

• We assume that a —/→ a for any event a.

3/9/2016 7cs262a-S16 Lecture-14

Space-time diagram

• p1→r4 since p1 → q2 and q2 → q4 and q4 → r3 and r3 → r4

• p3 and q3 are concurrent.

3/9/2016 8cs262a-S16 Lecture-14

Logical Clocks
• A clock is just a way of assigning a number to an event

– Monotonically increasing except when reset
– Not necessarily related to “real time” in any particular frame

• Definition of logical clocks:
– A clock Ci for each process Pi is a function which assigns a number 

Ci<a> to any event a in that process.
– The entire system of clocks is represented by the function C which 

assigns to any event b the number C<b> = Cj<b> if b is an event b in 
process Pj.



3/9/2016 9cs262a-S16 Lecture-14

Clock Condition

• For any events a, b: if a→ b then C<a> <  C<b>
• Clock Condition is satisfied if

– C1: If a and b are events in Pi, and a comes before b, then Ci<a>  < Ci<b>
– C2: If a is the sending of a message by process Pi and b is the receipt of 

that message by process Pj, then Ci<a>  < Cj<b>

• C1 means that there must be a tick line between any two 
events on a process line

• C2 means that every message line must cross a tick line.
3/9/2016 10cs262a-S16 Lecture-14

Redraw Previous Figure

3/9/2016 11cs262a-S16 Lecture-14

Clock Condition
Now assume that the processes are algorithms, and the events 
represent certain actions during their execution.  Process Pi’s 
clock is represented by a register Ci, so that Ci<a> is the value 
contained by Ci during the event a. 

• To meet condition C1 and C2, the processes need to obey the 
following rules:

– IR1: Each process Pi increments Ci between any two successive 
events.

– IR2: (a) If event a is the sending of a message m by process Pi, then 
the message m contains a timestamp Tm=Ci<a>. (b) Upon receiving a 
message m, process Pj sets Cj greater than or equal to its present 
value and greater than Tm.

3/9/2016 12cs262a-S16 Lecture-14

Partial Ordering: Unregulated Clocks

• Version on Left has message “D” appearing to take 
negative time!

• With Clock adjustment clause (IR2b), fixed on right

12
6

18

0

24
30
36
42
48
54

1008060

16
8

24

0

32
40
48
56
64
72

20
10

30

0

40
50
60
70
80
90

A

B

D

C

12
6

18

0

24
30
36
42
48
70

1008576

16
8

24

0

32
40
48
61
69
77

20
10

30

0

40
50
60
70
80
90

A

B

D

C



3/9/2016 13cs262a-S16 Lecture-14

Definition of total ordering “”
• We can use a system of clocks satisfying the Clock 

Condition to place a total ordering on the set of all events:
– We simply order the events by the times at which they occur
– To break ties, we use any arbitrary total ordering ~< of the processes.

• Definition of total ordering “”
– If a is an event in process Pi and b is an event in process Pj, then ab if 

and only if either 
(i) Ci(a)<Cj(b) or (ii) Ci(a) =Cj(b) and Pi ~< Pj.

– Clock Condition implies that if a → b then ab.
In other words, the relation  is a way of completing the “happened 
before” partial ordering to  a total ordering

• The ordering “” depends upon the clock systems and is 
not unique!

– Example: If we have Ci(a) =Cj(b) and choose Pi ~< Pj, then a  b. If we 
choose Pj ~< Pi, then b  a

• The partial ordering “→” is uniquely determined by the 
system of events.

3/9/2016 14cs262a-S16 Lecture-14

Solving Mutual Exclusion
• Mutual exclusion: Only one process can use the resource at a time, 

the other processes will be excluded from doing the same thing
• Requirements: 

1. A process which has been granted the resource must release it before 
it can be granted to another process. 

2. Different requests for the resource must be granted in the order in 
which they are made. 

3. If every process which is granted the resource eventually release it, 
then every request is eventually granted.

• How to do it with clocks: Implement Clocks as above, define “”
• Assumptions: 

1. For any two processes Pi and Pj, the messages sent from Pi to Pj are 
received in the same order as they are sent. 

2. Every message is eventually received. 
3. A process can send messages directly to every other process. 
4. Each process maintains its own request queue which is never seen by 

any other process. The request queues initially contain the single 
message T0:P0 requests resource.

3/9/2016 15cs262a-S16 Lecture-14

Mutual Exclusion Algorithm
• To request the resource, process Pi sends the message

“Tm:Pi requests resource”
to every other process, and puts that message on its request 
queue, where Tm is the timestamp of the message

• When process Pj receives the message 
“Tm:Pi requests resource”

it places it on its request queue and sends a (timestamped) 
acknowledgment message to Pi.

• To release the resource, process Pi removes any Tm:Pi request 
resource message from its request queue and sends a 
(timestamped) 

“Pi releases resource”
messages to every other process.

3/9/2016 16cs262a-S16 Lecture-14

Mutual Exclusion Algorithm (Con’t)
• When process Pj receives a 

“Pi release resource”
message, it removes any Tm:Pi requests resource message 
from its request queue.

• Process Pi is granted the resource when the following two 
conditions are satisfied: 

1. There is a Tm:Pi request resource message in its request 
queue which is ordered before any other request in its queue 
by the relation . 

2. Pi has received a message from every other process time-
stamped later than Tm.



3/9/2016 17cs262a-S16 Lecture-14

Anomalous Behavior (External Channels)
• Consider a nationwide system of interconnected computers. 

Suppose a person issues a request A on a computer A, and 
then telephones a friend in another city to have him issue a 
request B on a different computer B. It is quite possible for a 
request B to receive a lower timestamp and be ordered 
before request A.

• Relevant external events may influence the ordering of 
system events!

• Two possible solutions: 
1. The user makes sure that the timestamp TB is later than TA
2. Construct a system of clocks which satisfies the Strong Clock 

Condition: For any event a, b in φ: if a→b then C<a> < C<b>

3/9/2016 18cs262a-S16 Lecture-14

Physical Clocks
• We can construct a system of physical clocks which, running quite 

independently of one another, will satisfy the Strong Clock 
Condition. Then we can use physical clocks to eliminate 
anomalous behavior:

Ci(t+µ) – Cj(t) > 0, with µ < shortest transmission time
• Above condition translates into strong clock condition, since we 

know that it takes longer than µ to send message, if a b in 
physical time means that C<a> < C<b>

• Properties of clocks:
1. Clock runs continuously.
2. Clock runs at approximately the correct rate. i.e. dCi(t)/dt ≈1 for all t.
3. Clocks must be synchronized so that Ci(t) ≈ Cj(t) for all i, j, and t.

• Two new conditions for physical clocks:
– PC1. There exists a constant ĸ<<1 such that for all i: | dCi(t)/dt -1| < ĸ
– PC2. For all i, j: | Ci(t) - Cj(t) | < ε ( ε is a sufficiently small constant )

• Clock Synchronization algorithm:
– Send messages so that clocks stay in sync (and always move forward)

3/9/2016 19cs262a-S16 Lecture-14

General Ideas from Paper
• Using Virtual Clocks to order events in distributed 

system
• Using Resulting Ordering to build distributed state 

machines
• Clock Synchronization with no backtracking

3/9/2016 20cs262a-S16 Lecture-14

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?



3/9/2016 21cs262a-S16 Lecture-14

Break

3/9/2016 22cs262a-S16 Lecture-14

OCC with Loosely Synchronized Clocks
• Basic Idea: Use Loosely Synchronized Clocks to

pick ordering of transactions
– Ultimately, this is the Serializable order

• Slight Twist: Want consistency with real world’s 
view of transaction order

• Two desired consistency properties:
– Serializability: The committed transactions can be placed in a 

total order, called the serialization order, such that the actual 
effect of running the transactions is the same as running them 
one at a time in that order

– External consistency: The serialization order is such that, if 
transaction S committed before T began (in real time), S is 
ordered before T

3/9/2016 23cs262a-S16 Lecture-14

OCC with Clocks: Basic Sketch
• Clients perform transactions

Locally on Cached Pages
– Reads and Writes done locally
– When ready to commit, send request

to one server which will interact with
all servers which have data in read
and write set of transaction

• Receiving server timestamps
transaction with local clock, then performs 2-phase 
commit of transaction

– Prepare phase: Ask each participating server if it is ok to commit
» Response: server either says “yes” or “no”
» If all servers say “yes”, then transaction is committed

– Commit phase: If all servers say “yes”
» Note commit in stable log, notify everyone that it is time to commit
» Can be done in background – client can go on immediately

3/9/2016 24cs262a-S16 Lecture-14

Validation during Prepare Phase
• This is where the optimism comes in to play

– Set of rules to look at log of previously validated transactions to see 
if any of them conflict with incoming commit request

– If rules violated, then “abort”.  If rules not violated, the “accept”

• Since no locking, it is possible that ongoing 
transactions will conflict and need to be aborted

– Conflicting transactions proceed together – OCC will eventually abort 
one of them

– Insufficient information may occasionally cause aborts when 
unnecessary

– Validation algorithm is conservative in allowing commit to proceed

• Key property: Serializability
– In picking serializable order, must make sure that values written by 

earlier transactions picked up by later transactions

• Key property:  External Consistency
– If transaction S committed before T (in real time), then T should not 

appear before S in final order



3/9/2016 25cs262a-S16 Lecture-14

Full Algorithm
• Information Flow:

– If using value from uncommitted 
transaction (because have later 
timestamp), must fail

– If using stale value, must fail

• External Consistency:
– Make sure that transactions with 

earlier timestamps that commit later 
can be reordered to match external 
appearances

• Threshold Truncation
– If validation depends on truncated 

part of log, simply abort

3/9/2016 26cs262a-S16 Lecture-14

Simulation Results
• Comparison with Locking Discipline

• Overhead of locking involves multiple round-trips, 
while overhead of OCC involves Abort and Retry

• Which is better?  

3/9/2016 27cs262a-S16 Lecture-14

Read Only Transactions
• What about high-percentage of read-only 

transactions?
– ACBL does not need to lock – simply use local state

• AOCC Still better for most transaction mixes:

3/9/2016 28cs262a-S16 Lecture-14

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?


