EECS 262a

Advanced Topics in Computer Systems

Lecture 13

Resource allocation: Lithe/DRF
March 7th, 2016

John Kubiatowicz
Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

Today’s Papers

+ Composing Parallel Software Efficiently with Lithe

Heidi Pan, Benjamin Hindman, Krste Asanovic. Appears in Conference
on Programming Languages Design and Implementation (PLDI), 2010

* Dominant Resource Fairness: Fair Allocation of Multiple

Resources Types,

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I.
Stoica, Usenix NSDI 2011, Boston, MA, March 2011

* Thoughts?

3/7/2016 cs262a-S16 Lecture-14

The Future is Parallel Software

Challenge: How to build many different large parallel apps that run well?

< Can't rely solely on compiler/hardware: limited parallelism & energy efficiency

2
o

Can't rely solely on hand-tuning: limited programmer productivity

3
512
256
- Manycore
8 Intel @ _Tilera Era
g © TFlops @ TILEG4
8 NVIDIA
s = Cavium g&1200
g A aOctsm
g @ AZd @ Y
£ e o e Do,
g 8 Niagra ® @Cel
= Barcelona
4 @ ® Nehalem
2 Powerd Dﬂ‘crgn.@ J;Bo:aeo
286 386 486 Penum P2 P3 p4 COe2 Powers
! il e e o 000 olanum
Athalon

1980 1985 1990 1995 2000 2005 2010 2015 2020

3/7/12016 cs262a-S16 Lecture-14

Composability is Essential

code reuse
same library implementation, different apps

modularity
same app, different library implementations

Composability is key to building large, complex apps.

3/7/2016 cs262a-S16 Lecture-14

Motivational Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)

Column ~<_

Elimination

Tree SPQR
Frontal Matrix
Factorization

oS

Hardware

Software Architecture System Stack

3/7/12016 cs262a-S16 Lecture-14

TBB, MKL, OpenMP

* Intel’s Threading Building Blocks (TBB)

— Library that allows programmers to express parallelism using
a higher-level, task-based, abstraction

— Uses work-stealing internally (i.e. Cilk)
— Open-source

* Intel’s Math Kernel Library (MKL)

— Uses OpenMP for parallelism

* OpenMP

— Allows programmers to express parallelism in the SPMD-style
using a combination of compiler directives and a runtime
library

— Creates SPMD teams internally (i.e. UPC)
— Open-source implementation of OpenMP from GNU (libgomp)

3/7/2016 cs262a-S16 Lecture-14

Suboptimal Performance

Performance of SPQR on 16-core AMD Opteron System

s 6

e

5

(o2

® 41

2 3.

o

=}

§ 2

& 14
0-

deltaX Ilandmark ESOC Rucci
Matrix

3/7/12016 cs262a-S16 Lecture-14

Out-of-the-Box Configurations

VAYAVAVAVAVAViviY)
VAVAVAVAVAVAViVAVE
VAVAVAVAVAVAViYAVE

o~
s
<
<€
=
<
L
<
L
=
=

AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA

EEEEEEE

virtualized kernel threads

Hardware

3/7/2016 cs262a-S16 Lecture-14

ivvvivivivivivy

Providing Performance Isolation

Using Intel MKL with Threaded Applications
http://www. intel .com/support/performancetools/libraries/mkl/sb/CS-017177 .htm

Software Products

e W Ly (i ML
it M s T it e

7] * User threads the program using OS threads (pthreads on Linux*, Win32*
threads on Windows*). If more than one thread calls Intel MKL and the
function being called is threaded, it is important that threading in Intel MKL
be turned off. Set OMP_NUM_THREADS =1 in the environment.

—r

i e el L 81 oy i

o v s
B T e e W T
o By s s P e ML B By

3/7/2016 cs262a-S16 Lecture-14 9

“Tuning” the Code

Performance of SPQR on 16-core AMD Opteron System

= . !
5 !
S 51 1
g 1
N 4
1Y
(]
3 3- B Out-of-the-Box
= B Serial MKL
T 2
o
8
o 14

0.

deltaX !landmark ESOC | Rucci
Matrix
3/7/12016 cs262a-S16 Lecture-14 10

Partition Resources

Hardware

Tim Davis’ “tuned” SPQR by manually partitioning the resources.

3/7/12016 cs262a-S16 Lecture-14 1

“Tuning” the Code (continued)

Performance of SPQR on 16-core AMD Opteron System

s 6
5
S 51
o
»n 41
S
2 3 H Out-of-the-Box
o @ Serial MKL
3 2 B Tuned
@
2
n 17

0-

deltaX landmark ESOC Rucci
Matrix
3/7/12016 cs262a-S16 Lecture-14 12

Harts: Hardware Threads

virtualized kernel threads harts

Core 0 Core 1 Core2 Core 3

Core 0 Core 1 Core 2 Core 3

< Expose true hardware resources
» Applications requests harts from OS

» Application “schedules” the harts itself
(two-level scheduling)

+ Can both space-multiplex and time-
multiplex harts ... but never time-

multiplex harts of the same application
3/7/12016 cs262a-S16 Lecture-14

13

Sharing Harts (Dynamically)

time

Hardware

3/7/2016 cs262a-S16 Lecture-14 14

How to Share Harts?

call graph

scheduler hierarchy

S

TBB

OpenMP

< Hierarchically: Caller gives resources to callee to execute

o6

< Cooperatively: Callee gives resources back to caller when done

3/7/12016 cs262a-S16 Lecture-14

15

A Day in the Life of a Hart

TBB Sched: next?

executeTBB task

TBB
TBB Sched: next? SchedQ

execute TBB task
* Non-preemptive

scheduling. TBB Sched: next?

nothing left to do, give hart back to parent

CLR Sched: next?

Cilk Sched: next?
time
3/7/2016 cs262a-S16 Lecture-14 16

Lithe (ABI)

TBB Scheduler Caller

enter| yield | request| register| unregister call | return

N\ ~

/

N

AN

interface for exchanging values

call | return

OpenMP Scheduler Callee

< Analogous to function call ABI for enabling interoperable codes.

A Few Details ...

* A hart is only managed by one scheduler at a time

* The Lithe runtime manages the hierarchy of schedulers

and the interaction between schedulers

* Lithe ABI only a mechanism to share harts, not policy

3/7/2016 cs262a-S16 Lecture-14 17 3/7/2016 cs262a-S16 Lecture-14
Putting It All Together Synchronization
« Can’t block a hart on a synchronization object
Lithe-TBB . . .)
SchedQ » Synchronization objects are implemented by
saving the current “context” and having the hart
funcOf Lithe TBE re-enter the current scheduler
SchedQ Lithe-TBB -
re Sched #pragma omp barrier
TBB Scheduler (block context)
enter
enter| yield| reques{ register| unregister yield
request(2); enter(TBB); . #pragma omp barrier
(TBB) enter(TBB);
o ® (unblock context)
unregister(TBB); yield(); yieldQ; é request(1)
' OpenMP Scheduler enter
v enter Jield | request| register| unregister (resume context)
time '
tinte
3/7/2016 cs262a-S16 Lecture-14 19 3/7/2016 cs262a-S16 Lecture-14

Lithe Contexts

* Includes notion of a stack
* Includes context-local storage

Lithe-compliant Schedulers

- TBB
— Worker model
— ~180 lines added, ~5 removed, ~70 modified (~1,500 / ~8,000

* There is a special transition context for each hart total)
that allows it to transition between schedulers
easily (i.e. on an enter, yield) « OpenMP
— Team model
— ~220 lines added, ~35 removed, ~150 modified (~1,000 / ~6,000
total)
3/7/12016 cs262a-S16 Lecture-14 21 3/7/12016 cs262a-S16 Lecture-14 22
Overheads? Flickr Application Server
- TBB

— Example micro-benchmarks that Intel includes with releases

tree sum | preorder | fibonacei
Lithe-Compliant TBB | 54.80 22820 | 8.421

TBEB 54.80 24251 §.722
* OpenMP
— NAS benchmarks (conjugate gradient, LU solver, and
multigrid)
conjugate gradient (cg) | LU solver (lu) | multigrid (mg)
Lithe-Compliant GNU OpenMP | 57.06 122.15 9.23
GNU OpenMP 57.00 123.68 9.54

3/7/12016 cs262a-S16 Lecture-14

23

* GraphicsMagick parallelized using OpenMP

» Server component parallelized using threads (or
libprocess processes)

+ Spectrum of possible implementations:
— Process one image upload at a time, pass all resources to OpenMP (via
GraphicsMagick)
+ Easy implementation
- Can’t overlap communication with computation, some network
links are slow, images are different sizes, diminishing returns on
resize operations
— Process as many images as possible at a time, run GraphicsMagick
sequentially
+ Also easy implementation
- Really bad latency when low-load on server, 32 core machine
underwhelmed
— All points in between ...
+ Account for changing load, different image sizes, different link
bandwidth/latency

- Hard to program

3/7/2016 cs262a-S16 Lecture-14 24

Flickr-Like App Server

=~ OpenMPF = 16
=d=0OpenMP = &
== OpenMP = 4

App Server

latency (seconds)
w

Graphics
. 2 1 —#=0penMP = 2
Libprocess Magick —+=0penMP = 1
17 ~@=libprocess
0 ’ " . . g . (Lithe)
0 0.5 1 15 2 25 3

Tradeoff between throughput saturation point and latency.

3/7/12016 cs262a-S16 Lecture-14 25

Case Study: Sparse QR Factorization

Different matrix sizes

landmark deltaX ESOC Ruccil
Size 71952 %2.704 | 68,600 x 21,961 327062 x 37.830 | 1,977 885 x 109,900
Nonzeros | 1,146,868 247424 6,019,939 7,791,168
Domain | surveying computer graphics | orbit estimates ill-conditioned least-square

deltaX creates ~30,000 OpenMP schedulers

* Rucci creates ~180,000 OpenMP schedulers

Platform: Dual-socket 2.66 GHz
Intel Xeon (Clovertown) with
4 cores per socket (8 total cores)

3/7/2016 cs262a-S16 Lecture-14 26

Case Study: Sparse QR Factorization

ESOC Rucci

Tuned: 70.8 Tuned: 360.0

Out-of-the-box: 111.8 Out-of-the-box: 576.9

Sequential: 172.1 Sequential: 970.5

Lithe: 66.7 Lithe: 354.7

3/7/12016 cs262a-S16 Lecture-14 27

Case Study: Sparse QR Factorization

deltaX landmark

Tuned: 14.5 Tuned: 25

Out-of-the-box: 26.8 Out-of-the-box: 4.1

Sequential: 37.9 Sequential: 34

Lithe: 13.6 Lithe: 2.3

3/7/2016 cs262a-S16 Lecture-14 28

Is this a good paper?

+ What were the authors’ goals?
» What about the evaluation/metrics?

+ Did they convince you that this was a good
system/approach?

» Were there any red-flags?
+ What mistakes did they make?

» Does the system/approach meet the “Test of Time”
challenge?

» How would you review this paper today?

3/7/12016 cs262a-S16 Lecture-14 29

Break

3/7/2016 cs262a-S16 Lecture-14 30

CPU
100%" £

What is Fair Sharing? 133%
* n users want to share a resource (e.g., CPU) 50%-ﬂ-

— Solution: :
Allocate each 1/n of the shared resource 0% 5,33%
- y

100%
» Generalized by max-min fairness
— Handles if a user wants less than its fair share
— E.g. user 1 wants no more than 20%

0%

» Generalized by weighted max-min fairness
— Give weights to users according to importance
— User 1 gets weight 1, user 2 weight 2

100%

3/7/12016 cs262a-S16 Lecture-14 31

Why is Fair Sharing Useful?

Weighted Fair Sharing / Proportional Shares
— User 1 gets weight 2, user 2 weight 1

Priorities
— Give user 1 weight 1000, user 2 weight 1

* Revervations
— Ensure user 1 gets 10% of a resource 100%
— Give user 1 weight 10, sum weights < 100

50%

Isolation Policy
— Users cannot affect others beyond their fair share

3/7/2016 cs262a-S16 Lecture-14 32

Properties of Max-Min Fairness

» Share guarantee
— Each user can get at least 1/n of the resource
— But will get less if her demand is less

» Strategy-proof

— Users are not better off by asking for more than they need
— Users have no reason to lie

+ Max-min fairness is the only “reasonable”
mechanism with these two properties

Why Care about Fairness?

 Desirable properties of max-min fairness

— Isolation policy:
A user gets her fair share irrespective of the demands of other users

— Flexibility separates mechanism from policy:
Proportional sharing, priority, reservation,...

* Many schedulers use max-min fairness

— Datacenters: Hadoop’s fair sched, capacity, Quincy
- OS: rr, prop sharing, lottery, linux cfs, ...
— Networking: wfq, wf2q, sfq, drr, csfq, ...

3/7/12016 cs262a-S16 Lecture-14 33 3/7/12016 cs262a-S16 Lecture-14 34
When is Max-Min Fairness not Enough? Heterogeneous Resource Demands
* Need to schedule multiple, heterogeneous resources N ! ! ! ! ' ' '
_ . p g oy :Some tasks are |e@® Maps
— Example: Task scheduling in datacenters IR N AR SN R M Reduces H
» Tasks consume more than just CPU — CPU, memory, disk, and I/0 v Y CF’L;J-mt?nsw;e SR e u
+ What are today’s datacenter task demands? —— ‘ . : :
24,._‘:9.‘;..._;.....5,.__ I = :
% | &2 Most task needi~ | |
5 Eol M t 1669~ Some tasks afe
S ke awi<2CPU, 2B mgmory-intenslve
I) 35 4 5 N7 & 4
er task memory demand
2000-node Hadoop Cluster at Facebook (Oct 2010)
35 3/7/12016 cs262a-S16 Lecture-14

3/7/12016 cs262a-S16 Lecture-14

Problem

Single resource example
— 1 resource: CPU
— User 1 wants <1 CPU> per task
— User 2 wants <3 CPU> per task

[100%1

Multi-resource example
— 2 resources: CPUs & memory
— User 1 wants <1 CPU, 4 GB> per task
— User 2 wants <3 CPU, 1 GB> per task 50% ?
— What is a fair allocation?

0%

\,
3/7T20T6 Cs262a-S16 Lecture-14

Problem definition

How to fairly share multiple resources when users
have heterogeneous demands on them?

3/7/2016 cs262a-S16 Lecture-14 38

Model

» Users have tasks according to a demand vector
—eg.<2,3,1>userstasksneed 2R, 3R,, 1R,
— Not needed in practice, can simply measure actual consumption

* Resources given in multiples of demand vectors

» Assume divisible resources

3/7/12016 cs262a-S16 Lecture-14

39

What is Fair?

* Goal: define a fair allocation of multiple cluster
resources between multiple users

+ Example: suppose we have:
— 30 CPUs and 30 GB RAM
— Two users with equal shares
— User 1 needs <1 CPU, 1 GB RAM> per task
— User 2 needs <1 CPU, 3 GB RAM> per task

» What is a fair allocation?

3/7/2016 cs262a-S16 Lecture-14 40

First Try: Asset Fairness

» Asset Fairness
— Equalize each user’s sum of resource shares

Problem [User 1 [User 2

User 1 has < 50% of both CPUs and RAM

Better off in a separate cluster with 50% of the
resources

» Asset fairness yields

— U,: 15 tasks: 30 CPUs, 30 GB |>=60) 0%
— U,: 20 tasks: 20 CPUs, 40 GB (3=60) cPU RAM
3/7/12016 cs262a-S16 Lecture-14 41

Lessons from Asset Fairness

“You shouldn’t do worse than if you ran a smaller,
private cluster equal in size to your fair share”

Thus, given N users, each user should get = 1/N of
her dominating resource (i.e., the resource that she
consumes most of)

3/7/2016 cs262a-S16 Lecture-14 42

Desirable Fair Sharing Properties

* Many desirable properties
— Share Guarantee
— Strategy proofness
— Envy-freeness

— Pareto efficiency

DRF focuses on
these properties

— Bottleneck fairness
— Population monotonicity
— Resource monotonicity

3/7/12016 cs262a-S16 Lecture-14 43

Cheating the Scheduler

+ Some users will game the system to get more resources

* Real-life examples
— A cloud provider had quotas on map and reduce slots
Some users found out that the map-quota was low
» Users implemented maps in the reduce slots!

— A search company provided dedicated machines to users that could
ensure certain level of utilization (e.g. 80%)

» Users used busy-loops to inflate utilization

3/7/2016 cs262a-S16 Lecture-14 44

Two Important Properties

» Strategy-proofness

— A user should not be able to increase her allocation by lying about
her demand vector

— Intuition:
» Users are incentivized to make truthful resource requirements

* Envy-freeness
— No user would ever strictly prefer another user’s lot in an allocation
— Intuition:
» Don’t want to trade places with any other user

Challenge

« A fair sharing policy that provides
— Strategy-proofness
— Share guarantee

* Max-min fairness for a single resource had these
properties
— Generalize max-min fairness to multiple resources

3/7/12016 cs262a-S16 Lecture-14 45 3/7/2016 cs262a-S16 Lecture-14 46
* A user’s dominant resource is the resource she has * Apply max-min fairness to dominant shares
the biggest share of « Equalize the dominant share of the users
— Example:
Total resources: <10 CPU, 4GB> - Example:
User 1’s allocation: <2 CPU, 1 GB> Total resources: <9 CPU, 18 GB>
Dominant resource is memory as 1/4 > 2/10 (1/5) User 1 demand: <1 CPU, 4 GB> dominant res: mem
User 2 demand: A <3 CPU, 1 GB> dominant res: CPU
« A user’'s dominant share is the fraction of the 100% [User 1
dominant resource she is allocated)
— User 1's dominant share is 25% (1/4) B User
50%
0%
CPU mem
(9 total) (18 total)
3/7/12016 cs262a-S16 Lecture-14 47 3/7/2016 cs262a-S16 Lecture-14 48

3/7/2016

DRF is Fair

* DREF is strategy-proof
» DRF satisfies the share guarantee
+ DRF allocations are envy-free

See DRF paper for proofs

cs262a-S16 Lecture-14

49

Online DRF Scheduler

Whenever there are available resources and tasks to run:

Schedule a task to the user with smallest dominant share

* O(log n) time per decision using binary heaps

* Need to determine demand vectors

3/7/2016 cs262a-S16 Lecture-14 50

3/7/2016

Alternative: Use an Economic Model

Approach
— Set prices for each good
— Let users buy what they want

How do we determine the right prices for different goods?
Let the market determine the prices

Competitive Equilibrium from Equal Incomes (CEEI)
— Give each user 1/n of every resource
— Let users trade in a perfectly competitive market

Not strategy-proof!

cs262a-S16 Lecture-14

51

Determining Demand Vectors

* They can be measured
— Look at actual resource consumption of a user

* They can be provided the by user
— What is done today

* In both cases, strategy-proofness incentivizes user
to consume resources wisely

3/7/2016 cs262a-S16 Lecture-14 52

DRF vs CEEI

» User 1: <1 CPU, 4 GB> User 2: <3 CPU, 1 GB>
— DRF more fair, CEEI better utilization

Dominant Competitive Dominant Competitive
Resource Equilibrium from Equal Resource Equilibrium from

Fairness Incomes Fairness Equal Incomes

100% 100% 100% 100%

010 .userl

0 [user 2 50% 50%
66%];

0% Lo : 0% L ' 0% Le |l

CPU mem CPU mem CPU mem CPU mem

50% 50% A

» User 1: <1 CPU, 4 GB> User 2: <3 CPU, 2 GB>
— User 2 increased her share of both CPU and memory
3/7/12016 cs262a-S16 Lecture-14 53

Example of DRF vs Asset vs CEEI

* Resources <1000 CPUs, 1000 GB>
« 2 users A: <2 CPU, 3 GB> and B: <5 CPU, 1 GB>

1009 100% 1009

% ° % [] User A

[User B
50% 50% 50%
0% 0% 0%

CPU Mem CPU Mem CPU Mem
a) DRF b) Asset Fairness c) CEEI
3/7/12016 cs262a-S16 Lecture-14 54

Desirable Fairness Properties (1)

* Recall max/min fairness from networking
— Maximize the bandwidth of the minimum flow [Bert92]

» Progressive filling (PF) algorithm
1. Allocate ¢ to every flow until some link saturated
2. Freeze allocation of all flows on saturated link and goto 1

3/7/12016 cs262a-S16 Lecture-14 55

Desirable Fairness Properties (2)

* P1. Pareto Efficiency

» It should not be possible to allocate more resources to any user
without hurting others

* P2. Single-resource fairness

» If there is only one resource, it should be allocated according to
max/min fairness

» P3. Bottleneck fairness

» If all users want most of one resource(s), that resource should be
shared according to max/min fairness

3/7/2016 cs262a-S16 Lecture-14 56

Desirable Fairness Properties (3)

* Assume positive demands (D;;> 0 for all i and j)

* DRF will allocate same dominant share to all users
— As soon as PF saturates a resource, allocation frozen

3/7/12016 cs262a-S16 Lecture-14

57

Desirable Fairness Properties (4)

* P4. Population Monotonicity
— If a user leaves and relinquishes her resources,
no other user’s allocation should get hurt
— Can happen each time a job finishes

* DREF satisfies population monotonicity
— Assuming positive demands

— Intuitively DRF gives the same dominant share to all users, so all
users would be hurt contradicting Pareto efficiency

3/7/2016 cs262a-S16 Lecture-14 58

Properties of Policies

Asset CEEI
Share guarantee v

Property

Strategy-proofness
Pareto efficiency
Envy-freeness

Single resource fairness
Bottleneck res. fairness
Population monotonicity Vv
Resource monotonicity

SN N
AL NN

DRF

' SEUR SNPGRS

3/7/12016 cs262a-S16 Lecture-14

59

Evaluation Methodology

* Micro-experiments on EC2

—Evaluate DRF’s dynamic behavior when demands
change

—Compare DRF with current Hadoop scheduler

* Macro-benchmark through simulations

—Simulate Facebook trace with DRF and current
Hadoop scheduler

3/7/2016 cs262a-S16 Lecture-14 60

DRF Inside Mesos on EC2

Jol‘: TRy ominant.resource
erioiomieh ™1 is CPU
: 1] User 1’s Shares

Dominant resource

is memory

<1 CPU, 10 GB>

0 50 160 1g0 \l <2 CPU. 4 GB>

Dominant resource

User 2's Shares

= Job 2 CPU
"7| m—Job 2 ry

150 \L<1 CPU, 3 GB>}

<1 CPU, 1 GB>

Dominant shares

are equalized [AB L At i R e e = Job]l
N — Job2|| .
‘ Dominant Shares
Share guarantee: """"""""" e Share guarantee:
~70% dominant 10 200~50% dominant

3/7/2016 share share 61

Fairness in Today’s Datacenters

* Hadoop Fair Scheduler/capacity/Quincy
— Each machine consists of k slots (e.g. k=14)
— Run at most one task per slot
— Give jobs "equal” number of slots,
i.e., apply max-min fairness to slot-count

* This is what DRF paper compares against

3/7/2016 cs262a-S16 Lecture-14 62

Experiment: DRF vs Slots

Number of Type 1 Jobs Finished

38 35 |
30
- 25 Thrashing
55
M, &= 5
0 DRF 3 slots 4 slots 5 slots 6 slots
Number of Type 2 Jobs Finished
100f g '
80 Low utilization
8 60 Thrashing
g ﬁ 40 7
SE
0

DRF 3 slots 4 slots 5 slots 6 slots
Type 1 jobs <2 CPU, 2 GB> Type 2 jobs <1 CPU, 0.5GB>
3/7/12016 cs262a-S16 Lecture-14 63

Experiment: DRF vs Slots
Completion Time of Type 1 Jobs

200} L
o150] Thrashing

12

Job completion
m

=100
65
50
g DRF 3 slots 4 slots 5 slots 6 slots

Completion Time of Type 2 Jobs

s 70 Low utilization hurts
T 60 ﬁ performance Thrashing
a o 30
E E 40| 39 .
0 I i
o) 20 |
S 10
0 DRF 3 slots 4 slots 5 slots 6 slots
3/7/2016 Type 1 job <2 CPU, 2 GB> Type 2 job <1 CPU, 0.5GB> 64

Reduction in Job Completion Time
DRF vs Slots

» Simulation of 1-week Facebook traces

Utilization of DRF vs Slots

» Simulation of Facebook workload

c
.g : : : : : < 1.0
g 70r 66% 1 = 0.8
S 60| c1o, 559, 1 = 0.6
ﬁ 50l ° 48% 1 50.4r
£ a0t 359%] 7 0.2 ! : ‘
= 30t | (@] 0.0 | i]
5 0 500 1000 1500 2000 2500
= 201] c
L 21.0 . . .
o 10f] © : i i : i
E ,L-3% N 0.8p e P e e S
o = ; : : ; .
o 0.6* """"""""" P\ e e P P
© B A0 0 @ 5 OTTTING T o o Y~ o
c)Q 00‘\‘ c)Q <0 QY c)Q‘y '50 >0.4 . . : 3 :
RS RS 1 g2 g 0.2 R T A 0 M v R e e ay
Job Size (tasks) @ 0.0 ; i ; ; ;
= 0 500 1000 1500 2000 2500
3/7/2016 ¢5262a-S16 Lecture-14 65 3171 Time (s) 66
Summary Is this a good paper?
+ What were the authors’ goals?
» DRF provides multiple-resource fairness in the presence * What about the evaluation/metrics?
of heterogeneous demand . « Did they convince you that this was a good
— First generalization of max-min fairness to multiple-resources system/approach?
. - ?
. DRF’s properties Were th.ere any r.ed flags”
— Share guarantee, at least 1/n of one resource * What mistakes did they make?
— Strategy-proofness, lying can only hurt you * Does the system/approach meet the “Test of Time”
— Performs better than current approaches challenge?
» How would you review this paper today?
3/7/12016 cs262a-S16 Lecture-14 67 3/7/2016 cs262a-S16 Lecture-14 68

