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Today’s Papers
• Composing Parallel Software Efficiently with Lithe

Heidi Pan, Benjamin Hindman, Krste Asanovic. Appears in Conference 
on Programming Languages Design and Implementation (PLDI), 2010

• Dominant Resource Fairness: Fair Allocation of Multiple 
Resources Types, 
A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. 
Stoica, Usenix NSDI 2011, Boston, MA, March 2011

• Thoughts?
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The Future is Parallel Software

Challenge: How to build many different large parallel apps that run well?
 Can’t rely solely on compiler/hardware: limited parallelism & energy efficiency
 Can’t rely solely on hand-tuning: limited programmer productivity
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Composability is Essential

Composability is key to building large, complex apps.

BLAS

App 1 App 2

code reuse

BLAS

same library implementation, different apps
modularity

App

same app, different library implementations

MKL
BLAS

Goto
BLAS
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OpenMP

MKL

Motivational Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)

Column
Elimination 
Tree 

Frontal Matrix
Factorization

OS

TBB

System Stack

Hardware

Software Architecture

SPQR
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TBB, MKL, OpenMP
• Intel’s Threading Building Blocks (TBB)

– Library that allows programmers to express parallelism using 
a higher-level, task-based, abstraction

– Uses work-stealing internally (i.e. Cilk)
– Open-source

• Intel’s Math Kernel Library (MKL)
– Uses OpenMP for parallelism

• OpenMP
– Allows programmers to express parallelism in the SPMD-style 

using a combination of compiler directives and a runtime 
library

– Creates SPMD teams internally (i.e. UPC)
– Open-source implementation of OpenMP from GNU (libgomp)
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Suboptimal Performance
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Performance of SPQR on 16-core AMD Opteron System
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Out-of-the-Box Configurations

OS

TBB OpenMP

Hardware
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Providing Performance Isolation

Using Intel MKL with Threaded Applications
http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177.htm
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“Tuning” the Code
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Partition Resources

OS
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Hardware
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Tim Davis’ “tuned” SPQR by manually partitioning the resources.
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“Tuning” the Code (continued)
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Harts: Hardware Threads

OS

Core 0

virtualized kernel threads

Core 1 Core 2 Core 3

OS

Core 0 Core 1 Core 2 Core 3

harts

• Applications requests harts from OS
• Application “schedules” the harts itself 

(two-level scheduling)
• Can both space-multiplex and time-

multiplex harts … but never time-
multiplex harts of the same application

 Expose true hardware resources
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Sharing Harts (Dynamically)

OS

TBB OpenMP

Hardware

time
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How to Share Harts?

OMP

TBB

CLR

Cilk

call graph

CLR

scheduler hierarchy

TBB Cilk

OpenMP

 Hierarchically: Caller gives resources to callee to execute

 Cooperatively: Callee gives resources back to caller when done
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A Day in the Life of a Hart

• Non-preemptive 
scheduling.

CLR

TBB Cilk

OpenMP

TBB Sched: next?

time

TBB 
SchedQ

executeTBB task

TBB Sched: next?

execute TBB task

TBB Sched: next?
nothing left to do, give hart back to parent

CLR Sched: next?

Cilk Sched: next?
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Child Scheduler

Parent Scheduler

Lithe (ABI)

Cilk Scheduler

interface for sharing harts

TBB Scheduler

unregisterenter yield request register

TBB SchedulerOpenMP Scheduler

unregisterenter yield request register

Caller

Callee

returncall

returncall

interface for exchanging values

 Analogous to function call ABI for enabling interoperable codes.
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A Few Details …
• A hart is only managed by one scheduler at a time
• The Lithe runtime manages the hierarchy of schedulers 

and the interaction between schedulers
• Lithe ABI only a mechanism to share harts, not policy
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}

Putting It All Together

func(){
register(TBB);

request(2);

time

Lithe-TBB 
SchedQ

unregister(TBB);

Lithe-TBB 
SchedQ

enter(TBB);

yield();

Lithe-TBB 
SchedQ

enter(TBB);

yield();
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Synchronization
• Can’t block a hart on a synchronization object
• Synchronization objects are implemented by 

saving the current “context” and having the hart 
re-enter the current scheduler

#pragma omp barrier

OpenMP Scheduler

unregisterenter yield request registerenter

#pragma omp barrier

(block context)

yield

request(1)
enter

time

TBB Scheduler

unregisterenter yield request registerrequest

(resume context)

enter

(unblock context)
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Lithe Contexts
• Includes notion of a stack
• Includes context-local storage
• There is a special transition context for each hart 

that allows it to transition between schedulers 
easily (i.e. on an enter, yield)
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Lithe-compliant Schedulers
• TBB

– Worker model
– ~180 lines added, ~5 removed, ~70 modified (~1,500 / ~8,000 

total)

• OpenMP
– Team model
– ~220 lines added, ~35 removed, ~150 modified (~1,000 / ~6,000 

total)
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Overheads?
• TBB

– Example micro-benchmarks that Intel includes with releases

• OpenMP
– NAS benchmarks (conjugate gradient, LU solver, and 

multigrid)
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Flickr Application Server

• GraphicsMagick parallelized using OpenMP
• Server component parallelized using threads (or 

libprocess processes)
• Spectrum of possible implementations:

– Process one image upload at a time, pass all resources to OpenMP (via 
GraphicsMagick)

+ Easy implementation
- Can’t overlap communication with computation, some network 

links are slow, images are different sizes, diminishing returns on 
resize operations

– Process as many images as possible at a time, run GraphicsMagick
sequentially

+ Also easy implementation
- Really bad latency when low-load on server, 32 core machine 

underwhelmed
– All points in between …

+ Account for changing load, different image sizes, different link 
bandwidth/latency

- Hard to program 
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Flickr-Like App Server

(Lithe)

Tradeoff between throughput saturation point and latency.

OpenMPLithe

Graphics
MagickLibprocess

App Server

25
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Case Study: Sparse QR Factorization
• Different matrix sizes

• deltaX creates ~30,000 OpenMP schedulers
• …
• Rucci creates ~180,000 OpenMP schedulers

• Platform: Dual-socket 2.66 GHz
Intel Xeon (Clovertown) with
4 cores per socket (8 total cores)
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Case Study: Sparse QR Factorization
ESOC Rucci

Lithe: 354.7

Tuned: 360.0

Out-of-the-box: 576.9

Sequential: 970.5

Tuned: 70.8

Out-of-the-box: 111.8

Sequential: 172.1

Lithe: 66.7
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Case Study: Sparse QR Factorization
landmark

Tuned: 2.5

Out-of-the-box: 4.1

Sequential: 3.4

Lithe: 2.3

deltaX

Tuned: 14.5

Out-of-the-box: 26.8

Sequential: 37.9

Lithe: 13.6
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?
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Break
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What is Fair Sharing?
• n users want to share a resource (e.g., CPU)

– Solution: 
Allocate each 1/n of the shared resource

• Generalized by max-min fairness
– Handles if a user wants less than its fair share
– E.g. user 1 wants no more than 20%

• Generalized by weighted max-min fairness
– Give weights to users according to importance
– User 1 gets weight 1, user 2 weight 2

CPU
100%

50%

0%

33%

33%
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100%
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20%
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%
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Why is Fair Sharing Useful?

• Weighted Fair Sharing / Proportional Shares
– User 1 gets weight 2, user 2 weight 1

• Priorities
– Give user 1 weight 1000, user 2 weight 1

• Revervations 
– Ensure user 1 gets 10% of a resource
– Give user 1 weight 10, sum weights ≤ 100

• Isolation Policy
– Users cannot affect others beyond their fair share
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Properties of Max-Min Fairness
• Share guarantee

– Each user can get at least 1/n of the resource
– But will get less if her demand is less

• Strategy-proof
– Users are not better off by asking for more than they need
– Users have no reason to lie

• Max-min fairness is the only “reasonable” 
mechanism with these two properties
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Why Care about Fairness?

• Desirable properties of max-min fairness
– Isolation policy: 

A user gets her fair share irrespective of the demands of other users

– Flexibility separates mechanism from policy:
Proportional sharing, priority, reservation,...

• Many schedulers use max-min fairness
– Datacenters: Hadoop’s fair sched, capacity, Quincy
– OS: rr, prop sharing, lottery, linux cfs, ...
– Networking: wfq, wf2q, sfq, drr, csfq, ...
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When is Max-Min Fairness not Enough?

• Need to schedule multiple, heterogeneous resources 
– Example: Task scheduling in datacenters

» Tasks consume more than just CPU – CPU, memory, disk, and I/O

• What are today’s datacenter task demands?
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Heterogeneous Resource Demands

Most task need ~

<2 CPU, 2 GB 
RAM>

Some tasks are 
memory-intensive

Some tasks are 
CPU-intensive

2000-node Hadoop Cluster at Facebook (Oct 2010)
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Problem

Single resource example
– 1 resource: CPU
– User 1 wants <1 CPU> per task
– User 2 wants <3 CPU> per task

Multi-resource example
– 2 resources: CPUs & memory
– User 1 wants <1 CPU, 4 GB> per task
– User 2 wants <3 CPU, 1 GB> per task
– What is a fair allocation?

CPU

100%

50%

0%

CPU

100%

50%

0%
mem

?       
?

50
%

50
%
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Problem definition

How to fairly share multiple resources when users 
have heterogeneous demands on them?
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Model

• Users have tasks according to a demand vector
– e.g. <2, 3, 1> user’s tasks need 2 R1, 3 R2, 1 R3

– Not needed in practice, can simply measure actual consumption

• Resources given in multiples of demand vectors

• Assume divisible resources
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What is Fair?
• Goal: define a fair allocation of multiple cluster 

resources between multiple users
• Example: suppose we have:

– 30 CPUs and 30 GB RAM
– Two users with equal shares
– User 1 needs <1 CPU, 1 GB RAM> per task
– User 2 needs <1 CPU, 3 GB RAM> per task

• What is a fair allocation?
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• Asset Fairness
– Equalize each user’s sum of resource shares

• Cluster with 70 CPUs, 70 GB RAM
– U1 needs <2 CPU, 2 GB RAM> per task
– U2 needs <1 CPU, 2 GB RAM> per task

• Asset fairness yields
– U1: 15 tasks: 30 CPUs, 30 GB (∑=60)
– U2: 20 tasks:   20 CPUs, 40 GB (∑=60)

First Try: Asset Fairness

CPU

User 1 User 2
100%

50%

0%
RAM

43%

57%

43%

28%

Problem

User 1 has < 50% of both CPUs and RAM

Better off in a separate cluster with 50% of the 
resources
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Lessons from Asset Fairness
“You shouldn’t do worse than if you ran a smaller, 
private cluster equal in size to your fair share”

Thus, given N users, each user should get ≥ 1/N of 
her dominating resource (i.e., the resource that she 
consumes most of)
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Desirable Fair Sharing Properties

• Many desirable properties
– Share Guarantee
– Strategy proofness
– Envy-freeness
– Pareto efficiency
– Single-resource fairness
– Bottleneck fairness
– Population monotonicity
– Resource monotonicity

DRF focuses on 
these properties
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Cheating the Scheduler

• Some users will game the system to get more resources

• Real-life examples
– A cloud provider had quotas on map and reduce slots

Some users found out that the map-quota was low
» Users implemented maps in the reduce slots! 

– A search company provided dedicated machines to users that could 
ensure certain level of utilization (e.g. 80%)

» Users used busy-loops to inflate utilization
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Two Important Properties
• Strategy-proofness

– A user should not be able to increase her allocation by lying about 
her demand vector

– Intuition:
» Users are incentivized to make truthful resource requirements

• Envy-freeness 
– No user would ever strictly prefer another user’s lot in an allocation
– Intuition:

» Don’t want to trade places with any other user
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Challenge

• A fair sharing policy that provides
– Strategy-proofness
– Share guarantee

• Max-min fairness for a single resource had these 
properties

– Generalize max-min fairness to multiple resources
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Dominant Resource Fairness
• A user’s dominant resource is the resource she has 

the biggest share of
– Example: 

Total resources:  <10 CPU, 4 GB>
User 1’s allocation: <2 CPU, 1 GB> 
Dominant resource is memory as 1/4 > 2/10 (1/5)

• A user’s dominant share is the fraction of the 
dominant resource she is allocated

– User 1’s dominant share is 25% (1/4)
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Dominant Resource Fairness (2)

• Apply max-min fairness to dominant shares
• Equalize the dominant share of the users

– Example: 
Total resources:  <9 CPU, 18 GB>
User 1 demand: <1 CPU, 4 GB> dominant res: mem
User 2 demand: <3 CPU, 1 GB> dominant res: CPU

User 1

User 2

100%

50%

0%
CPU

(9 total)

mem

(18 total)

3 CPUs 12 GB

6 CPUs 2 GB

66%

66%
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DRF is Fair
• DRF is strategy-proof
• DRF satisfies the share guarantee
• DRF allocations are envy-free

See DRF paper for proofs
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Online DRF Scheduler

• O(log n) time per decision using binary heaps

• Need to determine demand vectors

Whenever there are available resources and tasks to run:

Schedule a task to the user with smallest dominant share
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Alternative: Use an Economic Model
• Approach

– Set prices for each good
– Let users buy what they want

• How do we determine the right prices for different goods?

• Let the market determine the prices

• Competitive Equilibrium from Equal Incomes (CEEI)
– Give each user 1/n of every resource 
– Let users trade in a perfectly competitive market

• Not strategy-proof!
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Determining Demand Vectors
• They can be measured

– Look at actual resource consumption of a user

• They can be provided the by user
– What is done today 

• In both cases, strategy-proofness incentivizes user 
to consume resources wisely
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DRF vs CEEI

• User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 1 GB>
– DRF more fair, CEEI better utilization

• User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 2 GB>
– User 2 increased her share of both CPU and memory

CPU        mem

user 2

user 1

100%

50%

0%

CPU        mem

100%

50%

0%

Dominant 
Resource 
Fairness

Competitive 
Equilibrium from Equal 

Incomes

66%

66%

55%

91%

CPU        mem

100%

50%

0%

CPU        mem

100%

50%

0%

Dominant  
Resource 
Fairness

Competitive 
Equilibrium from 
Equal Incomes

66%

66%

60%

80%
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Example of DRF vs Asset vs CEEI

• Resources <1000 CPUs, 1000 GB>
• 2 users A: <2 CPU, 3 GB> and B: <5 CPU, 1 GB>

User A

User B

a) DRF b) Asset Fairness

CPU Mem CPU Mem CPU Mem

100%

50%

0%

100%

50%

0%

100%

50%

0%

c) CEEI
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Desirable Fairness Properties (1)

• Recall max/min fairness from networking
– Maximize the bandwidth of the minimum flow [Bert92]

• Progressive filling (PF) algorithm
1. Allocate ε to every flow until some link saturated
2. Freeze allocation of all flows on saturated link and goto 1
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Desirable Fairness Properties (2)
• P1. Pareto Efficiency

» It should not be possible to allocate more resources to any user 
without hurting  others

• P2. Single-resource fairness
» If there is only one resource, it should be allocated according to 

max/min fairness

• P3. Bottleneck fairness
» If all users want most of one resource(s), that resource should be 

shared according to max/min fairness
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Desirable Fairness Properties (3)

• Assume positive demands (Dij> 0 for all i and j)

• DRF will allocate same dominant share to all users
– As soon as PF saturates a resource, allocation frozen

3/7/2016 58cs262a-S16 Lecture-14

Desirable Fairness Properties (4)

• P4. Population Monotonicity
– If a user leaves and relinquishes her resources,

no other user’s allocation should get hurt
– Can happen each time a job finishes

• CEEI violates population monotonicity

• DRF satisfies population monotonicity
– Assuming positive demands
– Intuitively DRF gives the same dominant share to all users, so all 

users would be hurt contradicting Pareto efficiency
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Properties of Policies

Property Asset CEEI DRF
Share guarantee ✔ ✔
Strategy-proofness ✔ ✔
Pareto efficiency ✔ ✔ ✔
Envy-freeness ✔ ✔ ✔
Single resource fairness ✔ ✔ ✔
Bottleneck res. fairness ✔ ✔
Population monotonicity ✔ ✔
Resource monotonicity
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Evaluation Methodology

• Micro-experiments on EC2

–Evaluate DRF’s dynamic behavior when demands 
change

–Compare DRF with current Hadoop scheduler

• Macro-benchmark through simulations

–Simulate Facebook trace with DRF and current 
Hadoop scheduler
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DRF Inside Mesos on EC2

Dominant shares 
are equalized

Share guarantee:

~70% dominant 
share

Dominant resource

is memory

Dominant resource

is CPU

User 1’s Shares

User 2’s Shares

Dominant Shares

61

<1 CPU, 10 GB>

<1 CPU, 1 GB>

<2 CPU, 4 GB>

<1 CPU, 3 GB>

Dominant resource

is CPU

Share guarantee:

~50% dominant 
share 3/7/2016 62cs262a-S16 Lecture-14

Fairness in Today’s Datacenters

• Hadoop Fair Scheduler/capacity/Quincy
– Each machine consists of k slots (e.g. k=14)
– Run at most one task per slot
– Give jobs ”equal” number of slots, 

i.e., apply max-min fairness to slot-count

• This is what DRF paper compares against
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Experiment: DRF vs Slots

Number of Type 1 Jobs Finished

Number of Type 2 Jobs Finished
Low utilization

Thrashing

Thrashing

Type 1 jobs <2 CPU, 2 GB>    Type 2 jobs <1 CPU, 0.5GB>

Jo
bs

 
fin

is
he

d
Jo

bs
 

fin
is

he
d

3/7/2016 64cs262a-S16 Lecture-14

Experiment: DRF vs Slots
Completion Time of Type 1 Jobs

Completion Time of Type 2 Jobs

Type 1 job <2 CPU, 2 GB>    Type 2 job <1 CPU, 0.5GB>

Low utilization hurts 
performance
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Reduction in Job Completion Time
DRF vs Slots
• Simulation of 1-week Facebook traces
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Utilization of DRF vs Slots

alig@cs.berkeley.edu 66

• Simulation of Facebook workload
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Summary

• DRF provides multiple-resource fairness in the presence 
of heterogeneous demand

– First generalization of max-min fairness to multiple-resources

• DRF’s properties
– Share guarantee, at least 1/n of one resource
– Strategy-proofness, lying can only hurt you
– Performs better than current approaches
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?


