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Today’s Papers
• Lottery Scheduling: Flexible Proportional-Share Resource 

Management
Carl A. Waldspurger and William E. Weihl. Appears in 
Proceedings of the First USENIX Symposium on Operating 
Systems Design and Implementation (OSDI), 1994

• SEDA: An Architecture for WellConditioned, Scalable Internet 
Services
Matt Welsh, David Culler, and Eric Brewer. Appears in 
Proceedings of the 18th Symposium on Operating Systems 
Principles (SOSP), 2001

• Thoughts?
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Scheduling Review
• Scheduling: selecting a waiting process and allocating a 

resource (e.g., CPU time) to it

• First Come First Serve (FCFS/FIFO) Scheduling:
– Run threads to completion in order of submission
– Pros: Simple (+)
– Cons: Short jobs get stuck behind long ones (-)

• Round-Robin Scheduling: 
– Give each thread a small amount of CPU time (quantum) when it 

executes; cycle between all ready threads
– Pros: Better for short jobs (+)
– Cons: Poor when jobs are same length (-)
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Multi-Level Feedback Scheduling

• A scheduling method for exploiting past behavior
– First used in Cambridge Time Sharing System (CTSS)
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g., foreground – Round Robin, background – First Come First Serve
» Sometimes multiple RR priorities with quantum increasing exponentially 

(highest:1ms, next:2ms, next: 4ms, etc.)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running 
Compute tasks 

demoted to 
low priority
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Lottery Scheduling

• Very general, proportional-share 
scheduling algorithm

• Problems with traditional schedulers:
– Priority systems are ad hoc at best: highest priority 

always wins, starvation risk
– “Fair share” implemented by adjusting priorities with a 

feedback loop to achieve fairness over the (very) long 
term (highest priority still wins all the time, but now the 
Unix priorities are always changing)

– Priority inversion: high-priority jobs can be blocked 
behind low-priority jobs 

– Schedulers are complex and difficult to control with 
hard to understand behaviors
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Lottery Scheduling

• Give each job some number of lottery tickets

• On each time slice, randomly pick a winning 
ticket and give owner the resource

• On average, resource fraction (CPU time) is 
proportional to number of tickets given to 
each job

• Tickets can be used for a wide variety of 
different resources (uniform) and are 
machine independent (abstract)
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How to Assign Tickets?

• Priority determined by the number of tickets 
each process has: 

– Priority is the relative percentage of all of the tickets 
competing for this resource

• To avoid starvation, every job gets at least 
one ticket (everyone makes progress)
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Lottery Scheduling Example
• Assume short jobs get 10 tickets, long jobs get 1 ticket

# short jobs/
# long jobs

% of CPU each 
short jobs gets

% of CPU each 
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A

10/1 9.9% 0.99%
1/10 50% 5%
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How Fair is Lottery Scheduling?
• If client has probability p = (t/T) of winning, then the expected 

number of wins (from the binomial distribution) is np
– Probabilistically fair
– Variance of binomial distribution: σ2 = np(1 – p)
– Accuracy improves with √n

• Geometric distribution yields number of tries until first win

• Advantage over strict priority scheduling: behaves gracefully 
as load changes

– Adding or deleting a job affects all jobs proportionally, independent of 
how many tickets each job possesses

• Big picture answer: mostly accurate, but short-term 
inaccuracies are possible

– See (hidden) Stride Scheduling lecture slides for follow-on solution
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Ticket Transfer
• How to deal with dependencies

• Basic idea: if you are blocked on someone else, 
give them your tickets

• Example: client-server
– Server has no tickets of its own
– Clients give server all of their tickets during RPC
– Server’s priority is the sum of the priorities of all of its active clients
– Server can use lottery scheduling to give preferential service to 

high-priority clients

• Very elegant solution to long-standing problem (not 
the first solution however)

2/29/2016 11Cs262a-S16 Lecture-11

Ticket Inflation
• Make up your own tickets (print your own 

money)

• Only works among mutually trusting clients

• Presumably works best if inflation is temporary

• Allows clients to adjust their priority dynamically 
with zero communication
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Currencies
• Set up an exchange rate with the base currency

• Enables inflation just within a group
– Also isolates from other groups

• Simplifies mini-lotteries, such as for a mutex
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Compensation Tickets
• What happens if a thread is I/O bound and regular 

blocks before its quantum expires? 
– Without adjustment, this implies that thread gets less than its 

share of the processor

• Basic idea:
– If you complete fraction f of the quantum, your tickets are 

inflated by 1/f until the next time you win

• Example:
– If B on average uses 1/5 of a quantum, its tickets will be 

inflated 5x and it will win 5 times as often and get its correct 
share overall
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Lottery Scheduling Problems

• Not as fair as we’d like: 
– mutex comes out 1.8:1 instead of 2:1, while multimedia apps 

come out 1.92:1.50:1 instead of 3:2:1

• Practice midterm question: 
– Are these differences statistically significant? 
– Probably are, which would imply that the lottery is biased or 

that there is a secondary force affecting the relative priority 
(e.g., X server)
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Lottery Scheduling Problems

• Multimedia app:
– Biased due to X server assuming uniform priority instead of 

using tickets
– Conclusion: to really work, tickets must be used everywhere 

– every queue is an implicit scheduling decision... every 
spinlock ignores priority...

• Can we force it to be unfair? 
– Is there a way to use compensation tickets to get more time, 

e.g., quit early to get compensation tickets and then run for 
the full time next time?

• What about kernel cycles? 
– If a process uses a lot of cycles indirectly, such as through 

the Ethernet driver, does it get higher priority implicitly? 
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Stride Scheduling
• Follow on to lottery scheduling (not in paper)

• Basic idea:
– Make a deterministic version to reduce short-term variability
– Mark time virtually using “passes” as the unit

• A process has a stride, which is the number of 
passes between executions

– Strides are inversely proportional to the number of tickets, 
so high priority jobs have low strides and thus run often

• Very regular: a job with priority p will run every 1/p 
passes
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Stride Scheduling Algorithm
• Algorithm (roughly):

– Always pick the job with the lowest pass number
– Updates its pass number by adding its stride

• Similar mechanism to compensation tickets
– If a job uses only fraction f, update its pass number by f ×

stride instead of just using the stride

• Overall result:
– It is far more accurate than lottery scheduling and error can 

be bounded absolutely instead of probabilistically
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?

BREAK
Project proposals due Friday at AOE– should have:
1. Motivation and problem domain
2. Description of what you are going to do and what is new about 

it
3. How you are going to do the evaluation (methodology, base 

case, …)
4. List of resources you need
5. List of ALL participants (with at least two people from CS262A)

Projects are supposed to be advancing the state of the art in some 
way, not just redoing something that others have done
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SEDA – Threads (Background)

• The standard model (similar to Mesa) 
• Concurrent threads with locks/mutex/… for synchronization
• Blocking calls
• May hold locks for long time
• Problems with more than 100 or so threads due to OS 

overhead (why?)
– See SEDA graph of throughput vs. number of threads

• Strong support from OS, libraries, debuggers, ....
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SEDA – Thread Pools (Background)

• Problem with previous threads: Unbounded Threads
– When a website becomes too popular throughput sinks and latency 

spikes
• Instead, allocate a bounded “pool” of threads (maximum 

level of multiprogramming) – crude form of load 
conditioning

– Popular with some web servers
• But can’t differentiate between short-running (static 

content) and  long-running (dynamic content) threads
– Also, highly unfair to clients stuck waiting for a thread – see Fig 12(a)

Master

Thread

Thread Pool
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eu

e
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SEDA – Events (Background)

• Lots of small handlers (Finite State Machines) that run to 
completion

– No blocking allowed

• Basic model is event arrives and runs a handler
– State is global or part of handler (not much in between)

• An event loop runs at the core waiting for arrivals, then calls 
handler

• No context switch, just procedure call
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SEDA – Events (Background)
• Threads exist, but just run event loop  handler  event loop 
…

– Stack trace is not useful for debugging!
– Typically one thread per CPU (any more doesn’t add anything since 

threads don’t block)
– Sometimes have extra threads for things that may block; e.g. OSs that 

only support synchronous disk reads

• Natural fit with finite-state machines (FSMs)
– Arrows are handlers that change states
– Blocking calls are split into two states (before and after the call)

• Allows very high concurrency
– Multiplex 10,000 FSMs over a small number of threads
– Approach used in telephony systems and some web servers
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Cooperative Task Scheduling I

• preemptive: tasks may be interrupted at any time
– Must use locks/mutex to get atomicity
– May get preempted while holding a lock – others must wait until you 

are rescheduled – risk of priority inversion
– Might want to differentiate short and long atomic sections (short 

should finish up work)
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Cooperative Task Scheduling II

• serial: tasks run to completion
– Basic event handlers, which are atomic
– Not allowed to block
– What if they run too long? (not much to do about that, could 

kill them; implies might be better for friendly systems)
– Hard to support multiprocessors
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Cooperative Task Scheduling III
• cooperative: tasks are not preempted, but do yield the 

processor
– Can use stacks and make calls, but still interleaved
– Yield points are not atomic: limits what you can do in an atomic 

section
– Better with compiler help: is a call a yield point or not?
– Hard to support multiprocessors

• Note: preemption is OK if it can’t affect the current atomic 
section – easy way to achieve this is data partitioning! 
Only threads that access the shared state are a problem!

– Can preempt for system routines
– Can preempt to switch to a different process (with its own set of 

threads), but assumes processes don’t share state

2/29/2016 27Cs262a-S16 Lecture-11

Implementing Split-Phase Actions –Threads
• Threads: Not too bad – just block until the action 

completes (synchronous)

• Assumes other threads run in the meantime

• Ties up considerable memory (full stack)

• Easy memory management: stack 
allocation/deallocation matches natural lifetime
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Implementing Split-Phase Actions – Events
• Events: hard
• Must store live state in a continuation (on the heap 

usually)
• Handler lifetime is too short, so need to explicitly 

allocate and deallocate later
• Scoping is bad too: need a multi-handler scope, 

which usually implies global scope
• Rips the function into two functions: before and after
• Debugging is hard
• Evolution is hard:

– Adding a yielding call implies more ripping to do
– Converting a non-yielding call into a yielding call is worse –

every call site needs to be ripped and those sites may 
become yielding which cascades the problem
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Atomic Split-Phase Actions (Really Hard)
• Threads – pessimistic: acquire lock and then block
• Threads – optimistic: read state, block, try write, retry 

if fail (and re-block!)
• Events – pessimistic: acquire lock, store state in 

continuation; later reply completes and releases lock
– Seems hard to debug, what if event never comes? or comes 

more than once?

• Events – optimistic: read state, store in continuation ; 
apply write, retry if fail

• Basic problem: exclusive access can last a long time 
– hard to make progress

• General question: when can we move the lock to one 
side or the other?
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One Strategy
• Structure as a sequence of actions that may or may 

not block (like cache reads)
• Acquire lock, walk through sequence, if block then 

release and start over
• If get all the way through then action was short (and 

atomic)
• This seems hard to automate! 

– Compiler would need to know that some actions mostly 
won’t block or won’t block the second time... and then also 
know that something can be retried without multiple side 
effects...

• Main conclusion (for me): compilers are the key to 
concurrency in the future
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SEDA
• Problems to solve:

1. Need a better way to achieve concurrency than just threads
2. Need to provide graceful degradation
3. Need to enable feedback loops that adapt to changing 

conditions

• The Internet:
– Makes the concurrency higher
– Requires high availability
– Ensures that load will exceed the target range
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Graceful Degradation
• Want throughput to increase linearly and then stay 

flat as you exceed capacity
• Want response time to be low until saturation and 

then linearly increase
• Want fairness in the presence of overload
• Almost no systems provide this
• Key is to drop work early or to queue it for later 

(threads have implicit queues on locks, sockets, etc.)
• Virtualization makes it harder to know where you 

stand! 



2/29/2016 33Cs262a-S16 Lecture-11

Problems with Threads I (claimed)
• Threads limits are too small in practice (about 100)

– Some of this is due to linear searches in internal data 
structures, or limits on kernel memory allocation

• Claims about locks, overhead, TLB and cache misses 
are harder to understand – don’t seem to be 
fundamental over events

– Do events use less memory? probably some but not 50% less
– Do events have fewer misses? only if working set is smaller
– Is it bad to waste VM for stacks? only with tons of threads
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Problems with Threads II (claimed)
• Is there a fragmentation issue with stacks (lots of 

partially full pages)? probably to some degree (each 
stack needs at least one page

– If so, we can move to a model with non-contiguous stack 
frames (leads to a different kind of fragmentation)

– If so, we could allocate subpages (like FFS did for 
fragments), and thread a stack through subpages (but this 
needs compiler support and must recompile all libraries)

• Queues are implicit, which makes it hard to control or 
even identify the bottlenecks

• Key insight in SEDA:
– No user allocated threads: programmer defines what can be 

concurrent and SEDA manages the threads
– Otherwise no way to control the overall number or 

distribution of threads
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Problems with Event-based Approach
• Debugging 

• Legacy code

• Stack ripping
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• Use threads within a stage, 
events between stages

• Stages have explicit queues 
and explicit concurrency

• Threads (in a stage) can block, 
just not too often

• SEDA will add and remove threads from a stage as needed
• Simplifies modularity: queues decouple stages in terms of 

performance at some cost to latency
• Threads never cross stages, but events can be pass by 

value or pass by reference
• Stage scheduling affects locality – better to run one stage 

for a while than to follow an event through multiple stages
– This should make up for the extra latency of crossing stages

SEDA
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Feedback Loops
• Works for any measurable property that has smooth behavior 

(usually continuous as well)
– Property typically needs to be monotonic in the control area (else get lost 

in local minima/maxima)

• Within a stage: batching controller decides how many events to 
process at one time

– Balance high throughput of large batches with lower latency of small 
batches – look for point where the throughput drops off

• Thread pool controller: find the minimum number of threads that 
keeps queue length low

• Global thread allocation based on priorities or queue lengths...
• Performance is very good, degrades more gracefully, and is 

more fair!
– But huge dropped requests to maintain response time goal
– However, can’t really do any better than this...
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Events versus Threads Revisited
• How does SEDA do split-phase actions?
• Intra-stage:

– Threads can just block
– Multiple threads within a stage, so shared state must be 

protected – common case is that each event is mostly 
independent (think HTTP requests)

• Inter-stage:
– Rip action into two stages
– Usually one-way: no return (equivalent to tail recursion) –

this means that the continuation is just the contents of the 
event for the next stage

– Loops in stages are harder: have to manually pass around 
the state

– Atomicity is tricky too: how do you hold locks across multiple 
stages? generally try to avoid, but otherwise need one stage 
to lock and a later one to unlock
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?


