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Today’s Papers
• The Notions of Consistency and Predicate Locks in a 

Database System
K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger. 
Appears in Communications of the ACM, Vol. 19, No. 11, 
1976

• Key Range Locking Strategies for Improved 
Concurrency
David Lomet. Appears in Proceedings of the 19th VLDB 
Conference, 1993

• Thoughts?
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Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning
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Theory and reality
• Traditional serializability theory treats 

database as a set of items (Eswaran et al 
‘76  says “entities”)  which are read and 
written

• Two phase locking is proved correct in this 
model
–We now say “serializable”

• But, database has a richer set of 
operations than just read/write
–Declarative selects
– Insert
–Delete
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Review: Goals of Transaction Scheduling
• Maximize system utilization, i.e., concurrency

– Interleave operations from different transactions

• Preserve transaction semantics
–Semantically equivalent to a serial schedule, i.e., 

one transaction runs at a time 

T1: R, W, R, W T2: R, W, R, R, W

R, W, R, W, R, W, R, R, W
Serial schedule (T1, then T2):

R, W, R, R, W, R, W, R, W
Serial schedule (T2, then T1):
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Two Key Questions

1) Is a given schedule equivalent to a 
serial execution of transactions?  

2) How do you come up with a schedule 
equivalent to a serial schedule?

R, W, R, W, R, W, R, R, W R, W, R, R, W, R, W, R, W

R, R, W, W, R, R, R, W, WSchedule:

Serial schedule (T1, then T2):

:

Serial schedule (T2, then T1):

 ? ?
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Transaction Scheduling
• Serial schedule: A schedule that does not 

interleave the operations of different transactions
– Transactions run serially (one at a time)

• Equivalent schedules: For any storage/database 
state, the effect (on storage/database) and output 
of executing the first schedule is identical to the 
effect of executing the second schedule

• Serializable schedule: A schedule that is
equivalent to some serial execution of the 
transactions

– Intuitively: with a serializable schedule you only see 
things that could happen in situations where you were 
running transactions one-at-a-time
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Anomalies with Interleaved Execution 

• May violate transaction semantics, e.g., 
some data read by the transaction 
changes before committing

• Inconsistent database state, e.g., some 
updates are lost

• Anomalies always involves a “write”; 
Why?
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Anomalies with Interleaved Execution 

• Read-Write conflict (Unrepeatable reads)

• Violates transaction semantics
• Example: Mary and John want to buy a TV 

set on Amazon but there is only one left in 
stock
– (T1) John logs first, but waits…
–(T2) Mary logs second and buys the TV set 

right away
– (T1) John decides to buy, but it is too late…

T1:R(A),         R(A),W(A)
T2:     R(A),W(A)          
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Anomalies with Interleaved Execution 

• Write-read conflict (reading uncommitted data)

• Example: 
– (T1) A user updates value of A in two steps
– (T2) Another user reads the intermediate value of A, 

which can be inconsistent
–Violates transaction semantics since T2 is not 

supposed to see intermediate state of T1 

T1:R(A),W(A),     W(A)
T2:          R(A),    …          
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Anomalies with Interleaved Execution 

• Write-write conflict (overwriting 
uncommitted data)

• Get T1’s update of B and T2’s update of A
• Violates transaction serializability
• If transactions were serial, you’d get 

either:
–T1’s updates of A and B
–T2’s updates of A and B

T1:W(A),         W(B)
T2:     W(A),W(B)
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Conflict Serializable Schedules

• Two operations conflict if they
–Belong to different transactions
–Are on the same data 
–At least one of them is a write

• Two schedules are conflict equivalent iff:
– Involve same operations of same transactions 
–Every pair of conflicting operations is ordered the 

same way

• Schedule S is conflict serializable if S is conflict 
equivalent to some serial schedule
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Conflict Equivalence – Intuition

• If you can transform an interleaved schedule by 
swapping consecutive non-conflicting operations of 
different transactions into a serial schedule, then 
the original schedule is conflict serializable

• Example:
T1:R(A),W(A),          R(B),W(B)
T2:          R(A),W(A),         R(B),W(B)      

T1:R(A),W(A),     R(B),     W(B)
T2:          R(A),     W(A),    R(B),W(B)      

T1:R(A),W(A),R(B),          W(B)
T2:               R(A),W(A),    R(B),W(B)      

2/24/2016 14Cs262a-S16 Lecture-10

Conflict Equivalence – Intuition  (cont’d)

• If you can transform an interleaved schedule by 
swapping consecutive non-conflicting operations of 
different transactions into a serial schedule, then 
the original schedule is conflict serializable

• Example:
T1:R(A),W(A),R(B),          W(B)
T2:               R(A),W(A),    R(B),W(B)      

T1:R(A),W(A),R(B),     W(B)
T2:               R(A),     W(A),R(B),W(B)     

T1:R(A),W(A),R(B),W(B)
T2:                    R(A),W(A),R(B),W(B)     
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Conflict Equivalence – Intuition  (cont’d)

• If you can transform an interleaved schedule 
by swapping consecutive non-conflicting 
operations of different transactions into a 
serial schedule, then the original schedule is 
conflict serializable

• Is this schedule serializable?

T1:R(A),          W(A)
T2:     R(A),W(A), 
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Dependency Graph

• Dependency graph:  
–Transactions represented as nodes
–Edge from Ti to Tj: 

» an operation of Ti conflicts with an operation of Tj
» Ti appears earlier than Tj in the schedule

• Theorem: Schedule is conflict serializable if 
and only if its dependency graph is acyclic
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Example

• Conflict serializable schedule:

• No cycle!

T1 T2
A

Dependency graph
B

T1:R(A),W(A),          R(B),W(B)
T2:          R(A),W(A),         R(B),W(B)     
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Example

• Conflict that is not serializable:

• Cycle: The output of T1 depends on T2, 
and vice-versa

T1:R(A),W(A),                   R(B),W(B)
T2:          R(A),W(A),R(B),W(B)          

T1 T2
A

B

Dependency graph
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Notes on Conflict Serializability
• Conflict Serializability doesn’t allow all schedules 

that you would consider correct
– This is because it is strictly syntactic - it doesn’t 

consider the meanings of the operations or the data

• In practice, Conflict Serializability is what gets 
used, because it can be done efficiently

– Note: in order to allow more concurrency, some 
special cases do get implemented, such as for travel 
reservations, …

• Two-phase locking (2PL) is how we implement it
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T1:R(A),     W(A),     
T2:     W(A),
T3:                WA 

Serializability ≠ Conflict Serializability

• Following schedule is not conflict serializable

• However, the schedule is serializable since its output 
is equivalent with the following serial schedule

• Note: deciding whether a schedule is serializable (not 
conflict-serializable) is NP-complete  

T1 T2
A

Dependency graph

T1:R(A),W(A),     
T2:          W(A),
T3:               WA   

T3

A
AA
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Locks (Simplistic View)
• Use locks to control access to data

• Two types of locks:
–shared (S) lock – multiple concurrent 

transactions allowed to operate on data
–exclusive (X) lock – only one transaction can 

operate on data at a time

S X

S  –

X – –

Lock

Compatibility

Matrix
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Two-Phase Locking (2PL)
1) Each transaction must obtain: 

– S (shared) or X (exclusive) lock on data before reading, 
– X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it 
releases any locks

Thus, each transaction has a “growing phase” followed by a 
“shrinking phase”

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19

# 
Lo

ck
s 

H
el

d

Time

Growing
Phase

Shrinking
Phase

Lock Point!

Avoid deadlock
by acquiring locks
in some 
lexicographic order
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Two-Phase Locking (2PL)
• 2PL guarantees conflict serializability

• Doesn’t allow dependency cycles. Why?

• Answer: a dependency cycle leads to deadlock
– Assume there is a cycle between Ti and Tj
– Edge from Ti to Tj: Ti acquires lock first and Tj needs to wait
– Edge from Tj to Ti: Tj acquires lock first and Ti needs to wait
– Thus, both Ti and Tj wait for each other 
– Since with 2PL neither Ti nor Tj release locks before acquiring all 

locks they need  deadlock

• Schedule of conflicting transactions is conflict equivalent to a 
serial schedule ordered by “lock point”
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Example
• T1 transfers $50 from account A to account B

• T2 outputs the total of accounts A and B

• Initially, A = $1000 and B = $2000

• What are the possible output values?
–3000, 2950, 3050

T1:Read(A),A:=A-50,Write(A),Read(B),B:=B+50,Write(B)

T2:Read(A),Read(B),PRINT(A+B)



2/24/2016 25Cs262a-S16 Lecture-10

Is this a 2PL Schedule?

1 Lock_X(A)   <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Unlock(A) <granted>
6 Read(A)
7 Unlock(A)
8 Lock_S(B) <granted>
9 Lock_X(B)

10 Read(B)
11 <granted> Unlock(B)
12 PRINT(A+B)
13 Read(B)
14 B := B +50
15 Write(B)
16 Unlock(B)

No, and it is not serializable
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Is this a 2PL Schedule?

1 Lock_X(A)  <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Lock_X(B)  <granted>
6 Unlock(A) <granted>
7 Read(A)
8 Lock_S(B)
9 Read(B)

10 B := B +50
11 Write(B)
12 Unlock(B) <granted>
13 Unlock(A)
14 Read(B)
15 Unlock(B)
16 PRINT(A+B)

Yes, so it is 
serializable
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Cascading Aborts
• Example: T1 aborts

–Note: this is a 2PL schedule

• Rollback of T1 requires rollback of T2, 
since T2 reads a value written by T1

• Solution: Strict Two-phase Locking 
(Strict 2PL): same as 2PL except
–All locks held by a transaction are released 

only when the transaction completes 

T1:R(A),W(A),         R(B),W(B), Abort
T2:          R(A),W(A)          
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Strict 2PL (cont’d)

• All locks held by a transaction are released 
only when the transaction completes

• In effect, “shrinking phase” is delayed 
until:
a) Transaction has committed (commit log 

record on disk), or
b) Decision has been made to abort the 

transaction (then locks can be released 
after rollback)
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Is this a Strict 2PL schedule?
1 Lock_X(A)  <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Lock_X(B)  <granted>
6 Unlock(A) <granted>
7 Read(A)
8 Lock_S(B)
9 Read(B)

10 B := B +50
11 Write(B)
12 Unlock(B) <granted>
13 Unlock(A)
14 Read(B)
15 Unlock(B)
16 PRINT(A+B)

No: Cascading Abort 
Possible
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Is this a Strict 2PL schedule?
1 Lock_X(A) <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Lock_X(B) <granted>
6 Read(B)
7 B := B +50
8 Write(B)
9 Unlock(A)

10 Unlock(B) <granted>
11 Read(A)
12 Lock_S(B)  <granted>
13 Read(B)
14 PRINT(A+B)
15 Unlock(A)
16 Unlock(B)
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Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning
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Phantom

T1
Select count(*) 
where dept = “Acct”
//find and S-lock (“Sue”, 

“Acct”, 3500) and (“Tim”, 
“Acct, 2400)

Select sum(salary) 
where dept = “Acct” 
//find and S-lock (“Sue”, 

“Acct”, 3500) and (“Tim”, 
“Acct, 2400) and (“Joe”, 
“Acct”, 2000)

T2

Insert (“Joe”,”Acct”, 2000)
//X-lock the new record
Commit
//release locks
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Phantoms and Commutativity

• A predicate-based select doesn’t 
commute with the insert of a record that 
meets the select’s where clause

• We need to have some lock to protect 
the correctness of the result of the 
where clause
–Not just the records that are the result!
–Eswaran et al ‘76 describe (conceptually) 

locking the records that might exist but 
don’t do so yet
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Page-level locking

• The traditional concurrency control in 
the 1970s was page-level locking

• If all locks are at page granularity or 
above, phantoms can’t arise
–Lock every page read or written (even 

when page is scanned and no records are 
found/returned)

–There are no queries to find a set of pages
• But performance is often poor

–Lots of false conflicts, low concurrency 
obtained
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Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning

2/24/2016 36Cs262a-S16 Lecture-10

Predicate Locking

• Solution proposed by Eswaran et al in the 
1976 journal paper where they identified and 
explained the phantom issue
–And also gave a proof of correctness of 2PL!
–Context: transactions and serializability were 

new ideas!
• Never implemented in any system I know of
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Locking Predicates

• S-Lock the predicate in a where-clause 
of a SELECT
–Or a simpler predicate that “covers” this

• X-lock the predicate in a where clause 
of an UPDATE, INSERT or DELETE
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Conflict decision

• A lock can’t be granted if a conflicting 
lock is held already

• For predicates, a Lock on P by T conflicts 
with Lock on Q by U if
–Locks are not both S-mode
–T different from U
–P and Q are mutually satisfiable

» Some record r could exist in the schema such 
that P(r) and Q(r) 
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An Effective Test for Conflict

• In general, satisfiability of predicates is 
undecidable

• Eswaran et al suggest using covering 
predicates that are boolean combinations of 
atomic equality/inequalities

• Satisfiability is a decidable problem, but not 
efficient 2/24/2016 40Cs262a-S16 Lecture-10

Implementation Issues

• Note the contrast to traditional lock 
manager implementations
–Conflict is only on lock for same lockname
–Can be tested by quick hashtable lookup!
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Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning
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BREAK
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CS262a Project Proposals 
• Two People from this class

– Projects can overlap with other classes
– Exceptions to the two person requirement need to be OK’d

• Should be a miniature research project
– State of the art (can’t redo something that others have done)
– Should be “systems related”, i.e. dealing with large numbers of elements, big 

data, parallelism, etc…
– Should be publishable work (but won’t quite polish it off by end of term)
– Must have solid methodology!

• Metric of success/base case for measurements
– Figure out what your “metrics of success” are going to be…
– What is the base case you are measuring against?

• Project proposals due Friday at midnight – should have:
– Motivation and problem domain
– Description of what you are going to do and what is new about it
– How you are going to do the evaluation (what is methodology, base case, etc.)
– If you need resources, you need to tell us NOW exactly what they are…
– List of ALL participants
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Key-Range Locks (Lomet’93)

• A collection of varying 
algorithms/implementation ideas for dealing 
with phantoms with a lock manager which only 
considers conflicts on the same named lock
–Some variants use traditional Multi-Granularity 

Locking (MGL) modes: IX, IS, SIX, etc.
–Other dimensions of variation: whether to merge 

locks on keys, ranges, records
» Are deleted records removed, or just marked deleted
» Are keys unique, or duplicatable
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Main Ideas

• Avoid phantoms by checking for conflicts on 
dynamically chosen ranges in key space
–Each range is from one key that appears in the 

relation, to the next that appears 
• Define lock modes so conflict table will 

capture commutativity of the operations 
available

• Conservative approximations: simpler set of 
modes, that may conflict more often
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Range

• If k0 is one key and k is the next, that 
appear in the relation contents
–(k0,k] is the semi-open interval that starts 

immediately above k0 and then includes k
• Name this range by something 

connected to k (but distinguish it from 
the key lock for k)
–Example: k with marker for range
–Or use k for range, Record ID for key itself

• Note: insert or delete will change the 
set of ranges!
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Operations of the storage layer

• Read at k
• Update at k
• Insert
• Delete
• Scan from k to k’ (or fetch next after k, as 

far as k’)
–Note that higher query processing converts 

complex predicates into operations like these
» Locks on scan ranges will automatically cover the 

predicate in the query
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Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning
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Current Practice

• Implementations do not use the full flexibility 
of Lomet’s modes

• Common practice is to use MGL modes, and 
to merge lock on range with lock on upper key
–A S-lock on key k implicitly is also locking the 

range (k0,k] where k0 is the previous key
–This is basis of ARIES/KVL
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Insertion

• As well as locking the new record’s key, take 
instant duration IX lock on the next key
–Make sure no scan has happened that would 

have showed the non-existence of key just being 
inserted

–No need to prevent future scans of this range, 
because they will see the new record!
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Gap Locks

• A refinement S-locks a range (k0,k] by S-
locking the key k, and separately it gets a 
lock on k with a special mode G, that 
represents the gap – the open interval (k0,k)

• This is used in InnoDB
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Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning
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Indices

• Primary index
–Leaves contain all records with data from table
–Higher levels contain some records that point to 

leaf pages or other index pages, with keys to work 
out which pointer to follow

• Secondary index
–Leaves contain value of some attribute, and some 

way to access the records of the data that contain 
that value in the attribute

»Eg primary key value, rowid, etc
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Problems

• Suppose we don’t do concurrency control on the index 
structure, but just on the data records (in the leaves)

• Two problems can arise
–Impossible structure

»Transaction executes an operation that sees a 
structure that violates data structure properties

–Phantom: query with where clause sees the 
wrong set of values

»Access through an index must protect against 
insertion of future matching data record
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Mangled Data Structure

33 99

3,5,6

33 66

3,5

9

6,7

Before After split of page 

occurring in T1’s insert of key 7

T2 searches for 6;

T2 reads parent page before 
split; follows pointer,

A A B

T2 then reads child page A after 
split, 

and reports that 6 is absent

2/24/2016 56Cs262a-S16 Lecture-10

Logical Locks and Physical Latches

From Graefe, TODS 35(3):16

Lock: logical level, held for transaction duration

Latch: physical level, held for operation duration
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Latch Coupling

• When descending a tree
–Hold latch on parent until after latch on 

child is obtained
• Exception: if child is not in buffer (it 

must be fetched from disk)
–Release latch on parent
–Return to root, traverse tree again
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Avoiding Undos for Structural Modifications
• Use System Transactions

– To ensure recoverability, but avoid lots of unneeded 
data movement during transaction rollback

• Perform structure modification as separate 
transaction, outside the scope of the user 
transaction that caused it
–Structure modification is logical no-op
–Eg insert is done by system transaction that 

splits page; then record is inserted by user 
transaction into the now-available space 
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Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning
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Abstraction 

• Data structures can be considered as 
abstract data types with mathematical 
values, or as a complex arrangement of 
objects-with-references

• Example: compare a hash table 
abstractly as a Map (relating keys and 
values), or concretely as an array of 
linked lists 
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Abstraction 

• An operation that changes the logical 
abstract content is realized by a 
complex sequence of changes to the 
objects and references

• The same abstract state can be 
represented by many different detailed 
arrangements

2/24/2016 62Cs262a-S16 Lecture-10

Abstraction 

• Both concurrency control and recovery 
can be designed in different ways, 
depending on what level of abstraction 
is being considered

• For a DBMS, we can think of a 
relational table in different levels
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Logical View

• Treat the relation as a set of records
• Order not important
• Layout not important

• Example:
–We log that we executed INSERT (7, fred) 

into Table57
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Physical View

• Treat the relation as a collection of 
pages whose bits are described

• Example: 
–We log that bytes 18 to 32 in page 17, and 

bytes 4 to 64 in page 19, were changed as 
follows…
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Physiological View

• Treat the relation as a collection of pages 
each of which contains a set of records

• Example:
–We log that in page 17 record (7, fred) was 

inserted

• “Logical within a page, but physical pages 
are noticed”

• Enables placing the LSN of relevant log 
entry into each page
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Multi-level Execution

• Top level is a set of transactions
• Next level shows how each transaction is 

made of logical operations on relations
• Then we see how each logical operation is 

made up of page changes, each described 
physiologically

• Lowest level shows operations, each of which 
has physical changes on the bits of a page
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Lowest level operations happen in time order as shown
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Multi-level Execution

• Lowest level operations are in a total 
order of real-time

• Higher levels may have concurrency 
between the operations
–Deduce this from whether their lowest-level 

descendants form overlapping ranges in time
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Multi-level Reasoning

• Each level can be rearranged to separate 
completely the operations of the level above, 
provided appropriate policies are used 
–Once rearranged, forget there was a lower layer

• If an operation contains a set of children 
whose combined effect is no-op (at that 
level), then remove the operation entirely
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Multilevel Transaction Management

• Obtain a suitable-mode lock when 
performing an operation at a level
–Hold the lock until the parent operation 

completes

• To abort an operation that is in-progress, 
perform (and log) compensating operations 
for each completed child operation, in 
reverse order
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Necessary Properties

• Lock modes
–If operations at a level are not commutative, then 

their lock-modes must conflict
• Recovery

–Performing an operation from a log record must be 
idempotent

»Use LSNs etc to restrict whether changes will 
occur

• Compensators
–Compensator for an operation must act as its 

inverse
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Defined Properties

• Commutativity
–O1 and O2 commute if their effect is the same in 

either order
• Idempotence

–O1 is idempotent if O1 followed by O1 has the 
same effect as O1 by itself

• Inverse
–Q1 is inverse to O1 if (O1 then Q1) has no effect
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Lowest level operations happen in time order as shown
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Rearrange lowest level, to make next level non-concurrent

Then remove lowest level, 

and think about level above as single steps
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Were these good papers?

• What were the authors’ goals?
• What about the evaluation / metrics?
• Did they convince you that this was a 

good system /approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the 

“Test of Time” challenge?
• How would you review this paper 

today?
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