
EECS 262a
Advanced Topics in Computer Systems

Lecture 10

Transactions and Isolation Levels 2
February 24th, 2016

Alan Fekete
Slides by Alan Fekete (University of Sydney),
Anthony D. Joseph and John Kubiatowicz (UC

Berkeley)

http://www.eecs.berkeley.edu/~kubitron/cs262
2/24/2016 2Cs262a-S16 Lecture-10

Today’s Papers
• The Notions of Consistency and Predicate Locks in a

Database System
K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger.
Appears in Communications of the ACM, Vol. 19, No. 11,
1976

• Key Range Locking Strategies for Improved
Concurrency
David Lomet. Appears in Proceedings of the 19th VLDB
Conference, 1993

• Thoughts?

2/24/2016 3Cs262a-S16 Lecture-10

Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning

2/24/2016 4Cs262a-S16 Lecture-10

Theory and reality
• Traditional serializability theory treats

database as a set of items (Eswaran et al
‘76 says “entities”) which are read and
written

• Two phase locking is proved correct in this
model
–We now say “serializable”

• But, database has a richer set of
operations than just read/write
–Declarative selects
– Insert
–Delete

2/24/2016 5Cs262a-S16 Lecture-10

Review: Goals of Transaction Scheduling
• Maximize system utilization, i.e., concurrency

– Interleave operations from different transactions

• Preserve transaction semantics
–Semantically equivalent to a serial schedule, i.e.,

one transaction runs at a time

T1: R, W, R, W T2: R, W, R, R, W

R, W, R, W, R, W, R, R, W
Serial schedule (T1, then T2):

R, W, R, R, W, R, W, R, W
Serial schedule (T2, then T1):

2/24/2016 6Cs262a-S16 Lecture-10

Two Key Questions

1) Is a given schedule equivalent to a
serial execution of transactions?

2) How do you come up with a schedule
equivalent to a serial schedule?

R, W, R, W, R, W, R, R, W R, W, R, R, W, R, W, R, W

R, R, W, W, R, R, R, W, WSchedule:

Serial schedule (T1, then T2):

:

Serial schedule (T2, then T1):

 ? ?

2/24/2016 7Cs262a-S16 Lecture-10

Transaction Scheduling
• Serial schedule: A schedule that does not

interleave the operations of different transactions
– Transactions run serially (one at a time)

• Equivalent schedules: For any storage/database
state, the effect (on storage/database) and output
of executing the first schedule is identical to the
effect of executing the second schedule

• Serializable schedule: A schedule that is
equivalent to some serial execution of the
transactions

– Intuitively: with a serializable schedule you only see
things that could happen in situations where you were
running transactions one-at-a-time

2/24/2016 8Cs262a-S16 Lecture-10

Anomalies with Interleaved Execution

• May violate transaction semantics, e.g.,
some data read by the transaction
changes before committing

• Inconsistent database state, e.g., some
updates are lost

• Anomalies always involves a “write”;
Why?

2/24/2016 9Cs262a-S16 Lecture-10

Anomalies with Interleaved Execution

• Read-Write conflict (Unrepeatable reads)

• Violates transaction semantics
• Example: Mary and John want to buy a TV

set on Amazon but there is only one left in
stock
– (T1) John logs first, but waits…
–(T2) Mary logs second and buys the TV set

right away
– (T1) John decides to buy, but it is too late…

T1:R(A), R(A),W(A)
T2: R(A),W(A)

2/24/2016 10Cs262a-S16 Lecture-10

Anomalies with Interleaved Execution

• Write-read conflict (reading uncommitted data)

• Example:
– (T1) A user updates value of A in two steps
– (T2) Another user reads the intermediate value of A,

which can be inconsistent
–Violates transaction semantics since T2 is not

supposed to see intermediate state of T1

T1:R(A),W(A), W(A)
T2: R(A), …

2/24/2016 11Cs262a-S16 Lecture-10

Anomalies with Interleaved Execution

• Write-write conflict (overwriting
uncommitted data)

• Get T1’s update of B and T2’s update of A
• Violates transaction serializability
• If transactions were serial, you’d get

either:
–T1’s updates of A and B
–T2’s updates of A and B

T1:W(A), W(B)
T2: W(A),W(B)

2/24/2016 12Cs262a-S16 Lecture-10

Conflict Serializable Schedules

• Two operations conflict if they
–Belong to different transactions
–Are on the same data
–At least one of them is a write

• Two schedules are conflict equivalent iff:
– Involve same operations of same transactions
–Every pair of conflicting operations is ordered the

same way

• Schedule S is conflict serializable if S is conflict
equivalent to some serial schedule

2/24/2016 13Cs262a-S16 Lecture-10

Conflict Equivalence – Intuition

• If you can transform an interleaved schedule by
swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then
the original schedule is conflict serializable

• Example:
T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A), R(B),W(B)

T1:R(A),W(A), R(B), W(B)
T2: R(A), W(A), R(B),W(B)

T1:R(A),W(A),R(B), W(B)
T2: R(A),W(A), R(B),W(B)

2/24/2016 14Cs262a-S16 Lecture-10

Conflict Equivalence – Intuition (cont’d)

• If you can transform an interleaved schedule by
swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then
the original schedule is conflict serializable

• Example:
T1:R(A),W(A),R(B), W(B)
T2: R(A),W(A), R(B),W(B)

T1:R(A),W(A),R(B), W(B)
T2: R(A), W(A),R(B),W(B)

T1:R(A),W(A),R(B),W(B)
T2: R(A),W(A),R(B),W(B)

2/24/2016 15Cs262a-S16 Lecture-10

Conflict Equivalence – Intuition (cont’d)

• If you can transform an interleaved schedule
by swapping consecutive non-conflicting
operations of different transactions into a
serial schedule, then the original schedule is
conflict serializable

• Is this schedule serializable?

T1:R(A), W(A)
T2: R(A),W(A),

2/24/2016 16Cs262a-S16 Lecture-10

Dependency Graph

• Dependency graph:
–Transactions represented as nodes
–Edge from Ti to Tj:

» an operation of Ti conflicts with an operation of Tj
» Ti appears earlier than Tj in the schedule

• Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic

2/24/2016 17Cs262a-S16 Lecture-10

Example

• Conflict serializable schedule:

• No cycle!

T1 T2
A

Dependency graph
B

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A), R(B),W(B)

2/24/2016 18Cs262a-S16 Lecture-10

Example

• Conflict that is not serializable:

• Cycle: The output of T1 depends on T2,
and vice-versa

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A),R(B),W(B)

T1 T2
A

B

Dependency graph

2/24/2016 19Cs262a-S16 Lecture-10

Notes on Conflict Serializability
• Conflict Serializability doesn’t allow all schedules

that you would consider correct
– This is because it is strictly syntactic - it doesn’t

consider the meanings of the operations or the data

• In practice, Conflict Serializability is what gets
used, because it can be done efficiently

– Note: in order to allow more concurrency, some
special cases do get implemented, such as for travel
reservations, …

• Two-phase locking (2PL) is how we implement it

2/24/2016 20Cs262a-S16 Lecture-10

T1:R(A), W(A),
T2: W(A),
T3: WA

Serializability ≠ Conflict Serializability

• Following schedule is not conflict serializable

• However, the schedule is serializable since its output
is equivalent with the following serial schedule

• Note: deciding whether a schedule is serializable (not
conflict-serializable) is NP-complete

T1 T2
A

Dependency graph

T1:R(A),W(A),
T2: W(A),
T3: WA

T3

A
AA

2/24/2016 21Cs262a-S16 Lecture-10

Locks (Simplistic View)
• Use locks to control access to data

• Two types of locks:
–shared (S) lock – multiple concurrent

transactions allowed to operate on data
–exclusive (X) lock – only one transaction can

operate on data at a time

S X

S  –

X – –

Lock

Compatibility

Matrix

2/24/2016 22Cs262a-S16 Lecture-10

Two-Phase Locking (2PL)
1) Each transaction must obtain:

– S (shared) or X (exclusive) lock on data before reading,
– X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks

Thus, each transaction has a “growing phase” followed by a
“shrinking phase”

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19

Lo

ck
s

H
el

d

Time

Growing
Phase

Shrinking
Phase

Lock Point!

Avoid deadlock
by acquiring locks
in some
lexicographic order

2/24/2016 23Cs262a-S16 Lecture-10

Two-Phase Locking (2PL)
• 2PL guarantees conflict serializability

• Doesn’t allow dependency cycles. Why?

• Answer: a dependency cycle leads to deadlock
– Assume there is a cycle between Ti and Tj
– Edge from Ti to Tj: Ti acquires lock first and Tj needs to wait
– Edge from Tj to Ti: Tj acquires lock first and Ti needs to wait
– Thus, both Ti and Tj wait for each other
– Since with 2PL neither Ti nor Tj release locks before acquiring all

locks they need  deadlock

• Schedule of conflicting transactions is conflict equivalent to a
serial schedule ordered by “lock point”

2/24/2016 24Cs262a-S16 Lecture-10

Example
• T1 transfers $50 from account A to account B

• T2 outputs the total of accounts A and B

• Initially, A = $1000 and B = $2000

• What are the possible output values?
–3000, 2950, 3050

T1:Read(A),A:=A-50,Write(A),Read(B),B:=B+50,Write(B)

T2:Read(A),Read(B),PRINT(A+B)

2/24/2016 25Cs262a-S16 Lecture-10

Is this a 2PL Schedule?

1 Lock_X(A) <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Unlock(A) <granted>
6 Read(A)
7 Unlock(A)
8 Lock_S(B) <granted>
9 Lock_X(B)

10 Read(B)
11 <granted> Unlock(B)
12 PRINT(A+B)
13 Read(B)
14 B := B +50
15 Write(B)
16 Unlock(B)

No, and it is not serializable

2/24/2016 26Cs262a-S16 Lecture-10

Is this a 2PL Schedule?

1 Lock_X(A) <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Lock_X(B) <granted>
6 Unlock(A) <granted>
7 Read(A)
8 Lock_S(B)
9 Read(B)

10 B := B +50
11 Write(B)
12 Unlock(B) <granted>
13 Unlock(A)
14 Read(B)
15 Unlock(B)
16 PRINT(A+B)

Yes, so it is
serializable

2/24/2016 27Cs262a-S16 Lecture-10

Cascading Aborts
• Example: T1 aborts

–Note: this is a 2PL schedule

• Rollback of T1 requires rollback of T2,
since T2 reads a value written by T1

• Solution: Strict Two-phase Locking
(Strict 2PL): same as 2PL except
–All locks held by a transaction are released

only when the transaction completes

T1:R(A),W(A), R(B),W(B), Abort
T2: R(A),W(A)

2/24/2016 28Cs262a-S16 Lecture-10

Strict 2PL (cont’d)

• All locks held by a transaction are released
only when the transaction completes

• In effect, “shrinking phase” is delayed
until:
a) Transaction has committed (commit log

record on disk), or
b) Decision has been made to abort the

transaction (then locks can be released
after rollback)

2/24/2016 29Cs262a-S16 Lecture-10

Is this a Strict 2PL schedule?
1 Lock_X(A) <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Lock_X(B) <granted>
6 Unlock(A) <granted>
7 Read(A)
8 Lock_S(B)
9 Read(B)

10 B := B +50
11 Write(B)
12 Unlock(B) <granted>
13 Unlock(A)
14 Read(B)
15 Unlock(B)
16 PRINT(A+B)

No: Cascading Abort
Possible

2/24/2016 30Cs262a-S16 Lecture-10

Is this a Strict 2PL schedule?
1 Lock_X(A) <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Lock_X(B) <granted>
6 Read(B)
7 B := B +50
8 Write(B)
9 Unlock(A)

10 Unlock(B) <granted>
11 Read(A)
12 Lock_S(B) <granted>
13 Read(B)
14 PRINT(A+B)
15 Unlock(A)
16 Unlock(B)

2/24/2016 31Cs262a-S16 Lecture-10

Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning

2/24/2016 32Cs262a-S16 Lecture-10

Phantom

T1
Select count(*)
where dept = “Acct”
//find and S-lock (“Sue”,

“Acct”, 3500) and (“Tim”,
“Acct, 2400)

Select sum(salary)
where dept = “Acct”
//find and S-lock (“Sue”,

“Acct”, 3500) and (“Tim”,
“Acct, 2400) and (“Joe”,
“Acct”, 2000)

T2

Insert (“Joe”,”Acct”, 2000)
//X-lock the new record
Commit
//release locks

2/24/2016 33Cs262a-S16 Lecture-10

Phantoms and Commutativity

• A predicate-based select doesn’t
commute with the insert of a record that
meets the select’s where clause

• We need to have some lock to protect
the correctness of the result of the
where clause
–Not just the records that are the result!
–Eswaran et al ‘76 describe (conceptually)

locking the records that might exist but
don’t do so yet

2/24/2016 34Cs262a-S16 Lecture-10

Page-level locking

• The traditional concurrency control in
the 1970s was page-level locking

• If all locks are at page granularity or
above, phantoms can’t arise
–Lock every page read or written (even

when page is scanned and no records are
found/returned)

–There are no queries to find a set of pages
• But performance is often poor

–Lots of false conflicts, low concurrency
obtained

2/24/2016 35Cs262a-S16 Lecture-10

Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning

2/24/2016 36Cs262a-S16 Lecture-10

Predicate Locking

• Solution proposed by Eswaran et al in the
1976 journal paper where they identified and
explained the phantom issue
–And also gave a proof of correctness of 2PL!
–Context: transactions and serializability were

new ideas!
• Never implemented in any system I know of

2/24/2016 37Cs262a-S16 Lecture-10

Locking Predicates

• S-Lock the predicate in a where-clause
of a SELECT
–Or a simpler predicate that “covers” this

• X-lock the predicate in a where clause
of an UPDATE, INSERT or DELETE

2/24/2016 38Cs262a-S16 Lecture-10

Conflict decision

• A lock can’t be granted if a conflicting
lock is held already

• For predicates, a Lock on P by T conflicts
with Lock on Q by U if
–Locks are not both S-mode
–T different from U
–P and Q are mutually satisfiable

» Some record r could exist in the schema such
that P(r) and Q(r)

2/24/2016 39Cs262a-S16 Lecture-10

An Effective Test for Conflict

• In general, satisfiability of predicates is
undecidable

• Eswaran et al suggest using covering
predicates that are boolean combinations of
atomic equality/inequalities

• Satisfiability is a decidable problem, but not
efficient 2/24/2016 40Cs262a-S16 Lecture-10

Implementation Issues

• Note the contrast to traditional lock
manager implementations
–Conflict is only on lock for same lockname
–Can be tested by quick hashtable lookup!

2/24/2016 41Cs262a-S16 Lecture-10

Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning

2/24/2016 42Cs262a-S16 Lecture-10

BREAK

2/24/2016 43Cs262a-S16 Lecture-10

CS262a Project Proposals
• Two People from this class

– Projects can overlap with other classes
– Exceptions to the two person requirement need to be OK’d

• Should be a miniature research project
– State of the art (can’t redo something that others have done)
– Should be “systems related”, i.e. dealing with large numbers of elements, big

data, parallelism, etc…
– Should be publishable work (but won’t quite polish it off by end of term)
– Must have solid methodology!

• Metric of success/base case for measurements
– Figure out what your “metrics of success” are going to be…
– What is the base case you are measuring against?

• Project proposals due Friday at midnight – should have:
– Motivation and problem domain
– Description of what you are going to do and what is new about it
– How you are going to do the evaluation (what is methodology, base case, etc.)
– If you need resources, you need to tell us NOW exactly what they are…
– List of ALL participants

2/24/2016 44Cs262a-S16 Lecture-10

Key-Range Locks (Lomet’93)

• A collection of varying
algorithms/implementation ideas for dealing
with phantoms with a lock manager which only
considers conflicts on the same named lock
–Some variants use traditional Multi-Granularity

Locking (MGL) modes: IX, IS, SIX, etc.
–Other dimensions of variation: whether to merge

locks on keys, ranges, records
» Are deleted records removed, or just marked deleted
» Are keys unique, or duplicatable

2/24/2016 45Cs262a-S16 Lecture-10

Main Ideas

• Avoid phantoms by checking for conflicts on
dynamically chosen ranges in key space
–Each range is from one key that appears in the

relation, to the next that appears
• Define lock modes so conflict table will

capture commutativity of the operations
available

• Conservative approximations: simpler set of
modes, that may conflict more often

2/24/2016 46Cs262a-S16 Lecture-10

Range

• If k0 is one key and k is the next, that
appear in the relation contents
–(k0,k] is the semi-open interval that starts

immediately above k0 and then includes k
• Name this range by something

connected to k (but distinguish it from
the key lock for k)
–Example: k with marker for range
–Or use k for range, Record ID for key itself

• Note: insert or delete will change the
set of ranges!

2/24/2016 47Cs262a-S16 Lecture-10

Operations of the storage layer

• Read at k
• Update at k
• Insert
• Delete
• Scan from k to k’ (or fetch next after k, as

far as k’)
–Note that higher query processing converts

complex predicates into operations like these
» Locks on scan ranges will automatically cover the

predicate in the query

2/24/2016 48Cs262a-S16 Lecture-10

Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning

2/24/2016 49Cs262a-S16 Lecture-10

Current Practice

• Implementations do not use the full flexibility
of Lomet’s modes

• Common practice is to use MGL modes, and
to merge lock on range with lock on upper key
–A S-lock on key k implicitly is also locking the

range (k0,k] where k0 is the previous key
–This is basis of ARIES/KVL

2/24/2016 50Cs262a-S16 Lecture-10

Insertion

• As well as locking the new record’s key, take
instant duration IX lock on the next key
–Make sure no scan has happened that would

have showed the non-existence of key just being
inserted

–No need to prevent future scans of this range,
because they will see the new record!

2/24/2016 51Cs262a-S16 Lecture-10

Gap Locks

• A refinement S-locks a range (k0,k] by S-
locking the key k, and separately it gets a
lock on k with a special mode G, that
represents the gap – the open interval (k0,k)

• This is used in InnoDB

2/24/2016 52Cs262a-S16 Lecture-10

Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning

2/24/2016 53Cs262a-S16 Lecture-10

Indices

• Primary index
–Leaves contain all records with data from table
–Higher levels contain some records that point to

leaf pages or other index pages, with keys to work
out which pointer to follow

• Secondary index
–Leaves contain value of some attribute, and some

way to access the records of the data that contain
that value in the attribute

»Eg primary key value, rowid, etc

2/24/2016 54Cs262a-S16 Lecture-10

Problems

• Suppose we don’t do concurrency control on the index
structure, but just on the data records (in the leaves)

• Two problems can arise
–Impossible structure

»Transaction executes an operation that sees a
structure that violates data structure properties

–Phantom: query with where clause sees the
wrong set of values

»Access through an index must protect against
insertion of future matching data record

2/24/2016 55Cs262a-S16 Lecture-10

Mangled Data Structure

33 99

3,5,6

33 66

3,5

9

6,7

Before After split of page

occurring in T1’s insert of key 7

T2 searches for 6;

T2 reads parent page before
split; follows pointer,

A A B

T2 then reads child page A after
split,

and reports that 6 is absent

2/24/2016 56Cs262a-S16 Lecture-10

Logical Locks and Physical Latches

From Graefe, TODS 35(3):16

Lock: logical level, held for transaction duration

Latch: physical level, held for operation duration

2/24/2016 57Cs262a-S16 Lecture-10

Latch Coupling

• When descending a tree
–Hold latch on parent until after latch on

child is obtained
• Exception: if child is not in buffer (it

must be fetched from disk)
–Release latch on parent
–Return to root, traverse tree again

2/24/2016 58Cs262a-S16 Lecture-10

Avoiding Undos for Structural Modifications
• Use System Transactions

– To ensure recoverability, but avoid lots of unneeded
data movement during transaction rollback

• Perform structure modification as separate
transaction, outside the scope of the user
transaction that caused it
–Structure modification is logical no-op
–Eg insert is done by system transaction that

splits page; then record is inserted by user
transaction into the now-available space

2/24/2016 59Cs262a-S16 Lecture-10

Overview

• Serializability
• The Phantom Issue
• Predicate Locking
• Key-Range Locks
• Next-Key Locking techniques
• Index Management and Transactions
• Multi-level reasoning

2/24/2016 60Cs262a-S16 Lecture-10

Abstraction

• Data structures can be considered as
abstract data types with mathematical
values, or as a complex arrangement of
objects-with-references

• Example: compare a hash table
abstractly as a Map (relating keys and
values), or concretely as an array of
linked lists

2/24/2016 61Cs262a-S16 Lecture-10

Abstraction

• An operation that changes the logical
abstract content is realized by a
complex sequence of changes to the
objects and references

• The same abstract state can be
represented by many different detailed
arrangements

2/24/2016 62Cs262a-S16 Lecture-10

Abstraction

• Both concurrency control and recovery
can be designed in different ways,
depending on what level of abstraction
is being considered

• For a DBMS, we can think of a
relational table in different levels

2/24/2016 63Cs262a-S16 Lecture-10

Logical View

• Treat the relation as a set of records
• Order not important
• Layout not important

• Example:
–We log that we executed INSERT (7, fred)

into Table57

2/24/2016 64Cs262a-S16 Lecture-10

Physical View

• Treat the relation as a collection of
pages whose bits are described

• Example:
–We log that bytes 18 to 32 in page 17, and

bytes 4 to 64 in page 19, were changed as
follows…

2/24/2016 65Cs262a-S16 Lecture-10

Physiological View

• Treat the relation as a collection of pages
each of which contains a set of records

• Example:
–We log that in page 17 record (7, fred) was

inserted

• “Logical within a page, but physical pages
are noticed”

• Enables placing the LSN of relevant log
entry into each page

2/24/2016 66Cs262a-S16 Lecture-10

Multi-level Execution

• Top level is a set of transactions
• Next level shows how each transaction is

made of logical operations on relations
• Then we see how each logical operation is

made up of page changes, each described
physiologically

• Lowest level shows operations, each of which
has physical changes on the bits of a page

2/24/2016 67Cs262a-S16 Lecture-10

Lowest level operations happen in time order as shown

2/24/2016 68Cs262a-S16 Lecture-10

Multi-level Execution

• Lowest level operations are in a total
order of real-time

• Higher levels may have concurrency
between the operations
–Deduce this from whether their lowest-level

descendants form overlapping ranges in time

2/24/2016 69Cs262a-S16 Lecture-10

Multi-level Reasoning

• Each level can be rearranged to separate
completely the operations of the level above,
provided appropriate policies are used
–Once rearranged, forget there was a lower layer

• If an operation contains a set of children
whose combined effect is no-op (at that
level), then remove the operation entirely

2/24/2016 70Cs262a-S16 Lecture-10

Multilevel Transaction Management

• Obtain a suitable-mode lock when
performing an operation at a level
–Hold the lock until the parent operation

completes

• To abort an operation that is in-progress,
perform (and log) compensating operations
for each completed child operation, in
reverse order

2/24/2016 71Cs262a-S16 Lecture-10

Necessary Properties

• Lock modes
–If operations at a level are not commutative, then

their lock-modes must conflict
• Recovery

–Performing an operation from a log record must be
idempotent

»Use LSNs etc to restrict whether changes will
occur

• Compensators
–Compensator for an operation must act as its

inverse

2/24/2016 72Cs262a-S16 Lecture-10

Defined Properties

• Commutativity
–O1 and O2 commute if their effect is the same in

either order
• Idempotence

–O1 is idempotent if O1 followed by O1 has the
same effect as O1 by itself

• Inverse
–Q1 is inverse to O1 if (O1 then Q1) has no effect

2/24/2016 73Cs262a-S16 Lecture-10

Lowest level operations happen in time order as shown

2/24/2016 74Cs262a-S16 Lecture-10

Rearrange lowest level, to make next level non-concurrent

Then remove lowest level,

and think about level above as single steps

2/24/2016 75Cs262a-S16 Lecture-10

Were these good papers?

• What were the authors’ goals?
• What about the evaluation / metrics?
• Did they convince you that this was a

good system /approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the

“Test of Time” challenge?
• How would you review this paper

today?

2/24/2016 76Cs262a-S16 Lecture-10

References and Further Reading

• Transactional Information Systems, by
G. Weikum and G. Vossen, 2002

• A Survey of B-Tree Locking
Techniques, by G. Graefe. ACM TODS
35(3):16, July 2010

