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Today’s Papers
• Granularity of Locks and Degrees of Consistency in a 

Shared Database (2-up version) 
J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger. Appears In 
IFIP Working Conference on Modeling of Data Base 
Management Systems. 1975

• Serializable Isolation for Snapshot Databases
Michael J. Cahill, Uwe Röhm, Alan D. Fekete. Appears in 
ACM SIGMOD’08, June 9–12, 2008

• Thoughts?
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Overview

• Transactions
–ACID properties
–Isolation Examples and counter-examples

• Classic Implementation Techniques
• Weak isolation issues
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Definition
• A transaction is a collection of one or more 

operations on one or more databases, which 
reflects a single real-world transition

– In the real world, this happened (completely) or it 
didn’t happen at all (Atomicity)

– Once it has happened, it isn’t forgotten (Durability)
• Commerce examples 

– Transfer money between accounts
– Purchase a group of products 

• Student record system
– Register for a class (either waitlist or allocated)
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Consistency
• Each transaction can be written on the assumption 

that all integrity constraints hold in the data, before 
the transaction runs

• It must make sure that its changes leave the integrity 
constraints still holding

– However, there are allowed to be intermediate states where 
the constraints do not hold

• A transaction that does this, is called consistent
• This is an obligation on the programmer

– Usually the organization has a testing/checking and sign-off 
mechanism before an application program is allowed to get 
installed in the production system
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Threats to data integrity

• Need for application rollback
• System crash
• Concurrent activity

–Today’s lecture is about this

Provided by the log
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Concurrency

• When operations of concurrent threads 
are interleaved, the effect on shared 
state can be unexpected

• Well known issue in operating systems, 
thread programming
–see OS textbooks on critical section
–Java use of synchronized keyword
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Famous anomalies
• Dirty data

– One task T reads data written by T’ while T’ is running, 
then T’ aborts (so its data was not appropriate)

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’
– The values observed may not satisfy integrity 

constraints
– This was not considered by the programmer, so code 

moves into absurd path
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Serializability
• To make isolation precise, we say that an 

execution is serializable when
• There exists some serial (ie batch, no overlap 

at all) execution of the same transactions 
which has the same final state

– Hopefully, the real execution runs faster than the 
serial one!

• NB: different serial txn orders may behave 
differently; we ask that some serial order 
produces the given state

– Other serial orders may  give different final states
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Serializability Theory
• There is a beautiful mathematical theory, based on formal 

languages
– Model an execution as a sequence of operations on data items 

» eg r1[x] w1[x] r2[y] r2[x] c1 c2
– Serializability of an execution can be defined by equivalence to 

a rearranged sequence (“view serializability”)
– Treat the set of all serializable executions as an object of 

interest (called SR)
– Thm: SR is in NP-Hard, i.e. the task of testing whether an 

execution is serializable seems unreasonably slow
• Does it matter?

– The goal of practical importance is to design a system that 
produces some subset of the collection of serializable
executions

– It’s not clear that we care about testing arbitrary executions that 
don’t arise in our system
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Conflict serializability
• There is a nice sufficient condition (ie a conservative 

approximation) called conflict serializable, which can 
be efficiently tested

– Draw a precedes graph whose nodes are the transactions
– Edge from Ti to Tj when Ti accesses x, then later Tj

accesses x, and the accesses conflict (not both reads)
– The execution is conflict serializable iff the graph is acyclic

• Thm: if an execution is conflict serializable then it is 
serializable

– Pf: the serial order with same final state is any topological 
sort of the precedes graph

• Most people and books use the approximation, 
usually without mentioning it! 
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ACID
• Atomic

– State shows either all the effects of txn, or none of 
them

• Consistent
– Txn moves from a state where integrity holds, to 

another where integrity holds
• Isolated

– Effect of txns is the same as txns running one 
after another (ie looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in 

the database
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Big Picture

• If programmer writes applications so each txn 
is consistent

• And DBMS provides atomic, isolated, durable 
execution

– i.e. actual execution has same effect as some 
serial execution of those txns that committed (but 
not those that aborted)

• Then the final state will satisfy all the integrity 
constraints

NB true even though system does not know all integrity constraints!
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Overview

• Transactions
• Classic Implementation Techniques

–Locking
–Lock Manager
–Granularity of locks

• Weak isolation issues
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Automatic lock management

• DBMS requests the appropriate lock 
whenever the app program submits a 
request to read or write a data item

• If lock is available, the access is 
performed

• If lock is not available, the whole txn is 
blocked until the lock is obtained
–After a conflicting lock has been released 

by the other txn that held it
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Lock modes

• Locks can be for writing (X), reading (S) 
–Refinements have extra modes

• Standard conflict rules: two X locks on the 
same data item conflict, so do one X and 
one S lock on the same data
–However, two S locks do not conflict

• X=exclusive
– S=shared Held/Requested X S

X Block Block
S Block OK
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Strict two-phase locking
• Locks that a txn obtains are kept until the 

txn completes
–Once the txn commits or aborts, then all its 

locks are released (as part of the commit or 
rollback processing)

• Two phases:
–Locks are being obtained (while txn runs)
–Locks are released (when txn finished)

NB. This is different from 
when locks are released in O/S 
or threaded code
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Serializability

• If each transaction does strict two-phase 
locking (requesting all appropriate locks), 
then executions are serializable

• However, performance does suffer, as txns
can be blocked for considerable periods
–Deadlocks can arise, requiring system-initiated 

aborts
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Proof sketch
• Suppose all txns do strict 2PL
• If Ti has an edge to Tj in the precedes graph

– That is, Ti accesses x before Tj has conflicting access to x
– Ti has lock at time of its access, Tj has lock at time of its 

access
– Since locks conflict, Ti must release its lock before Tj’s 

access to x
– Ti completes before Tj accesses x
– Ti completes before Tj completes

• So the precedes graph is subset of the (acyclic) total 
order of txn commit

• Conclusion: the execution has same final state as the 
serial execution where txns are arranged in commit 
order
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Lock manager

• A structure in (volatile memory) in the DBMS 
which remembers which txns have set locks on 
which data, in which modes

• It does not allow a request to get a new lock if a 
conflicting lock is already held by a different txn

• NB: a lock does not actually prevent access to 
the data, it only prevents getting a conflicting 
lock

– So data protection only comes if the right lock is 
requested before every access to the data
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Lock manager API

• Access mainly based on item’s 
unique name 
–eg tupleid, or primary key, for records

• Lock(name, txn, mode)
–Block until lock is available

• RemoveTxn(txn)
–Unlock(name, txn)
–LockUpgrade(name, txn, newmode)
–ConditionalLock(name, txn, mode)

» Returns error immediately if unsuccessful
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Granularity

• What is a data item (on which a lock is 
obtained)?

– Most times, in most modern systems: item is one 
tuple in a table

– Sometimes (especially in early 1970s): item is a 
page (with several tuples)

– Sometimes: item is a whole table
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Granularity trade-offs

• Larger granularity: fewer locks held, so less 
overhead; but less concurrency possible

– “false conflicts” when txns deal with different parts of 
the same item

• Smaller “fine” granularity: more locks held, so 
more overhead; but more concurrency is 
possible

• System usually gets fine grain locks until there 
are too many of them; then it replaces them with 
larger granularity locks
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Multigranular locking

• Care needed to manage conflicts 
properly among items of varying 
granularity
–Note: conflicts only detectable among 

locks on a given itemname
• System gets “intention” mode locks on 

larger granules before getting actual 
S/X locks on smaller granules
–Conflict rules arranged so that activities 

that do not commute must get conflicting 
locks on some item
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Lock Mode Conflicts
Held\Request IS IX S SIX X
IS Yes Yes Yes Yes Block
IX Yes Yes Block Block Block
S Yes Block Yes Block Block
SIX Yes Block Block Block Block
X Block Block Block Block Block

Other modes also used for special purposes, 
like select-for-later-update, 
gaplocks for phantom prevention

Lock manager may allow higher level
to introduce its own conflict table
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Lock manager internals

• Hash table, keyed by hash of item name
–Each item has a mode and holder (set)
–Wait queue of requests
–All requests and locks in linked list from 

transaction information
–Transaction table

» To allow thread rescheduling when blocking is 
finished

–Deadlock detection
» Either cycle in waits-for graph, or just timeouts
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Explicit lock management

• With most DBMS, the application 
program can include statements to set or 
release locks on a table
–Details vary

• e.g. LOCK TABLE  InStore IN 
EXCLUSIVE MODE

2/22/2016 28cs262a-S16 Lecture-09

Overview

• Transactions
• Classic Implementation Techniques
• Weak isolation issues

–Especially Snapshot Isolation
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Problems with serializability

• The performance reduction from isolation is high
– Transactions are often blocked because they want to 

read data that another txn has changed
• For many applications, the accuracy of the data 

they read is not crucial
– e.g. overbooking a plane is ok in practice
– e.g. your banking decisions would not be very 

different if you saw yesterday’s balance instead of 
the most up-to-date
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A and D matter!

• Even when isolation isn’t needed, no 
one is willing to give up atomicity and 
durability
–These deal with modifications a txn makes
–Writing is less frequent than reading, so 

log entries and write locks are considered 
worth the effort
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Explicit isolation levels

• A transaction can be declared to have 
isolation properties that are less stringent 
than serializability
–However SQL standard says that default 

should be serializable (Gray’75 called this 
“level 3 isolation”)

–In practice, most systems have weaker default 
level, and most txns run at weaker levels!
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Browse

• SET TRANACTION ISOLATION LEVEL 
READ UNCOMMITTED
–Do not set S-locks at all

» Of course, still set X-locks before updating data
» If fact, system forces the txn to be read-only 

unless you say otherwise
–Allows txn to read dirty data (from a txn that 

will later abort)
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Read Committed

• SET TRANACTION ISOLATION LEVEL READ 
COMMMITTED

– Set S-locks but release them after the read has 
happened

» e.g. when cursor moves onto another element during scan of 
the results of a multirow query

– i.e. do not hold S-locks till txn commits/aborts
– Data is not dirty, but it can be inconsistent (between 

reads of different items, or even between one read and 
a later one of the same item)

» Especially, weird things happen between different rows 
returned by a cursor

Most common in practice!

Gray’75 called this “degree 2”

2/22/2016 34cs262a-S16 Lecture-09

Repeatable read

• SET TRANACTION ISOLATION LEVEL 
REPEATABLE READ

– Set S-locks on data items, and hold them till txn 
finished, but release locks on indices as soon as 
index has been examined

– Allows “phantoms”, rows that are not seen in a 
query that ought to have been (or vice versa)

– Problems if one txn is changing the set of rows 
that meet a condition, while another txn is 
retrieving that set
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Snapshot Isolation (SI)

• A multiversion concurrency control 
mechanism was described in SIGMOD ’95 
by  H. Berenson, P. Bernstein, J. Gray, J. 
Melton, E. O’Neil, P. O’Neil
–Does not guarantee serializable execution!

• Supplied by Oracle DB for “Isolation Level 
Serializable” (also in PostgreSQL before rel 9.1)

• Available in Microsoft SQL Server 2005 as 
“Isolation Level Snapshot”, and in 
PostgreSQL (since rel 9.1) as “Isolation 
Level Repeatable Read”
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Snapshot Isolation (SI)

• Read of an item may not give current value
• Instead, use old versions (kept with 

timestamps) to find value that had been most 
recently committed at the time the txn started
–Exception: if the txn has modified the item, use the 

value it wrote itself
• The transaction sees a “snapshot” of the 

database, at an earlier time
– Intuition: this should be consistent, if the database was 

consistent before
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First committer wins (FCW)

• T will not be allowed to commit a 
modification to an item if any other 
transaction has committed a changed value 
for that item since T’s start (snapshot)

• T must hold write locks on modified items at 
time of commit, to install them.
–In practice, commit-duration write locks may be 

set when writes execute. 
–These simplify detection of conflicting 

modifications when T tries to write the item, 
instead of waiting till T tries to commit.
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Benefits of SI

• Reading is never blocked, and reads don’t 
block writes

• Avoids common anomalies
–No dirty read
–No lost update
–No inconsistent read
–Set-based selects are repeatable (no 

phantoms)
• Matches common understanding of 

isolation: concurrent transactions are not 
aware of one another’s changes
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Is every execution serializable?

• For any set of txns, if they all run with Two 
Phase Locking, then every interleaved 
execution is serializable

• For some sets of txns, if they all run with SI, 
then every execution is serializable

– Eg the txns making up TPC-C
• For some sets of txns, if they all run with SI, 

there can be non-serializable executions
– Undeclared integrity constraints can be violated
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Example

• Table Duties(Staff, Date, Status)
• Undeclared constraint: for every Date, there is 

at least 1 Staff with Status=‘Y’
• Transaction TakeBreak(S, D) running at SI

SELECT COUNT(*) INTO :tmp FROM Duties
WHERE Date=:D AND Status=‘Y’;
IF tmp < 2 ROLLBACK;
UPDATE Duties

SET Status = ‘N’
WHERE Staff =:S AND Date =:D;

COMMIT;
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Example (continued)

• Possible execution, starting when two 
staff (S101, S103) are on duty for 
2004-06-01

• Concurrently perform
TA: TakeBreak(S101, 2004-06-01)
TB: TakeBreak(S103, 2004-06-01)

– Each succeeds, as each sees snapshot 
with 2 on duty

– No problem committing, as they 
update different rows!

• End with no staff on duty for that 
date!

• RA(r1) RA(r3) RB(r1) RB(r3) 
WA(r1) CA WB(r3) CB
– Non-serializable execution

S101 2004-06-01 ‘Y’

S102 2004-06-01 ‘N’

S103 2004-06-01 ‘Y’

etc etc etc
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Write Skew

• SI breaks serializability when txns modify 
different items in each other’s read sets
–Neither txn sees the other, but in a serial execution 

one would come later and so see the other’s 
impact

–This is fairly rare in practice
• Eg the TPC-C benchmark always runs 

correctly under SI
– whenever its txns conflict (eg read/write same data), there is 

also a ww-conflict: a shared item they both modify (like a 
total quantity) so SI will abort one of them
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Interaction effects

• You can’t think about one program, and say “this 
program can use SI”

• The problems have to do with the set of 
application programs, not with each one by itself

• Example where T1, T2, T3 can all be run under 
SI, but when T4 is present, we need to fix things 
in T1

• Non-serializable execution can involve read-only 
transactions, not just updaters
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Multiversion Serializability Theory

• WW-conflict from T1 to T2
– T1 writes a version of x, T2 writes a later version of x

» In our case, succession (version order) defined by 
commit times of writer txns

• WR-conflict from T1 to T2
– T1 writes a version of x, T2 reads this version of x (or 

a later version of x)
• RW-conflict from T1 to T2 

» Adya et al ICDE’00 called  this “antidependency”

– T1 reads a version of x, T2 writes a later version of x
• Serializability tested by acyclic conflict graph

From Y. Raz in RIDE’93
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Interference Theory

• We produce the “static dependency graph”
– Node for each application program
– Draw directed edges each of which can be either

» Non-vulnerable interference edge, or
» Vulnerable interference edge

• Based on looking at program code, to see what 
sorts of conflict situations can arise

• More complicated with programs whose 
accesses are controlled by parameters 

• A close superset of SDG can be calculated 
automatically in some cases 

From Fekete et al, TODS 2005
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Edges in the SDG
• Non-vulnerable interference 

edge from T1 to T2
• Conflict, but it can’t arise 

transactions can run 
concurrently

– Eg “ww” conflict
» Concurrent execution 

prevented by FCW
– Or “wr” conflict

» conflict won’t happen in 
concurrent execution 
due to reading old 
version

• Eg
– T1 = R1(x) R1(y) W1(x)
– T2 = R2(x) R2(y) W2(x) 

W2(y)

• Vulnerable interference edge 
from T1 to T2

• Conflict can occur when 
transactions run concurrently

– Eg “rw without ww”: rset(T1) 
intersects wset(T2), and 
wset(T1) disjoint from 
wset(T2)

• Eg 
– T1 = R1(x) R1(y) W1(x)
– T2 = R2(x) R2(y) W2(y)

• Shown as dashed edge on 
diagram
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Paired edges

• In SDG, an edge from X to Y implies an 
edge from Y to X

• But the type of edge is not necessarily 
the same
–Both vulnerable, or
–Both non-vulnerable, or
–One vulnerable and one non-vulnerable
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Dangerous Structures

• A dangerous structure is two edges linking 
three application programs, A, B, C such that

– There are successive vulnerable edges (A,B) and (B,C)
– (A, B, C) can be completed to a cycle in SDG

» Call B a pivot 
– Special case: pair A, B with vulnerable edges in both directions

A B C

Path through zero or more edges

from C to A

Pivot Dangerous structure
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The main result

• Theorem: If the SDG does not contain a 
dangerous cycle, then every execution 
is serializable (with all transactions 
using SI for concurrency control)
–Applies to TPC-C benchmark suite Michael Cahill, Alan Fekete,  Uwe Röhm

Serializable Isolation for Snapshot 
Databases
[Sigmod’08 “Best paper”, 
then ACM TODS 2009]

University of Sydney
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Serializable SI
• If we can alter the DBMS, we could provide 

a new algorithm for serializable isolation
–Online, dynamic
–Modifications to standard Snapshot Isolation

» Keep versions, read from snapshot, FCW (like SI)
–Detect read-write conflicts at runtime
–Abort transactions with consecutive rw-edges

» Much less often than traditional optimistic CC
» Don’t do full cycle detection
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Challenges
• During runtime, rw-pairs can interleave 

arbitrarily
• Have to consider begin and commit 

timestamps:
–which snapshot is a transaction reading?
–can conflict with committed transactions

• Want to use existing engines as much as 
possible

• Low runtime overhead
• But minimize unnecessary aborts
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SI anomalies: a simple case

pivot commits last
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Algorithm in a nutshell

• Add two flags to each transaction (in & out)
• Set T0.out if rw-conflict T0  T1
• Set T0.in if rw-conflict TN  T0
• Abort T0 (the pivot) if both T0.in and T0.out 

are set
–If T0 has already committed, abort the 

conflicting transaction
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Detection: write before read

read old y
T1.in = true
T0.out = true
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Detection: read before write

lock x, SIREAD

write lock x
TN.out = true 
T0.in = true

How can 

detect this?

How can 
we

detect this?

SIREAD mode lock doesn’t block anything

Just for record keeping

Kept even after transaction commits
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Main Disadvantage: False positives

no cycle

unnecessary
abort
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Prototype in Oracle InnoDB

• Implemented in Oracle InnoDB plugin 1.0.1
» Most popular transactional backend for MySQL
» Already includes multiversion concurrency control

–Serializable SI, including phantom detection
(uses InnoDBs next-key locking)

» Also (for comparison) True Snapshot Isolation with first-
committer-wins
(InnoDB’s “repeatable read” isolation has non-standard 
semantics)

• Added 230 lines of code to 130K lines in InnoDB
» Most changes related to transaction lifecycle 

management

Not in SIGMOD’08; added work for TODS’09
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Experimental scenarios

• sibench – synthetic microbenchmark
–conflict between sequential scan and updating a row

– table size determines write-write conflict probability 
and CPU time required for scan

• TPC-C++ - modified TPC-C to introduce an SI 
anomaly
–added a “credit check” transaction type to the mix

–measured throughput under a variety of conditions
» most not sensitive to choice of isolation level, but we found 

a mix favoring “stock level” transactions that demonstrates 
the tradeoff
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sibench: 10 reads per write

60
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sibench: 100 reads per write

61
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TPC-C++: 10 warehouses

62
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TPC-C++: special “stock level” mix

63

But SI is NOT serializable!
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Serializable SI: Lessons
• New algorithm for serializable isolation

– Online, dynamic, and general solution
– Modification to standard Snapshot Isolation
– Keeps the features that make SI attractive:

Readers don’t block writers, much better scalability than 
S2PL

• In most cases, performance is comparable with SI
• Never worse than locking serializable isolation
• Feasible to add to an RDBMS using Snapshot Isolation (such 

as Oracle) with modest changes
– PostgreSQL release 9.1 did this – Isolation Level 

Serializable now executes serializably! See “Serializable
Snapshot Isolation in PostgreSQL” by D. Ports and K. 
Grittner, PVLDB 5(12):1850-1861 (2012)
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Were these good papers?

• What were the authors’ goals?
• What about the evaluation / metrics?
• Did they convince you that this was a 

good system /approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the 

“Test of Time” challenge?
• How would you review this paper 

today?
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Further Reading
• Big picture: “Principles of Transaction 

Processing” by P. Bernstein and E. 
Newcomer

• Theory: “Transactional Information Systems” 
by G. Weikum and G. Vossen

• The gory details: “Transaction Processing” by 
J. Gray and A. Reuter

– Also, “Architecture of a Database System” by J. 
Hellerstein, M. Stonebraker, and J. Hamilton, 


