
EECS 262a
Advanced Topics in Computer Systems

Lecture 9

Transactions and Isolation Levels
February 22nd, 2016

John Kubiatowicz
Based on slides by Alan Fekete, Uwe Roehm and

Michael Cahill (University of Sydney),
updated by John Kubiatocwicz and Anthony D. Joseph

Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

2/22/2016 2cs262a-S16 Lecture-09

Today’s Papers
• Granularity of Locks and Degrees of Consistency in a

Shared Database (2-up version)
J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger. Appears In
IFIP Working Conference on Modeling of Data Base
Management Systems. 1975

• Serializable Isolation for Snapshot Databases
Michael J. Cahill, Uwe Röhm, Alan D. Fekete. Appears in
ACM SIGMOD’08, June 9–12, 2008

• Thoughts?

2/22/2016 3cs262a-S16 Lecture-09

Overview

• Transactions
–ACID properties
–Isolation Examples and counter-examples

• Classic Implementation Techniques
• Weak isolation issues

2/22/2016 4cs262a-S16 Lecture-09

Definition
• A transaction is a collection of one or more

operations on one or more databases, which
reflects a single real-world transition

– In the real world, this happened (completely) or it
didn’t happen at all (Atomicity)

– Once it has happened, it isn’t forgotten (Durability)
• Commerce examples

– Transfer money between accounts
– Purchase a group of products

• Student record system
– Register for a class (either waitlist or allocated)

2/22/2016 5cs262a-S16 Lecture-09

Consistency
• Each transaction can be written on the assumption

that all integrity constraints hold in the data, before
the transaction runs

• It must make sure that its changes leave the integrity
constraints still holding

– However, there are allowed to be intermediate states where
the constraints do not hold

• A transaction that does this, is called consistent
• This is an obligation on the programmer

– Usually the organization has a testing/checking and sign-off
mechanism before an application program is allowed to get
installed in the production system

2/22/2016 6cs262a-S16 Lecture-09

Threats to data integrity

• Need for application rollback
• System crash
• Concurrent activity

–Today’s lecture is about this

Provided by the log

2/22/2016 7cs262a-S16 Lecture-09

Concurrency

• When operations of concurrent threads
are interleaved, the effect on shared
state can be unexpected

• Well known issue in operating systems,
thread programming
–see OS textbooks on critical section
–Java use of synchronized keyword

2/22/2016 8cs262a-S16 Lecture-09

Famous anomalies
• Dirty data

– One task T reads data written by T’ while T’ is running,
then T’ aborts (so its data was not appropriate)

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’
– The values observed may not satisfy integrity

constraints
– This was not considered by the programmer, so code

moves into absurd path

2/22/2016 9cs262a-S16 Lecture-09

Serializability
• To make isolation precise, we say that an

execution is serializable when
• There exists some serial (ie batch, no overlap

at all) execution of the same transactions
which has the same final state

– Hopefully, the real execution runs faster than the
serial one!

• NB: different serial txn orders may behave
differently; we ask that some serial order
produces the given state

– Other serial orders may give different final states

2/22/2016 10cs262a-S16 Lecture-09

Serializability Theory
• There is a beautiful mathematical theory, based on formal

languages
– Model an execution as a sequence of operations on data items

» eg r1[x] w1[x] r2[y] r2[x] c1 c2
– Serializability of an execution can be defined by equivalence to

a rearranged sequence (“view serializability”)
– Treat the set of all serializable executions as an object of

interest (called SR)
– Thm: SR is in NP-Hard, i.e. the task of testing whether an

execution is serializable seems unreasonably slow
• Does it matter?

– The goal of practical importance is to design a system that
produces some subset of the collection of serializable
executions

– It’s not clear that we care about testing arbitrary executions that
don’t arise in our system

2/22/2016 11cs262a-S16 Lecture-09

Conflict serializability
• There is a nice sufficient condition (ie a conservative

approximation) called conflict serializable, which can
be efficiently tested

– Draw a precedes graph whose nodes are the transactions
– Edge from Ti to Tj when Ti accesses x, then later Tj

accesses x, and the accesses conflict (not both reads)
– The execution is conflict serializable iff the graph is acyclic

• Thm: if an execution is conflict serializable then it is
serializable

– Pf: the serial order with same final state is any topological
sort of the precedes graph

• Most people and books use the approximation,
usually without mentioning it!

2/22/2016 12cs262a-S16 Lecture-09

ACID
• Atomic

– State shows either all the effects of txn, or none of
them

• Consistent
– Txn moves from a state where integrity holds, to

another where integrity holds
• Isolated

– Effect of txns is the same as txns running one
after another (ie looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in

the database

2/22/2016 13cs262a-S16 Lecture-09

Big Picture

• If programmer writes applications so each txn
is consistent

• And DBMS provides atomic, isolated, durable
execution

– i.e. actual execution has same effect as some
serial execution of those txns that committed (but
not those that aborted)

• Then the final state will satisfy all the integrity
constraints

NB true even though system does not know all integrity constraints!
2/22/2016 14cs262a-S16 Lecture-09

Overview

• Transactions
• Classic Implementation Techniques

–Locking
–Lock Manager
–Granularity of locks

• Weak isolation issues

2/22/2016 15cs262a-S16 Lecture-09

Automatic lock management

• DBMS requests the appropriate lock
whenever the app program submits a
request to read or write a data item

• If lock is available, the access is
performed

• If lock is not available, the whole txn is
blocked until the lock is obtained
–After a conflicting lock has been released

by the other txn that held it

2/22/2016 16cs262a-S16 Lecture-09

Lock modes

• Locks can be for writing (X), reading (S)
–Refinements have extra modes

• Standard conflict rules: two X locks on the
same data item conflict, so do one X and
one S lock on the same data
–However, two S locks do not conflict

• X=exclusive
– S=shared Held/Requested X S

X Block Block
S Block OK

2/22/2016 17cs262a-S16 Lecture-09

Strict two-phase locking
• Locks that a txn obtains are kept until the

txn completes
–Once the txn commits or aborts, then all its

locks are released (as part of the commit or
rollback processing)

• Two phases:
–Locks are being obtained (while txn runs)
–Locks are released (when txn finished)

NB. This is different from
when locks are released in O/S
or threaded code

2/22/2016 18cs262a-S16 Lecture-09

Serializability

• If each transaction does strict two-phase
locking (requesting all appropriate locks),
then executions are serializable

• However, performance does suffer, as txns
can be blocked for considerable periods
–Deadlocks can arise, requiring system-initiated

aborts

2/22/2016 19cs262a-S16 Lecture-09

Proof sketch
• Suppose all txns do strict 2PL
• If Ti has an edge to Tj in the precedes graph

– That is, Ti accesses x before Tj has conflicting access to x
– Ti has lock at time of its access, Tj has lock at time of its

access
– Since locks conflict, Ti must release its lock before Tj’s

access to x
– Ti completes before Tj accesses x
– Ti completes before Tj completes

• So the precedes graph is subset of the (acyclic) total
order of txn commit

• Conclusion: the execution has same final state as the
serial execution where txns are arranged in commit
order

2/22/2016 20cs262a-S16 Lecture-09

Lock manager

• A structure in (volatile memory) in the DBMS
which remembers which txns have set locks on
which data, in which modes

• It does not allow a request to get a new lock if a
conflicting lock is already held by a different txn

• NB: a lock does not actually prevent access to
the data, it only prevents getting a conflicting
lock

– So data protection only comes if the right lock is
requested before every access to the data

2/22/2016 21cs262a-S16 Lecture-09

Lock manager API

• Access mainly based on item’s
unique name
–eg tupleid, or primary key, for records

• Lock(name, txn, mode)
–Block until lock is available

• RemoveTxn(txn)
–Unlock(name, txn)
–LockUpgrade(name, txn, newmode)
–ConditionalLock(name, txn, mode)

» Returns error immediately if unsuccessful

2/22/2016 22cs262a-S16 Lecture-09

Granularity

• What is a data item (on which a lock is
obtained)?

– Most times, in most modern systems: item is one
tuple in a table

– Sometimes (especially in early 1970s): item is a
page (with several tuples)

– Sometimes: item is a whole table

2/22/2016 23cs262a-S16 Lecture-09

Granularity trade-offs

• Larger granularity: fewer locks held, so less
overhead; but less concurrency possible

– “false conflicts” when txns deal with different parts of
the same item

• Smaller “fine” granularity: more locks held, so
more overhead; but more concurrency is
possible

• System usually gets fine grain locks until there
are too many of them; then it replaces them with
larger granularity locks

2/22/2016 24cs262a-S16 Lecture-09

Multigranular locking

• Care needed to manage conflicts
properly among items of varying
granularity
–Note: conflicts only detectable among

locks on a given itemname
• System gets “intention” mode locks on

larger granules before getting actual
S/X locks on smaller granules
–Conflict rules arranged so that activities

that do not commute must get conflicting
locks on some item

2/22/2016 25cs262a-S16 Lecture-09

Lock Mode Conflicts
Held\Request IS IX S SIX X
IS Yes Yes Yes Yes Block
IX Yes Yes Block Block Block
S Yes Block Yes Block Block
SIX Yes Block Block Block Block
X Block Block Block Block Block

Other modes also used for special purposes,
like select-for-later-update,
gaplocks for phantom prevention

Lock manager may allow higher level
to introduce its own conflict table

2/22/2016 26cs262a-S16 Lecture-09

Lock manager internals

• Hash table, keyed by hash of item name
–Each item has a mode and holder (set)
–Wait queue of requests
–All requests and locks in linked list from

transaction information
–Transaction table

» To allow thread rescheduling when blocking is
finished

–Deadlock detection
» Either cycle in waits-for graph, or just timeouts

2/22/2016 27cs262a-S16 Lecture-09

Explicit lock management

• With most DBMS, the application
program can include statements to set or
release locks on a table
–Details vary

• e.g. LOCK TABLE InStore IN
EXCLUSIVE MODE

2/22/2016 28cs262a-S16 Lecture-09

Overview

• Transactions
• Classic Implementation Techniques
• Weak isolation issues

–Especially Snapshot Isolation

2/22/2016 29cs262a-S16 Lecture-09

Problems with serializability

• The performance reduction from isolation is high
– Transactions are often blocked because they want to

read data that another txn has changed
• For many applications, the accuracy of the data

they read is not crucial
– e.g. overbooking a plane is ok in practice
– e.g. your banking decisions would not be very

different if you saw yesterday’s balance instead of
the most up-to-date

2/22/2016 30cs262a-S16 Lecture-09

A and D matter!

• Even when isolation isn’t needed, no
one is willing to give up atomicity and
durability
–These deal with modifications a txn makes
–Writing is less frequent than reading, so

log entries and write locks are considered
worth the effort

2/22/2016 31cs262a-S16 Lecture-09

Explicit isolation levels

• A transaction can be declared to have
isolation properties that are less stringent
than serializability
–However SQL standard says that default

should be serializable (Gray’75 called this
“level 3 isolation”)

–In practice, most systems have weaker default
level, and most txns run at weaker levels!

2/22/2016 32cs262a-S16 Lecture-09

Browse

• SET TRANACTION ISOLATION LEVEL
READ UNCOMMITTED
–Do not set S-locks at all

» Of course, still set X-locks before updating data
» If fact, system forces the txn to be read-only

unless you say otherwise
–Allows txn to read dirty data (from a txn that

will later abort)

2/22/2016 33cs262a-S16 Lecture-09

Read Committed

• SET TRANACTION ISOLATION LEVEL READ
COMMMITTED

– Set S-locks but release them after the read has
happened

» e.g. when cursor moves onto another element during scan of
the results of a multirow query

– i.e. do not hold S-locks till txn commits/aborts
– Data is not dirty, but it can be inconsistent (between

reads of different items, or even between one read and
a later one of the same item)

» Especially, weird things happen between different rows
returned by a cursor

Most common in practice!

Gray’75 called this “degree 2”

2/22/2016 34cs262a-S16 Lecture-09

Repeatable read

• SET TRANACTION ISOLATION LEVEL
REPEATABLE READ

– Set S-locks on data items, and hold them till txn
finished, but release locks on indices as soon as
index has been examined

– Allows “phantoms”, rows that are not seen in a
query that ought to have been (or vice versa)

– Problems if one txn is changing the set of rows
that meet a condition, while another txn is
retrieving that set

2/22/2016 35cs262a-S16 Lecture-09

Snapshot Isolation (SI)

• A multiversion concurrency control
mechanism was described in SIGMOD ’95
by H. Berenson, P. Bernstein, J. Gray, J.
Melton, E. O’Neil, P. O’Neil
–Does not guarantee serializable execution!

• Supplied by Oracle DB for “Isolation Level
Serializable” (also in PostgreSQL before rel 9.1)

• Available in Microsoft SQL Server 2005 as
“Isolation Level Snapshot”, and in
PostgreSQL (since rel 9.1) as “Isolation
Level Repeatable Read”

2/22/2016 36cs262a-S16 Lecture-09

Snapshot Isolation (SI)

• Read of an item may not give current value
• Instead, use old versions (kept with

timestamps) to find value that had been most
recently committed at the time the txn started
–Exception: if the txn has modified the item, use the

value it wrote itself
• The transaction sees a “snapshot” of the

database, at an earlier time
– Intuition: this should be consistent, if the database was

consistent before

2/22/2016 37cs262a-S16 Lecture-09

First committer wins (FCW)

• T will not be allowed to commit a
modification to an item if any other
transaction has committed a changed value
for that item since T’s start (snapshot)

• T must hold write locks on modified items at
time of commit, to install them.
–In practice, commit-duration write locks may be

set when writes execute.
–These simplify detection of conflicting

modifications when T tries to write the item,
instead of waiting till T tries to commit.

2/22/2016 38cs262a-S16 Lecture-09

Benefits of SI

• Reading is never blocked, and reads don’t
block writes

• Avoids common anomalies
–No dirty read
–No lost update
–No inconsistent read
–Set-based selects are repeatable (no

phantoms)
• Matches common understanding of

isolation: concurrent transactions are not
aware of one another’s changes

2/22/2016 39cs262a-S16 Lecture-09

Is every execution serializable?

• For any set of txns, if they all run with Two
Phase Locking, then every interleaved
execution is serializable

• For some sets of txns, if they all run with SI,
then every execution is serializable

– Eg the txns making up TPC-C
• For some sets of txns, if they all run with SI,

there can be non-serializable executions
– Undeclared integrity constraints can be violated

2/22/2016 40cs262a-S16 Lecture-09

Example

• Table Duties(Staff, Date, Status)
• Undeclared constraint: for every Date, there is

at least 1 Staff with Status=‘Y’
• Transaction TakeBreak(S, D) running at SI

SELECT COUNT(*) INTO :tmp FROM Duties
WHERE Date=:D AND Status=‘Y’;
IF tmp < 2 ROLLBACK;
UPDATE Duties

SET Status = ‘N’
WHERE Staff =:S AND Date =:D;

COMMIT;

2/22/2016 41cs262a-S16 Lecture-09

Example (continued)

• Possible execution, starting when two
staff (S101, S103) are on duty for
2004-06-01

• Concurrently perform
TA: TakeBreak(S101, 2004-06-01)
TB: TakeBreak(S103, 2004-06-01)

– Each succeeds, as each sees snapshot
with 2 on duty

– No problem committing, as they
update different rows!

• End with no staff on duty for that
date!

• RA(r1) RA(r3) RB(r1) RB(r3)
WA(r1) CA WB(r3) CB
– Non-serializable execution

S101 2004-06-01 ‘Y’

S102 2004-06-01 ‘N’

S103 2004-06-01 ‘Y’

etc etc etc

2/22/2016 42cs262a-S16 Lecture-09

Write Skew

• SI breaks serializability when txns modify
different items in each other’s read sets
–Neither txn sees the other, but in a serial execution

one would come later and so see the other’s
impact

–This is fairly rare in practice
• Eg the TPC-C benchmark always runs

correctly under SI
– whenever its txns conflict (eg read/write same data), there is

also a ww-conflict: a shared item they both modify (like a
total quantity) so SI will abort one of them

2/22/2016 43cs262a-S16 Lecture-09

Interaction effects

• You can’t think about one program, and say “this
program can use SI”

• The problems have to do with the set of
application programs, not with each one by itself

• Example where T1, T2, T3 can all be run under
SI, but when T4 is present, we need to fix things
in T1

• Non-serializable execution can involve read-only
transactions, not just updaters

2/22/2016 44cs262a-S16 Lecture-09

Multiversion Serializability Theory

• WW-conflict from T1 to T2
– T1 writes a version of x, T2 writes a later version of x

» In our case, succession (version order) defined by
commit times of writer txns

• WR-conflict from T1 to T2
– T1 writes a version of x, T2 reads this version of x (or

a later version of x)
• RW-conflict from T1 to T2

» Adya et al ICDE’00 called this “antidependency”

– T1 reads a version of x, T2 writes a later version of x
• Serializability tested by acyclic conflict graph

From Y. Raz in RIDE’93

2/22/2016 45cs262a-S16 Lecture-09

Interference Theory

• We produce the “static dependency graph”
– Node for each application program
– Draw directed edges each of which can be either

» Non-vulnerable interference edge, or
» Vulnerable interference edge

• Based on looking at program code, to see what
sorts of conflict situations can arise

• More complicated with programs whose
accesses are controlled by parameters

• A close superset of SDG can be calculated
automatically in some cases

From Fekete et al, TODS 2005

2/22/2016 46cs262a-S16 Lecture-09

Edges in the SDG
• Non-vulnerable interference

edge from T1 to T2
• Conflict, but it can’t arise

transactions can run
concurrently

– Eg “ww” conflict
» Concurrent execution

prevented by FCW
– Or “wr” conflict

» conflict won’t happen in
concurrent execution
due to reading old
version

• Eg
– T1 = R1(x) R1(y) W1(x)
– T2 = R2(x) R2(y) W2(x)

W2(y)

• Vulnerable interference edge
from T1 to T2

• Conflict can occur when
transactions run concurrently

– Eg “rw without ww”: rset(T1)
intersects wset(T2), and
wset(T1) disjoint from
wset(T2)

• Eg
– T1 = R1(x) R1(y) W1(x)
– T2 = R2(x) R2(y) W2(y)

• Shown as dashed edge on
diagram

2/22/2016 47cs262a-S16 Lecture-09

Paired edges

• In SDG, an edge from X to Y implies an
edge from Y to X

• But the type of edge is not necessarily
the same
–Both vulnerable, or
–Both non-vulnerable, or
–One vulnerable and one non-vulnerable

2/22/2016 48cs262a-S16 Lecture-09

Dangerous Structures

• A dangerous structure is two edges linking
three application programs, A, B, C such that

– There are successive vulnerable edges (A,B) and (B,C)
– (A, B, C) can be completed to a cycle in SDG

» Call B a pivot
– Special case: pair A, B with vulnerable edges in both directions

A B C

Path through zero or more edges

from C to A

Pivot Dangerous structure

2/22/2016 49cs262a-S16 Lecture-09

The main result

• Theorem: If the SDG does not contain a
dangerous cycle, then every execution
is serializable (with all transactions
using SI for concurrency control)
–Applies to TPC-C benchmark suite Michael Cahill, Alan Fekete, Uwe Röhm

Serializable Isolation for Snapshot
Databases
[Sigmod’08 “Best paper”,
then ACM TODS 2009]

University of Sydney

2/22/2016 51cs262a-S16 Lecture-09

Serializable SI
• If we can alter the DBMS, we could provide

a new algorithm for serializable isolation
–Online, dynamic
–Modifications to standard Snapshot Isolation

» Keep versions, read from snapshot, FCW (like SI)
–Detect read-write conflicts at runtime
–Abort transactions with consecutive rw-edges

» Much less often than traditional optimistic CC
» Don’t do full cycle detection

2/22/2016 52cs262a-S16 Lecture-09

Challenges
• During runtime, rw-pairs can interleave

arbitrarily
• Have to consider begin and commit

timestamps:
–which snapshot is a transaction reading?
–can conflict with committed transactions

• Want to use existing engines as much as
possible

• Low runtime overhead
• But minimize unnecessary aborts

2/22/2016 53cs262a-S16 Lecture-09

SI anomalies: a simple case

pivot commits last

2/22/2016 54cs262a-S16 Lecture-09

Algorithm in a nutshell

• Add two flags to each transaction (in & out)
• Set T0.out if rw-conflict T0  T1
• Set T0.in if rw-conflict TN  T0
• Abort T0 (the pivot) if both T0.in and T0.out

are set
–If T0 has already committed, abort the

conflicting transaction

2/22/2016 55cs262a-S16 Lecture-09

Detection: write before read

read old y
T1.in = true
T0.out = true

2/22/2016 56cs262a-S16 Lecture-09

Detection: read before write

lock x, SIREAD

write lock x
TN.out = true
T0.in = true

How can

detect this?

How can
we

detect this?

SIREAD mode lock doesn’t block anything

Just for record keeping

Kept even after transaction commits

2/22/2016 57cs262a-S16 Lecture-09

Main Disadvantage: False positives

no cycle

unnecessary
abort

2/22/2016 58cs262a-S16 Lecture-09

Prototype in Oracle InnoDB

• Implemented in Oracle InnoDB plugin 1.0.1
» Most popular transactional backend for MySQL
» Already includes multiversion concurrency control

–Serializable SI, including phantom detection
(uses InnoDBs next-key locking)

» Also (for comparison) True Snapshot Isolation with first-
committer-wins
(InnoDB’s “repeatable read” isolation has non-standard
semantics)

• Added 230 lines of code to 130K lines in InnoDB
» Most changes related to transaction lifecycle

management

Not in SIGMOD’08; added work for TODS’09

2/22/2016 59cs262a-S16 Lecture-09

Experimental scenarios

• sibench – synthetic microbenchmark
–conflict between sequential scan and updating a row

– table size determines write-write conflict probability
and CPU time required for scan

• TPC-C++ - modified TPC-C to introduce an SI
anomaly
–added a “credit check” transaction type to the mix

–measured throughput under a variety of conditions
» most not sensitive to choice of isolation level, but we found

a mix favoring “stock level” transactions that demonstrates
the tradeoff

2/22/2016 60cs262a-S16 Lecture-09

sibench: 10 reads per write

60

2/22/2016 61cs262a-S16 Lecture-09

sibench: 100 reads per write

61

2/22/2016 62cs262a-S16 Lecture-09

TPC-C++: 10 warehouses

62

2/22/2016 63cs262a-S16 Lecture-09

TPC-C++: special “stock level” mix

63

But SI is NOT serializable!

2/22/2016 64cs262a-S16 Lecture-09

Serializable SI: Lessons
• New algorithm for serializable isolation

– Online, dynamic, and general solution
– Modification to standard Snapshot Isolation
– Keeps the features that make SI attractive:

Readers don’t block writers, much better scalability than
S2PL

• In most cases, performance is comparable with SI
• Never worse than locking serializable isolation
• Feasible to add to an RDBMS using Snapshot Isolation (such

as Oracle) with modest changes
– PostgreSQL release 9.1 did this – Isolation Level

Serializable now executes serializably! See “Serializable
Snapshot Isolation in PostgreSQL” by D. Ports and K.
Grittner, PVLDB 5(12):1850-1861 (2012)

2/22/2016 65cs262a-S16 Lecture-09

Were these good papers?

• What were the authors’ goals?
• What about the evaluation / metrics?
• Did they convince you that this was a

good system /approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the

“Test of Time” challenge?
• How would you review this paper

today?

2/22/2016 66cs262a-S16 Lecture-09

Further Reading
• Big picture: “Principles of Transaction

Processing” by P. Bernstein and E.
Newcomer

• Theory: “Transactional Information Systems”
by G. Weikum and G. Vossen

• The gory details: “Transaction Processing” by
J. Gray and A. Reuter

– Also, “Architecture of a Database System” by J.
Hellerstein, M. Stonebraker, and J. Hamilton,

