
EECS 262a
Advanced Topics in Computer Systems

Lecture 8

Transactional Flash & Rethink the Sync
September 29th, 2014

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

9/29/2014 2cs262a-S14 Lecture-08

Today’s Papers
• Transactional Flash

Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou.
Appears in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (OSDI 2008).

• Rethink the Sync
Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and
Jason Flinn. Appears in Proceedings of the 7th USENIX Conference on
Operating Systems Design and Implementation (OSDI 2006).

• Thoughts?

9/29/2014 3cs262a-S14 Lecture-08

FLASH Memory

• Like a normal transistor but:
– Has a floating gate that can hold charge
– To write: raise or lower wordline high enough to cause charges to tunnel
– To read: turn on wordline as if normal transistor

» presence of charge changes threshold and thus measured current
• Two varieties:

– NAND: denser, must be read and written in blocks
– NOR: much less dense, fast to read and write

Samsung 2007:
16GB, NAND Flash

9/29/2014 4cs262a-S14 Lecture-08

Flash Memory (Con’t)

• Data read and written in page-sized chunks (e.g. 4K)
– Cannot be addressed at byte level
– Random access at block level for reads (no locality advantage)
– Writing of new blocks handled in order (kinda like a log)

• Before writing, must be erased (256K block at a time)
– Requires free-list management
– CANNOT write over existing block (Copy-on-Write is normal case)

9/29/2014 5cs262a-S14 Lecture-08

Flash Details
• Program/Erase (PE) Wear

– Permanent damage to gate oxide at each flash cell
– Caused by high program/erase voltages
– Issues: trapped charges, premature leakage of charge
– Need to balance how frequently cells written: “Wear Leveling”

• Flash Translation Layer (FTL)
– Translates between Logical Block Addresses (at OS level) and

Physical Flash Page Addresses
– Manages the wear and erasure state of blocks and pages
– Tracks which blocks are garbage but not erased

• Management Process (Firmware)
– Keep freelist full, Manage mapping, Track wear state of pages
– Copy good pages out of basically empty blocks before erasure

• Meta-Data per page:
– ECC for data
– Wear State
– Other Stuff!: Capitalized on by this paper!

9/29/2014 6cs262a-S14 Lecture-08

Phase Change memory (IBM, Samsung, Intel)

• Phase Change Memory (called PRAM or PCM)
– Chalcogenide material can change from amorphous to crystalline

state with application of heat
– Two states have very different resistive properties
– Similar to material used in CD-RW process

• Exciting alternative to FLASH
– Higher speed
– May be easy to integrate with CMOS processes

9/29/2014 7cs262a-S14 Lecture-08

Goals of paper
• Provide a hardware Transactional model:

– WriteAtomic(p1,p2,p3,…, pn)
– Interfering Reads not tracked
– Transactions can be aborted before commited

• Provides:
– Atomicity (All or nothing)
– Isolation (Different transactions do not interfere)
– Durability (After commit, data will survive crashes

• Target: file systems/databases
– Provides a native implementation for durable log
– However – provides its semantics without using a log (using linked

metadata as the “log”)

• Properties of Flash that is good for TxFlash:
– Copy on Write is natural
– Fast random reads (fragmentation of “log-based” system not a problem)
– High Concurrency (lots of bandwidth could be exploited)

9/29/2014 8cs262a-S14 Lecture-08

Peek into Architecture:
• Addition of new

functionality to firmware
– Commit, Garbage Collection,

Recovery Logic

• Needs about 25% more
memory for transaction
tracking

• Needs different interface
than native Disk interface

– WriteAtomic, Abort

9/29/2014 9cs262a-S14 Lecture-08

Simple Cyclic Commit (SCC)
• Every flash page has:

– Page # (logical page)
– Version # (monotonically increasing)
– Pointer (called next) to another flash page

(Page #,Version#)
– Notation: Pj is jth version of page P

• Two key sets:
– Let S be set of existing records
– Let R be set of records pointed at by other

records (may not exist)
• Cycle Property:

– For any intention record r S, r is
committed  r.next is committed

– If there is a complete cycle, then everyone
in cycle is committed

• SCC Invariant:
– If PjS, any intention record Pi  SR with

i<j must be committed
– Consequence: must erase failed commits

before committing new versions of page
9/29/2014 10cs262a-S14 Lecture-08

Back Pointer Cyclic Commit (BPCC)
• Introduce new piece of

metadata: backpointer
– Points to most recent committed

version of same page
– Allows clear identification of failed

commits by noticing intervening
blocks which must be uncommitted

• Complexity is all about
garbage collection now

• Straddler
– For any record Pj: existence of Pk

with Pk.back = Pi and i < j < k means
that Pk straddles Pj

– Means Pj is not committed!
• BPCC Invariant:

– For a highest version intention
record Ph S, Let Ql = Ph.next. If
there exists a Qk  S with k > l and
there exists no straddler for Ql, then
Ph is committed

9/29/2014 11cs262a-S14 Lecture-08

Evaluation?
• Model Checking of SCC and BPCC protocols

– Published elsewhere

• Collect Traces from version of Ext3 (TxExt3) running
on linux with applications

– This got them most of the way, but Ext3 doesn’t really abort much

• Synthetic Workload generator to generate a variety
of transactions

• Flash Simulator
– SSD simulator from previous work described elsewhere

» Would have to look it up to know full accuracy
» Give them benefit of doubt

– 32GB TxFlash device with 8 fully-connected 4GB flash packages
– Parameters from Samsung data sheet

9/29/2014 12cs262a-S14 Lecture-08

Savings from avoidance of commit

• Log and data combined together
• By avoiding last commit record, have one less write

9/29/2014 13cs262a-S14 Lecture-08

General throughput results

9/29/2014 14cs262a-S14 Lecture-08

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

9/29/2014 15cs262a-S14 Lecture-08

Break

9/29/2014 16cs262a-S14 Lecture-08

Facebook Reprise:
How to Store Every Photo Forever?

• 82% of Facebook traffic goes to 8% of photos
– Sequential writes, but random reads
– Shingled Magnetic Recording (SMR) HDD with spin-down

capability is most suitable and cost-effective technology for
cold storage

• New Facebook datacenter in Prineville, OR
– 3 data halls, each with 744 Open Racks
– 1Open Vault storage unit holds 30 3.5” 4TB SMR SATA disks
– 1Open Rack holds 16 OV storage units (16 x 30 drives = 480

drives)
– 1 disk rack row has 24 Open Racks (24 x 480 drives = 11,520

drives)
– 1 data hall has 30 disk rack rows (30 x 11,520 drives =

345,600 drives)
– Using 4TB SMR drives (4TB x 345,600 drives) = 1,382,400TB
– 3 data halls = 4.15 ExaBytes of raw capacity!!

http://www.opencompute.org/wp/wp-content/uploads/2013/01/Open_Compute_Project_Cold_Storage_Specification_v0.

9/29/2014 17cs262a-S14 Lecture-08

Rethink the Sync: Premise
(Slides borrowed from Nightingale)

• Asynchronous I/O is a poor abstraction for:
– Reliability
– Ordering
– Durability
– Ease of programming

• Synchronous I/O is superior but 100x slower
– Caller blocked until operation is complete

• New model for synchronous I/O: External Synchrony
– Synchronous I/O can be fast!
– Same guarantees as synchronous I/O
– Only 8% slower than asynchronous I/O

9/29/2014 18cs262a-S14 Lecture-08

When a sync() is really async
• On sync() data written only to volatile cache

– 10x performance penalty and data NOT safe

Volatile
CacheOperating

System Cylinders

Disk

 100x slower than asynchronous I/O if disable cache

9/29/2014 19cs262a-S14 Lecture-08

To whom are guarantees provided?
• Synchronous I/O definition:

– Caller blocked until operation completes

Disk Screen

App App

 Guarantee provided to application

App

Network

OS Kernel

9/29/2014 20cs262a-S14 Lecture-08

To whom are guarantees provided?

• Guarantee really provided to the user

OS Kernel

Disk Screen

App App App

Network

9/29/2014 21cs262a-S14 Lecture-08

Providing the user a guarantee

• User observes operation has completed
– User may examine screen, network, disk…

• Guarantee provided by synchronous I/O
– Data durable when operation observed to complete

• To observe output it must be externally visible
– Visible on external device

9/29/2014 22cs262a-S14 Lecture-08

Network

Why do applications block?

• Since application external we block on syscall

Internal

External

External

OS Kernel

Disk Screen

App App

 Application is internal: no need to block!

App

9/29/2014 23cs262a-S14 Lecture-08

A new model of synchronous I/O

• Provide guarantee directly to user
– Rather than via application

• Called externally synchronous I/O
– Indistinguishable from traditional sync I/O
– Approaches speed of asynchronous I/O

9/29/2014 24cs262a-S14 Lecture-08

Example: Synchronous I/O

OS Kernel DiskProcess

101 write(buf_1);

102 write(buf_2);

103 print(“work done”);

104 foo();

Application blocks

Application blocks

%work done
%

TEXT

%

9/29/2014 25cs262a-S14 Lecture-08

Observing synchronous I/O

101 write(buf_1);

102 write(buf_2);

103 print(“work done”);

104 foo();

• Sync I/O externalizes output based on causal ordering
– Enforces causal ordering by blocking an application

• Ext sync: Same causal ordering without blocking
applications

Depends on 1st write

Depends on 1st & 2nd

write

9/29/2014 26cs262a-S14 Lecture-08

Example: External synchrony

OS Kernel DiskProcess

101 write(buf_1);

102 write(buf_2);

103 print(“work done”);

104 foo();

TEXT

%work done
%
%

9/29/2014 27cs262a-S14 Lecture-08

Tracking causal dependencies
• Applications may communicate via IPC

– Socket, pipe, fifo etc.

• Need to propagate dependencies through IPC
• Authors build upon Speculator [SOSP ’05]

– Track and propagate causal dependencies
– Buffer output to screen and network
– Targeted at improving performance when network is involved

» (Such as for a Network File System)
– Return immediately with speculative result

» Checkpoint processes, restore checkpoint if real result doesn’t
match speculated result

• Pieces of Speculator useful here:
– Tracking of dependencies to make sure that we maintain property of

External Synchrony

• I’ve put up the SOSP 2005 paper as an optional reading

9/29/2014 28cs262a-S14 Lecture-08

Tracking causal dependencies

DiskProcess 1

101 write(file1);

102 do_something();

%hello
%
%

101 print (“hello”);

102 read(file1);

103 print(“world”);

Process 1 Process 2

Process 2

Commit
Dep 1

Process 1

OS Kernel

Process 2TEXTTEXT world

9/29/2014 29cs262a-S14 Lecture-08

Output triggered commits

OS Kernel DiskProcess

%work done
%

TEXT

%

• Maximize throughput until output buffered
• When output buffered, trigger commit

– Minimize latency only when important

9/29/2014 30cs262a-S14 Lecture-08

Evaluation
• Implemented ext sync file system Xsyncfs

– Based on the ext3 file system
– Use journaling to preserve order of writes
– Use write barriers to flush volatile cache

• Compare Xsyncfs to 3 other file systems
– Default asynchronous ext3
– Default synchronous ext3
– Synchronous ext3 with write barriers

9/29/2014 31cs262a-S14 Lecture-08

When is data safe?

File System
Configuration

Data durable
on write()

Data durable
on fsync()

Asynchronous No Not on
power failure

Synchronous Not on
power failure

Not on
power failure

Synchronous
w/ write barriers Yes Yes

External synchrony Yes Yes

9/29/2014 32cs262a-S14 Lecture-08

Postmark benchmark

 Xsyncfs within 7% of ext3 mounted
asynchronously

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

ext3-async
xsyncfs
ext3-sync
ext3-barrier

9/29/2014 33cs262a-S14 Lecture-08

The MySQL benchmark

 Xsyncfs can group commit from a single client

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 5 10 15 20
Number of db clients

N
ew

 O
rd

er
 T

ra
ns

ac
tio

ns
 P

er
 M

in
ut

e

xsyncfs
ext3-barrier

9/29/2014 34cs262a-S14 Lecture-08

Specweb99 throughput

 Xsyncfs within 8% of ext3 mounted
asynchronously

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (K

b/
s)

ext3-async
xsyncfs
ext3-sync
ext3-barrier

9/29/2014 35cs262a-S14 Lecture-08

Specweb99 latency

Request size ext3-async xsyncfs

0-1 KB 0.064 seconds 0.097 seconds

1-10 KB 0.150 second 0.180 seconds

10-100 KB 1.084 seconds 1.094 seconds

100-1000 KB 10.253 seconds 10.072 seconds

 Xsyncfs adds no more than 33 ms of delay

9/29/2014 36cs262a-S14 Lecture-08

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

