EECS 262a
Advanced Topics in Computer Systems
Lecture 8

Transactional Flash & Rethink the Sync
September 29t 2014

John Kubiatowicz
Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

Today’s Papers

e Transactional Flash
Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou.
Appears in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (OSDI 2008).

» Rethink the Sync
Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and

Jason Flinn. Appears in Proceedings of the 7th USENIX Conference on
Operating Systems Design and Implementation (OSDI 2006).

* Thoughts?

9/29/2014 €s262a-S14 Lecture-08

FLASH Memory

Individual ETOX™
Flash Memory Cell

Wordline

ONO

Conlrol Gate Eitie
Tunnel Oxide ——

Source Drain
n+ n+

l“ P - Substrate

« Like a normal transistor but: Samsung 2007:
— Has a floating gate that can hold charge 16 GB, NAND Flash

— To write: raise or lower wordline high enough to cause charges to tunnel
— To read: turn on wordline as if normal transistor
» presence of charge changes threshold and thus measured current
e Two varieties:
— NAND: denser, must be read and written in blocks
— NOR: much less dense, fast to read and write

9/29/2014 cs262a-S14 Lecture-08

Flash Memory (Con't)

E-EEE
[| [|[aws]| 4|E4|E%IE %IL%IE

el HCAEAG HGHT
A 0| K10 3 [A R

Typical NAND Flash Pages and Blocks

GGG G

» Dataread and written in page-sized chunks (e.g. 4K)
— Cannot be addressed at byte level
— Random access at block level for reads (no locality advantage)
— Writing of new blocks handled in order (kinda like a log)

» Before writing, must be erased (256K block at a time)
— Requires free-list management
— CANNOT write over existing block (Copy-on-Write is normal case)

9/29/2014 €s262a-S14 Lecture-08

Flash Details

Program/Erase (PE) Wear

— Permanent damage to gate oxide at each flash cell
Caused by high program/erase voltages

— Issues: trapped charges, premature leakage of charge

— Need to balance how frequently cells written: “Wear Leveling”
Flash Translation Layer (FTL)

— Translates between Logical Block Addresses (at OS level) and
Physical Flash Page Addresses

— Manages the wear and erasure state of blocks and pages

— Tracks which blocks are garbage but not erased
« Management Process (Firmware)

— Keep freelist full, Manage mapping, Track wear state of pages

— Copy good pages out of basically empty blocks before erasure
* Meta-Data per page:

— ECC for data

— Wear State

— Other Stuffl: Capitalized on by this paper!

9/29/2014 cs262a-S14 Lecture-08

Phase Change memory (IBM, Samsung, InteI)

‘wordlline

-

-
§ | RESET
g]
£
e Tonot
SET
Teryst
L -
time [ns]

Phase Change Memory (called PRAM or PCM)

— Chalcogenide material can change from amorphous to crystalline
state with application of heat

— Two states have very different resistive properties

— Similar to material used in CD-RW process
Exciting alternative to FLASH

— Higher speed

— May be easy to integrate with CMOS processes

9/29/2014 €s262a-S14 Lecture-08

Goals of paper

Provide a hardware Transactional model:
— WriteAtomic(p1,p2,p3,..., p,)
— Interfering Reads not tracked
— Transactions can be aborted before commited

Provides:
— Atomicity (All or nothing)
— Isolation (Different transactions do not interfere)
— Durability (After commit, data will survive crashes

Target: file systems/databases
— Provides a native implementation for durable log
— However — provides its semantics without using a log (using linked
metadata as the “log”)
* Properties of Flash that is good for TxFlash:
— Copy on Write is natural
— Fast random reads (fragmentation of “log-based” system not a problem)

High Concurrency (lots of bandW|dth could be exploited)
9/29/2014 262a-S14 Lecture-08

Peek into Architecture:

* Addition of new 7T
H H H { File and
functionality to firmware (Database]
— Commit, Garbage Collection, \Systems/
Recovery Logic N g#
Needs about 25% more WriteAtomic, Abort | Read, Write
memory for transaction X
tracking
» Needs different interface | " et BiRER
. . . N mi N Gal " /Isolation™,
than native Disk interface |("ac X Coae)T Colecior) Laver)
— WriteAtomic, Abort TxFIash Controller
Flash Packages

9/29/2014 €s262a-S14 Lecture-08

Simple Cyclic Commit (SCC) Back Pointer Cyclic Commit (BPCC)
* Every flash page has: page . page « Introduce new piece of page
— Page # (logical page) w e ol & B o metadata: backpointer
— Version # (monotonically increasing) — Points to most recent committed
— Pointer (called next) to another flash page g 7 version of same page g % %@
(Page #,Version#) e 8—* \ @—% @ — Allows clear identification of failed L ; i
- Notation: P; is j*" version of page P 2 | ~J commits by noticing intervening ' i !
e C blocks which must be uncommitted “ ' i !
* Two key sets: 22 » Complexity is all about é 2 | ':‘* 8:“‘“
— Let S be set of existing records g | . 5 ' i i E
— Let R be set of records pointed at by other garbage collection now g 3 | !)
records (may not exist) Case (3) Case @) « Straddler 2l \% :
» Cycle Property: O70) communsveon 77,/ Sammned snd garage — For any record P: existence of P, s A
— For any intention record re S, r is () uncomminied version Mesting version mgspp sbt?glédlez gnd I<j<kmeans E
committed & r.next is committed —s Nexink S5 Transaction avort M k b i itted! 4: *@- E]
— If there is a complete cycle, then everyone — MVeans I |s_not commltte ’
in cycle is committed * BPCC Invariant: :
* SCC Invariant: — For a highest version intention Canenitod vilon /f_/// e
— If P,eS, any intention record P, € SUR with {ﬁg%%zgfssa SiteQ'S Wltrhnlf);tl gnd () Unoommtdvimon s L Mt sk
i<j must be committed there exists no straddler for Q, then T e it
— Consequence: must erase failed commits P, is committed
before committing new versions of page
9/29/2014 cs262a-S14 Lecture-08 9 9/29/2014 cs262a-S14 Lecture-08
Evaluation? Savings from avoidance of commit
« Model Checking of SCC and BPCC protocols 000 . ' ' "BPCC ——
3000 —
— Published elsewhere o 2500 \
. . K %
» Collect Traces from version of Ext3 (TXxExt3) running g o0l N
on linux with applications 8 1500 u\g
— This got them most of the way, but Ext3 doesn’t really abort much E— 1000 \&E_
» Synthetic Workload generator to generate a variety 500 emee—
f transactions 0 ' : : ;
0] 500 1000 1500 2000
* Flash Simulator Transaction size (KB)
— SSD simulator from pre\{lous work described elsewhere o Log and data combined together
» Would have to look it up to know full accuracy Lo . .
» Give them benefit of doubt » By avoiding last commit record, have one less write
— 32GB TxFlash device with 8 fully-connected 4GB flash packages
— Parameters from Samsung data sheet
9/29/2014 cs262a-S14 Lecture-08 11 9/29/2014 cs262a-S14 Lecture-08

General throughput results

= BPCC mmmmm
|
3 24 KB
| =4 F
E 15 77 KB
- 2050 KB 2B45 KB
» |
c
=
g

05
8
=

]
10zone Linux-build Maildir TPC-B

Figure 7: Performance Improvement in Cyclic Commit. Trans-
action throughput in BPCC, normalized with respect to the throughput
in TC. The throughput of 10zone, Linux-build, Maildir, and TPC-B in
TC are 31.56, 37.96, 584.89, and 1075.27 transactions/s. The average
transaction size is reported on top of each bar.

9/29/2014 €s262a-S14 Lecture-08

13

Is this a good paper?

* What were the authors’ goals?
» What about the evaluation/metrics?

» Did they convince you that this was a good
system/approach?

* Were there any red-flags?
» What mistakes did they make?

» Does the system/approach meet the “Test of Time”
challenge?

» How would you review this paper today?

9/29/2014 €s262a-S14 Lecture-08 14

Break

9/29/2014 cs262a-S14 Lecture-08

15

Facebook Reprise:
How to Store Every Photo Forever?

* 82% of Facebook traffic goes to 8% of photos
— Sequential writes, but random reads
— Shingled Magnetic Recording (SMR) HDD with spin-down
capability is most suitable and cost-effective technology for
cold storage
* New Facebook datacenter in Prineville, OR
— 3 data halls, each with 744 Open Racks
— 10pen Vault storage unit holds 30 3.5” 4TB SMR SATA disks

— 10pen Rack holds 16 OV storage units (16 x 30 drives =480
drives)

— 1 disk rack row has 24 Open Racks (24 x 480 drives = 11,520
drives)

— 1 data hall has 30 disk rack rows (30 x 11,520 drives =
345,600 drives)

— Using 4TB SMR drives (4TB x 345,600 drives) = 1,382,400TB

— 3 data halls = 4.15 ExaBytes of raw capacity!!

http://www.opencompute.org/wp/wp-content/uploads/2013/01/Open_Compute_Project_Cold_Storage_Specification_v0
9/29/2014 €s262a-S14 Lecture-08 16

Rethink the Sync: Premise
(Slides borrowed from Nightingale)

* Asynchronous I/O is a poor abstraction for:
— Reliability
— Ordering
— Durability
— Ease of programming
* Synchronous I/O is superior but 100x slower
— Caller blocked until operation is complete
* New model for synchronous I/O: External Synchrony
— Synchronous I/O can be fast!

— Same guarantees as synchronous 1/O
— Only 8% slower than asynchronous /O

9/29/2014 cs262a-S14 Lecture-08 17

When a sync() is really async

e On sync() data written only to volatile cache
— 10x performance penalty and data NOT safe

DisK

Cylinders

= 100x slower than asynchronous I/O if disable cache

9/29/2014 cs262a-S14 Lecture-08 18

To whom are guarantees provided?

* Synchronous I/O definition:
— Caller blocked until operation completes

= Guarantee provided to application

9/29/2014 cs262a-S14 Lecture-08 19

To whom are guarantees provided?

- G

* Guarantee really provided to the user

9/29/2014 cs262a-S14 Lecture-08 20

Providing the user a guarantee

» User observes operation has completed
— User may examine screen, network, disk...

* Guarantee provided by synchronous 1/O
— Data durable when operation observed to complete

* To observe output it must be externally visible
— Visible on external device

9/29/2014 €s262a-S14 Lecture-08 21

Why do applications block?

External |:> PP PP APp
Internal ‘ OS Kernel

Disk Screen Network
External ,:>

* Since application external we block on syscall

= Application is internal: no need to block!

9/29/2014 €s262a-S14 Lecture-08 22

A new model of synchronous 1/O

* Provide guarantee directly to user
— Rather than via application

» Called externally synchronous I/O
— Indistinguishable from traditional sync I/O
— Approaches speed of asynchronous 1/O

9/29/2014 cs262a-S14 Lecture-08 23

Example: Synchronous I/O
101 write(buf_l); Application blocks
102 write(buf_2);

103 print("work done”);
104 foo();

Application blocks

Process lT

9/29/2014 €s262a-S14 Lecture-08 24

Observing synchronous I/O

101 write(buf_1);

102 write(buf_2);

103 print(“*work done”);
104 foo();

—

Depends on 1st write

Depends on 1st & 2nd
write

* Sync /O externalizes output based on causal ordering
— Enforces causal ordering by blocking an application

» Ext sync: Same causal ordering without blocking
applications

9/29/2014

€s262a-S14 Lecture-08

25

Example: External synchrony

—

101
102
103
104

9/29/2014

Process

write(buf_1);
write(buf_2);
print("“work done”);
foo();

€s262a-S14 Lecture-08 26

Tracking causal dependencies

Applications may communicate via IPC

— Socket, pipe, fifo etc.

Need to propagate dependencies through IPC
Authors build upon Speculator [SOSP '05]

— Track and propagate causal dependencies
— Buffer output to screen and network
— Targeted at improving performance when network is involved

» (Such as for a Network File System)

— Return immediately with speculative result

» Checkpoint processes, restore checkpoint if real result doesn’t
match speculated result

Pieces of Speculator useful here:

— Tracking of dependencies to make sure that we maintain property of

9/29/2014

External Synchrony

I've put up the SOSP 2005 paper as an optional reading

cs262a-S14 Lecture-08

27

Tracking causal dependencies

Process 1

101 write(filel);
102 do_something(); 102

9/29/2014

Process 2

101 print (“hello”);
read(filel);
103 print("world");

-

-

)
0S el -
Disk

€s262a-S14 Lecture-08 28

Output triggered commits

* Maximize throughput until output buffered

* When output buffered, trigger commit

— Minimize latency only when important

Process

9/29/2014

cs262a-S14 Lecture-08

29

Evaluation

* Implemented ext sync file system Xsyncfs
— Based on the ext3 file system
— Use journaling to preserve order of writes
— Use write barriers to flush volatile cache

e Compare Xsyncfs to 3 other file systems
— Default asynchronous ext3
— Default synchronous ext3
— Synchronous ext3 with write barriers

9/29/2014 cs262a-S14 Lecture-08 30

When is data safe?

File System Data durable Data durable
Configuration on write() on fsync()
Asynchronous No L il
power failure
Not on Not on
Synchronous : .
power failure power failure
Synchronous Yes Yes
w/ write barriers
External synchrony Yes Yes

9/29/2014

cs262a-S14 Lecture-08

31

Postmark benchmark

10000
O ext3-async
E xsyncfs
1000 | @ ext3-sync
) M ext3-barrier
<
o
o
o 100
()
E
|_
10
1

= Xsyncfs within 7% of ext3 mounted
asynchronously

9/29/2014 cs262a-S14 Lecture-08 32

The MySQL benchmark

5000
4500
4000 W
3500
3000
2500
2000
1500
1000
500
O T T T T
0 5 10 15 20
Number of db clients

~o—xsyncfs
B ext3-barrier

New Order Transactions Per Minute

= Xsyncfs can group commit from a single client

9/29/2014 cs262a-S14 Lecture-08 33

Specweb99 throughput

400 O ext3-async
@ xsyncfs
350 M ext3-sync
I ext3-barrier

)

w

o

o
I

250
200 -
150

Throughput (Kb/s

100
50 ~

O,

= Xsyncfs within 8% of ext3 mounted
asynchronously

9/29/2014 cs262a-S14 Lecture-08 34

Specweb99 latency

Request size ext3-async xsyncfs
0-1 KB 0.064 seconds 0.097 seconds
1-10 KB 0.150 second 0.180 seconds

10-100 KB 1.084 seconds 1.094 seconds

100-1000 KB 10.253 seconds | 10.072 seconds

= Xsyncfs adds no more than 33 ms of delay

9/29/2014 cs262a-S14 Lecture-08 35

Is this a good paper?

* What were the authors’ goals?
* What about the evaluation/metrics?

» Did they convince you that this was a good
system/approach?

» Were there any red-flags?
* What mistakes did they make?

» Does the system/approach meet the “Test of Time”
challenge?

* How would you review this paper today?

9/29/2014 cs262a-S14 Lecture-08 36

