
EECS 262a
Advanced Topics in Computer Systems

Lecture 7

SOR & LRVM
February 10th, 2016

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

2/10/2016 2Cs262a-S16 Lecture-07

Today’s Papers
• Segment-Based Recovery: Write-ahead Logging Revisited

Sears and Brewer. Appears in Proceedings of the VLDB Endowment,
Vol 2, No. 1, August 2009, pp 490-501

• Lightweight Recoverable Virtual Memory
M. Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C.
Steere, and James J. Kistler. Appears in Proceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP 1993)

• Thoughts?

2/10/2016 3Cs262a-S16 Lecture-07

Segment-Oriented Recovery

• ARIES works great but is 20+ years old and has some
problems:

– Viewed as very complex
– No available implementations with source code
– Part of a monolithic DBMS: can you use reuse transactions for other

systems?
– LSN in the page breaks up large objects (Fig 1), prevents efficient I/O

• DBMS seems hard to scale for cloud computing (except
by partitioning)

2/10/2016 4Cs262a-S16 Lecture-07

Original Goals (Stasis)
• Build an open-source transaction system with full

ARIES-style steal/no-force transactions
• Try to make the DBMS more “layered” in the OS

style
• Try to support a wider array of transactional systems:

version control, file systems, bioinformatics or
science databases, graph problems, search engines,
persistent objects, ...

• Competitive performance
• These goals were mostly met, although the open-

source version needs more users and they have only
tried some of the usual applications

• Original version was basically straight ARIES
– Development led to many insights and the new version based on

segments

2/10/2016 5Cs262a-S16 Lecture-07

Segment-Oriented Recovery (SOR)
• A segment is just a range of bytes

– May span multiple pages
– May have many per page
– Analogous to segments and pages in computer architecture (but arch

uses segments for protection boundaries, SOR uses them for recovery
boundaries; in both, pages are fixed size and the unit of movement to
disk)

• Key idea – change two of the core ARIES design points:
– Recover segments not pages
– No LSNs on pages

» ARIES: LSN per page enable exactly once redo semantics
» SOR: estimate the LSN conservatively (older) => at least once

semantics [but must now limit the actions we can take in redo]

2/10/2016 6Cs262a-S16 Lecture-07

The Big Four Positives of SOR
1) Enable DMA and/or zero-copy I/O

2) Fix persistent objects

3) Enable high/low priority transactions (log reordering
on the fly)

4) Decouple the components; enable cloud computing
versions

2/10/2016 7Cs262a-S16 Lecture-07

1) Enable DMA and/or Zero-Copy I/O
• No LSNs per page mean that large objects are

contiguous on disk

• No “segmentation and reassembly” to move objects
to/from the disk

• No need to involve the CPU in object I/O (very
expensive); use DMA instead

• Any downsides?

2/10/2016 8Cs262a-S16 Lecture-07

2) Fix Persistent Objects
• Problem: consider page with multiple objects, each of

which has an in memory representation (e.g., a C++ or
Java object)

– Suppose we update object A and generate a log entry with LSN=87
– Next we update object B (on the same page), generate its log entry with

LSN=94, and write it back to the disk page, updating the page LSN
– This pattern breaks recovery: the new page LSN (94) implies that the

page reflects redo log entry 87, but it does not.

• ARIES “solution”:
– Disk pages (in memory) must be updated on every log write; this is

“write through caching” – all updates are written through to the buffer
manager page

• SOR solution:
– There is no page LSN and thus no error
– Buffer manager is written on cache eviction – “write back caching”. This

implies much less copying/ marshaling for hot objects.
– This is like “no force” between the app cache and the buffer manager (!)

2/10/2016 9Cs262a-S16 Lecture-07

3) Enable high/low Priority Transactions
(log reordering on the fly)

• ARIES: “pin” pages to keep them from being stolen (short
term), “latch” pages to avoid race conditions within a page

– Subtle problem with pages: must latch the page across the call to log manager –
in order to assign an LSN atomically with the page write

– Not possible to reorder log entries at all
– In theory, two independent transactions could have their log entries reordered

based on priority or because they are going to different log disks (or log servers)
2/10/2016 10Cs262a-S16 Lecture-07

3) Enable high/low Priority Transactions
(log reordering on the fly)
• SOR does not need to know LSN at the time of the

page update
– Just need to make sure it is assigned before you commit, so that it

is ordered before later transactions; this is trivial to ensure – simply
use normal locking and follow WAL protocol

• High priority updates: move log entry to the front of
the log or to high priority “fast” log disk

• Low priority updates go to end of log as usual

• SOR has no page LSN and in fact no shared state at
all for pages => no latch needed

2/10/2016 11Cs262a-S16 Lecture-07

4) Decouple the components; enable
cloud computing versions
• SOR decouples three different things:

– App <-> Buffer manager: this is the write-back caching described
above – only need to interact on eviction, not on each update

– Buffer manager <-> log manager: no holding a latch across the log
manager call – log manager call can now by asynchronous and
batched together

– Segments can be moved via zero-copy I/O directly, with no meta
data (e.g. page LSN) and no CPU involvement – simplifies
archiving and reading large objects (e.g., photos)

• Hope: someone (ideally in CS262a) will build a
distributed transaction service using SOR

– Apps, Buffer Manager, Log Manager, Stable storage could all be
different clusters

– Performance: (fig 11): 1-3 orders of magnitude difference for
distributed transactions, but simplistic emulation of distributed
system costs

2/10/2016 12Cs262a-S16 Lecture-07

Physiological Redo (ARIES)
• Redos are applied exactly once (using the page

LSN)

• Combination of physical and logical logging
– Physical: write pre- or post-images (or both)
– Logical: write the logical operation (“insert”)

2/10/2016 13Cs262a-S16 Lecture-07

SOR Recovery
• Redos are physical
• Normal undos are like redos and set a new LSN

(does not revert to the old LSN)
– Wouldn’t work given multiple objects per page!

• To enable more concurrency, do not undo structural
changes of a B-Tree (or other index)

– Instead of a physical undo, issue a new logical undo that is the
inverse operation

– Enables concurrency because we only hold short locks for the
structural change rather than long locks (until the end of the
transaction)

• Slotted pages:
– Add an array of offsets to each page (slots), then store records with

a slot number and use the array to look up the current offset for
that record

– Allows changing the page layout without any log entries

2/10/2016 14Cs262a-S16 Lecture-07

SOR Redo
• Redos may applied more than once; we go back

farther in time than strictly necessary

• Redos must be physical “blind writes” – write content
that do not depend on the previous contents

• Undos can still be logical for concurrency

• Slotted page layout changes require redo logging

2/10/2016 15Cs262a-S16 Lecture-07

Core SOR Redo Phase
• Periodically write estimated LSNs to log (after you

write back a page)

• Start from disk version of the segment (or from
snapshot or whole segment write)

• Replay all redos since estimated LSN (worst case
the beginning of the truncated log)

– Even though some might have been applied already

• For all bytes of the segment:
– Either it was correct on disk and not changed,
– Or it was written during recovery in order by time (and thus

correctly reflects the last log entry to touch that byte)

2/10/2016 16Cs262a-S16 Lecture-07

Hybrid Recovery
• Can mix SOR and traditional ARIES

• Some pages have LSNs, some don’t

• Can’t easily look at a page and tell!
– All the bytes are used for segments

• Log page type changes and zero out the page
– Recovery may actually corrupt a page temporarily until it gets the type

correct, at which point it rolls forward correctly from the all zero page

• Example of when to use:
– B-Trees: internal nodes on pages, leaves are segments
– Tables of strings: short strings good for pages especially if they change

size; long strings are good for segments due to contiguous layout

2/10/2016 17Cs262a-S16 Lecture-07

Summary
• 3 key features:

– Open-source implementation that decouples components while
improving performance and efficiency

» https://code.google.com/p/stasis/
– Preserve ARIES semantics (compatibility is a bonus benefit)
– Enable QoS for transactions

• Some flaws:
– “Research” implementation: SOR is only one component of a

DBMS system, not a complete practical system implementation
– Write-back experiment: simple datatype, no error bars, y-axis

scale, …

2/10/2016 18Cs262a-S16 Lecture-07

Extra: Why are there LSNs on pages?
• So that we can atomically write the timestamp (LSN)

with the page
• Problem: page writes aren’t actually atomic anymore
• Solution: make them atomic so that ARIES still works

– Write some bits into all sectors of a page (8K page = 16 512B
sectors); compare those bits with a value store somewhere else.
No match => recover the page (but may match and be wrong).
Assumes sectors are written atomically, which is reasonable.

– Write a checksum for each page (including the LSN) and check it
when reading back the page

• Both solutions impact I/O performance some

2/10/2016 19Cs262a-S16 Lecture-07

SOR Approach
• Checksum each segment (or group of segments if

they are small)
• On checksum failure, can replay last redo, which can

fix a torn page (and then confirm using the check-
sum); if that doesn’t work go back to old version and
roll forward

• Blind writes can fix corrupted pages since they do not
depend on its contents

2/10/2016 20Cs262a-S16 Lecture-07

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation / metrics?
• Did they convince you that this was a good system

/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

BREAK

2/10/2016 22Cs262a-S16 Lecture-07

Lightweight Recoverable
Virtual Memory (LRVM)

• Eppinger Thesis (in Related Work [9]):
– RVM ... poses and answers the question "What is the

simplest realization of essential transactional properties
for the average application?" By doing so, it makes
transactions accessible to applications that have
hitherto balked at the baggage that comes with
sophisticated transactional facilities.

• Answer:
– Library implementing No-Steal, No-Force virtual

memory persistence, with manual copy-on-write and
redo-only logs

2/10/2016 23Cs262a-S16 Lecture-07

LRVM
• Goal:

– Allow Unix applications to manipulate persistent data structures
(such as the meta data for a file system) in a manner that has
clear-cut failure semantics

• Existing solutions
– Such as Camelot, were too heavyweight, cumbersome to use,

and imposed programming constraints
– Wanted a ‘lite’ version of these facilities that didn't also provide

(unneeded) support for distributed and nested transactions,
shared logs, etc.

• Solution
– A library package that provides only recoverable virtual memory

2/10/2016 24Cs262a-S16 Lecture-07

Lessons from Camelot
• Camelot had an “ugly” object and process model – its

componentization led to multiple address spaces and lots of
expensive IPC (~600x local call on RISC)

– Too tied to Mach and complicated log management for multiple applications

• Heavyweight facilities impose additional onerous
programming constraints – kernel threads vs. user-level
threads

• Size and complexity of Camelot and its dependence on
special Mach features resulted in maintenance headaches
and lack of portability

– The former of these two shouldn't be an issue in a “production” system

• However, note that the golden age of CMU Systems learned
a lot from the sharing of artifacts: Mach, AFS, Coda...

– A lot of positive spirit in this paper

2/10/2016 25Cs262a-S16 Lecture-07

LRVM Architecture

• Focus on metadata not data
– Like Lowest-level consistency for journaling file system, etc..

• External data segments: think mmap of a file into memory
– But writes do not go back to backing store automatically

• Processes map regions of data segments into their
address space – No aliasing/overlap allowed, immediate
copy from backing store to main memory

2/10/2016 26Cs262a-S16 Lecture-07

LRVM Architecture (cont’d)
• Changes to RVM are made as part of transactions
• Call set_range operation before modifying part of a region

– Allows a copy of the old values to be made so that they can be efficiently
restored (in memory) after an abort

• No-flush commits trade weaker permanence guarantees
(bounded persistence) in exchange for better performance

– Where might one use no-flush commits of transactions?

• No-restore flag == no explicit abort => no undo (ever)
except for crash recovery means no need to log old state

• In situ recovery – application code doesn’t worry about
recovery!

2/10/2016 27Cs262a-S16 Lecture-07

LRVM Architecture (cont’d)
• To ensure that the persistent data structure remains

consistent even when loss of multiple transactions ex-
post-facto is acceptable – Example: file system

• No isolation, no serialization/concurrency control, no
handling of media recovery (but these capabilities can
be added)

– Very systems view; not popular with DB folks...

• Provided capabilities can be used to implement a funny
kind of transaction checkpoint

– Might want/need to flush the write-ahead log before the transaction is
done, but be willing to accept “checkpointing’” at any of the (internal)
transaction points

2/10/2016 28Cs262a-S16 Lecture-07

LRVM Architecture (cont’d)
• flush: force log writes to disk

– p6: “Note that atomicity is guaranteed independent of
permanence.” – this confuses DB folks

– In this context, means that all transactions are atomic (occur all or
nothing), but the most recent ones might be forgotten in a crash –
i.e., they change at the time of the crash from “all” to “nothing”
even though the system told the caller that the transaction
committed

– Flush prevents this, which only happens with no-flush transactions

• truncate: reflect log contents to external data
segments and truncate the log

2/10/2016 29Cs262a-S16 Lecture-07

LRVM Implementation
• Log only contains new values because uncommitted

changes never get written to external data segments
– No undo/redo operations
– Distinguishes between external data segment (master copy) and VM backing

store (durable temp copy) => can STEAL by propagating to VM without need
for UNDO (since you haven’t written over the master copy yet)

• Crash recovery and log truncation: see paper section 5.1.2
• Missing “set range” call is very bad – nasty non-deterministic

bugs that show up only during some crashes...
– Might use static analysis to verify set range usage...

• Write-ahead logging: log intent then do idempotent updates
to master copy – keep retrying update until it succeeds

2/10/2016 30Cs262a-S16 Lecture-07

LRVM Optimizations

• Intra-transaction: Coalescing set_range
address ranges is important since
programmers have to program defensively

• Inter-transaction: Coalesce no-flush log
records at (flush) commit time

– E.g., for a multi-file copy to same directory only care about
last update (subsumes earlier ones)

2/10/2016 31Cs262a-S16 Lecture-07

LRVM Performance

• Beats Camelot across the board

• Lack of integration with VM does not appear to be a
significant problem as long as:

– Ratio of RVM / Physical memory is small (<70%, but <40% best for
good locality and <25% for poor locality applications)

– VM pageouts are rare
– Slower startup is acceptable (read entire RVM instead of on-demand)

• Log traffic optimizations provide significant savings
(20-30%), though not multiple factors savings

2/10/2016 32Cs262a-S16 Lecture-07

3 Key Features about the Paper
• Goal:

– A facility that allows programs to manipulate persistent data
structures in a manner that has clear-cut failure semantics

• Original experience with a heavyweight, fully general
transaction support facility led to a project to build a
lightweight facility that provides only recoverable
virtual memory (since that is all that was needed for
the above-mentioned goal)

• Lightweight facility provided the desired functionality
in about 10K lines of code vs 60K Camelot, with
significantly better performance and portability

2/10/2016 33Cs262a-S16 Lecture-07

A Flaw
• The paper describes how a general facility can be reduced

and simplified in order to support a narrower applications
domain

• Although it argues that the more general functionality could
be regained by building additional layers on top of the
reduced facility, this hasn't been demonstrated

• Also allows for “persistent errors” – errors in a set range
region aren’t fixable by reboot... they last until fixed by hand

• A lesson:
– When building a general OS facility, pick one (or a very few) thing(s)

and do it well rather than providing a general facility that offers many
things done poorly

2/10/2016 34Cs262a-S16 Lecture-07

Distributed Transactions (background)
• Two models for committing a transaction:

– One-phase: used by servers that maintain only volatile state. Servers
only send an end request to such servers (i.e., they don't participate in
the voting phase of commit)

– Two-phase: used by servers that maintain recoverable state. Servers
send both vote and end requests to such servers

• 4 different kinds of votes may be returned:
– Vote-abort
– Vote-commit-read-only: participant has not modified recoverable data

and drops out of phase two of commit protocol
– Vote-commit-volatile: participant has not modified recoverable data,

but wants to know outcome of the transaction
– Vote-commit-recoverable: participant has modified recoverable data

2/10/2016 35Cs262a-S16 Lecture-07

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

