
EECS 262a
Advanced Topics in Computer Systems

Lecture 6

ARIES: Logging and Recovery

Slides derived from Joe Hellerstein;
Updated by A. Fekete

If you are going to be in the logging
business, one of the things that you

have to do is to learn about heavy
equipment.

- Robert VanNatta,
Logging History of Columbia County

2/8/2016 2Cs262a-S16 Lecture-06

Today’s Paper

• ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-ahead
Logging,
C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh and
Peter Schwarz. Appears in Transactions on Database
Systems, Vol 17, No. 1, March 1992, Pages 94-162

• Thoughts?
• Huge state-of-the-art/historical survey (Ch. 10)

2/8/2016 3Cs262a-S16 Lecture-06

Review: The ACID properties

• Atomicity: All actions in the Transaction happen, or
none happen

• Consistency: If each Transaction is consistent, and the
DB starts consistent, it ends up consistent

• Isolation: Execution of one Transaction is isolated
from that of other Transactions

• Durability: If a Transaction commits, its effects persist

• The Recovery Manager guarantees Atomicity & Durability

2/8/2016 4Cs262a-S16 Lecture-06

Motivation
• Atomicity:

– Transactions may abort (“Rollback”)
• Durability:

– What if DBMS stops running? (Causes?)

crash!
 Desired Behavior after

system restarts:
– T1, T2 & T3 should be

durable
– T4 & T5 should be

aborted (effects not seen)

T1
T2
T3
T4
T5

2/8/2016 5Cs262a-S16 Lecture-06

Intended Functionality

• At any time, each data item contains the value
produced by the most recent update done by a
transaction that committed

2/8/2016 6Cs262a-S16 Lecture-06

Assumptions

• Essential concurrency control is in effect
– For read/write items: Write locks taken and held till

commit
• E.g., Strict 2PL, but read locks not important for recovery

– For more general types: operations of concurrent
transactions commute

• Updates are happening “in place”
– i.e. data is overwritten on (deleted from) its

location
• Unlike multiversion (e.g., shadow pages) approaches

• Buffer in volatile memory; data persists on disk

2/8/2016 7Cs262a-S16 Lecture-06

Challenge: REDO

• Need to restore value 1 to item
– Last value written by a committed transaction

Action Buffer Disk
Initially 0
T1 writes 1 1 0
T1 commits 1 0
CRASH 0

2/8/2016 8Cs262a-S16 Lecture-06

Challenge: UNDO

• Need to restore value 0 to item
– Last value from a committed transaction

Action Buffer Disk
Initially 0
T1 writes 1 1 0
Page flushed 1
CRASH 1

2/8/2016 9Cs262a-S16 Lecture-06

Handling the Buffer Pool

• Can you think of a simple scheme
to guarantee Atomicity &
Durability?

• Force write to disk at commit?
– Poor response time
– But provides durability

• No Steal of buffer-pool frames from
uncommited Transactions (“pin”)?
– Poor throughput
– But easily ensure atomicity

Force

No Force

No Steal Steal

Trivial

Desired

2/8/2016 10Cs262a-S16 Lecture-06

More on Steal and Force
• STEAL (why enforcing Atomicity is hard)

– To steal frame F: Current page in F (say P) is
written to disk; some Transaction holds lock on P

• What if the Transaction with the lock on P aborts?
• Must remember the old value of P at steal time (to

support UNDOing the write to page P)

• NO FORCE (why enforcing Durability is hard)
– What if system crashes before a modified page is

written to disk?
– Write as little as possible, in a convenient place, at

commit time, to support REDOing modifications

2/8/2016 11Cs262a-S16 Lecture-06

Basic Idea: Logging
• Record REDO and UNDO information, for every

update, in a log
– Sequential writes to log (put it on a separate disk)
– Minimal info (diff) written to log, so multiple updates fit

in a single log page

• Log: An ordered list of REDO/UNDO actions
– Log record contains:

<XID, pageID, offset, length, old data, new data>
– and additional control info (which we’ll see soon)
– For abstract types, have operation(args) instead of old

value new value
2/8/2016 12Cs262a-S16 Lecture-06

Write-Ahead Logging (WAL)

• The Write-Ahead Logging Protocol:
1. Must force the log record for an update before the

corresponding data page gets to disk
2. Must write all log records for a Transaction before

commit

• #1 (undo rule) allows system to have Atomicity

• #2 (redo rule) allows system to have Durability

2/8/2016 13Cs262a-S16 Lecture-06

ARIES

• Exactly how is logging (and recovery!) done?
– Many approaches (traditional ones used in

relational systems of 1980s)
– ARIES algorithms developed by IBM used many

of the same ideas, and some novelties that were
quite radical at the time

• Research report in 1989; conference paper on an
extension in 1989; comprehensive journal publication in
1992

• 10 Year VLDB Award 1999

2/8/2016 14Cs262a-S16 Lecture-06

Key ideas of ARIES

• Log every change (even UNDOs during
Transaction abort)

• In restart, first repeat history without
backtracking
– Even REDO the actions of loser transactions

• Then UNDO actions of losers

• LSNs in pages used to coordinate state between
log, buffer, disk

Novel features of ARIES in italics

2/8/2016 15Cs262a-S16 Lecture-06

WAL & the Log
• Each log record has a unique Log

Sequence Number (LSN)
– LSNs always increasing

• Each data page contains a
pageLSN
– The LSN of the most recent log

record
for an update to that page

• System keeps track of flushedLSN
– The max LSN flushed so far

LSNs pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

DB

2/8/2016 16Cs262a-S16 Lecture-06

WAL constraints

• Before a page is written,
– pageLSN flushedLSN

• Commit record included in log; all related update
log records precede it in log

2/8/2016 17Cs262a-S16 Lecture-06

Log Records
Possible log record types:
• Update
• Commit
• Abort
• End (signifies end of commit

or abort)
• Compensation Log Records

(CLRs)
– for UNDO actions
– (and some other tricks!)

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

2/8/2016 18Cs262a-S16 Lecture-06

Other Log-Related State

• Transaction Table:
– One entry per active Transaction
– Contains XID, status (running/commited/aborted),

and lastLSN

• Dirty Page Table:
– One entry per dirty page in buffer pool
– Contains recLSN – the LSN of the log record which

first caused the page to be dirty

2/8/2016 19Cs262a-S16 Lecture-06

Normal Execution of a Transaction

• Series of reads & writes, followed by commit or abort
– We will assume that page write is atomic on disk

• In practice, additional details to deal with non-atomic writes

• Strict 2PL (at least for writes)

• STEAL, NO-FORCE buffer management, with Write-
Ahead Logging

2/8/2016 20Cs262a-S16 Lecture-06

Checkpointing
• Periodically, the DBMS creates a checkpoint, in order

to minimize the time taken to recover in the event of a
system crash. Write to log:
– begin_checkpoint record: Indicates when chkpt began.
– end_checkpoint record: Contains current Transaction

table and dirty page table. This is a `fuzzy checkpoint’:
• Other Transactions continue to run; so these tables only known

to reflect some mix of state after the time of the
begin_checkpoint record.

• No attempt to force dirty pages to disk; effectiveness of
checkpoint limited by oldest unwritten change to a dirty page.
(So it’s a good idea to periodically flush dirty pages to disk!)

– Store LSN of chkpt record in a safe place (master
record)

2/8/2016 21Cs262a-S16 Lecture-06

The Big Picture: What’s Stored
Where

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG DB

Data pages
each
with a
pageLSN

master record

Transaction Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

RAM

2/8/2016 22Cs262a-S16 Lecture-06

Simple Transaction Abort

• For now, consider an explicit abort of a
Transaction
– No crash involved

• We want to “play back” the log in reverse order,
UNDOing updates.
– Get lastLSN of Transaction from Transaction table
– Can follow chain of log records backward via the

prevLSN field
– Note: before starting UNDO, could write an Abort

log record
• Why bother?

2/8/2016 23Cs262a-S16 Lecture-06

Abort, cont.

• To perform UNDO, must have a lock on data!
– No problem!

• Before restoring old value of a page, write a CLR:
– You continue logging while you UNDO!!
– CLR has one extra field: undonextLSN

• Points to the next LSN to undo (i.e. the prevLSN of the record we’re
currently undoing)

– CLR contains REDO info
– CLRs never Undone

• Undo needn’t be idempotent (>1 UNDO won’t happen)
• But they might be Redone when repeating history (=1 UNDO

guaranteed)
• At end of all UNDOs, write an “end” log record

2/8/2016 24Cs262a-S16 Lecture-06

Transaction Commit

• Write commit record to log
• All log records up to Transaction’s lastLSN are

flushed
– Guarantees that flushedLSN  lastLSN
– Note that log flushes are sequential, synchronous

writes to disk
– Many log records per log page

• Make transaction visible
– Commit() returns, locks dropped, etc.

• Write end record to log

2/8/2016 25Cs262a-S16 Lecture-06

Crash Recovery: Big Picture

 Start from a checkpoint (found
via master record)

 Three phases. Need to:
– Figure out which Xacts

committed since checkpoint,
which failed (Analysis)

– REDO all actions
 (repeat history)

– UNDO effects of failed Xacts.

Oldest log
rec. of Xact
active at
crash
Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U
2/8/2016 26Cs262a-S16 Lecture-06

Recovery: The Analysis Phase

• Reconstruct state at checkpoint
– via end_checkpoint record

• Scan log forward from begin_checkpoint
– End record: Remove Xact from Xact table
– Other records: Add Xact to Xact table, set

lastLSN=LSN, change Xact status on commit
– Update record: If P not in Dirty Page Table,

• Add P to D.P.T., set its recLSN=LSN

This phase could be skipped;
information can be regained in subsequent REDO pass

2/8/2016 27Cs262a-S16 Lecture-06

Recovery: The REDO Phase
• We repeat History to reconstruct state at crash:

– Reapply all updates (even of aborted Xacts!), redo
CLRs

• Scan forward from log rec containing smallest recLSN
in D.P.T. For each CLR or update log rec LSN, REDO the
action unless page is already more up-to-date than this
record:
– REDO when Affected page is in D.P.T., and has

pageLSN (in DB) < LSN. [if page has recLSN > LSN no
need to read page in from disk to check pageLSN]

• To REDO an action:
– Reapply logged action
– Set pageLSN to LSN. No additional logging!

2/8/2016 28Cs262a-S16 Lecture-06

Invariant

• State of page P is the outcome of all changes of
relevant log records whose LSN is <= P.pageLSN

• During redo phase, every page P has P.pageLSN
>= redoLSN

• Thus at end of redo pass, the database has a
state that reflects exactly everything on the
(stable) log

2/8/2016 29Cs262a-S16 Lecture-06

Recovery: The UNDO Phase

• Key idea: Similar to simple transaction abort, for
each loser transaction (that was in flight or
aborted at time of crash)
– Process each loser transaction’s log records

backwards; undoing each record in turn and
generating CLRs

• But: loser may include partial (or complete)
rollback actions

• Avoid to undo what was already undone
– undoNextLSN field in each CLR equals prevLSN

field from the original action

2/8/2016 30Cs262a-S16 Lecture-06

UndoNextLSN

From Mohan et al, TODS 17(1):94-162

2/8/2016 31Cs262a-S16 Lecture-06

Recovery: The UNDO Phase
ToUndo={ l | l a lastLSN of a “loser” Xact}
Repeat:

– Choose largest LSN among ToUndo.
– If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Transaction
– If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo
• (Q: what happens to other CLRs?)

– Else this LSN is an update. Undo the update,
write a CLR, add prevLSN to ToUndo

Until ToUndo is empty
2/8/2016 32Cs262a-S16 Lecture-06

Restart Recovery Example

From Mohan et al, TODS 17(1):94-162

2/8/2016 33Cs262a-S16 Lecture-06

Example of Recovery

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Xact Table
lastLSN

status
Dirty Page Table

recLSN
flushedLSN

ToUndo

RAM

prevLSNs

2/8/2016 34Cs262a-S16 Lecture-06

Example: Crash During Restart!
begin_checkpoint, end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART
CLR: Undo T2 LSN 60
CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART
CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10
20
30

40,45
50
60

70
80,85

90

Xact Table
lastLSN

status
Dirty Page Table

recLSN
flushedLSN

ToUndo

undonextLSN

RAM

2/8/2016 35Cs262a-S16 Lecture-06

Additional Crash Issues
• What happens if system crashes during

Analysis? During REDO?
• How do you limit the amount of work in REDO?

– Flush asynchronously in the background.
– Watch “hot spots”!

• How do you limit the amount of work in UNDO?
– Avoid long-running Xacts.

2/8/2016 36Cs262a-S16 Lecture-06

Parallelism during restart

• Activities on a given page must be processed in
sequence

• Activities on different pages can be done in
parallel

2/8/2016 37Cs262a-S16 Lecture-06

Log record contents

• What is actually stored in a log record, to allow
REDO and UNDO to occur?

• Many choices, 3 main types
– PHYSICAL
– LOGICAL
– PHYSIOLOGICAL

2/8/2016 38Cs262a-S16 Lecture-06

Physical logging
• Describe the bits (optimization: only those that

change)
• Example

– OLD STATE: 0x47A90E….
– NEW STATE: 0x632F00…
– So REDO: set to NEW; UNDO: set to OLD

• Or just delta (OLD XOR NEW)
– DELTA: 0x24860E…
– So REDO=UNDO=xor with delta

• Ponder: XOR is not idempotent, but redo and
undo must be; why is this OK?

2/8/2016 39Cs262a-S16 Lecture-06

Logical Logging

• Describe the operation and arguments
• E.g., Update field 3 of record whose key is 37, by

adding 32
• We need a programmer supplied inverse

operation to undo this

2/8/2016 40Cs262a-S16 Lecture-06

Physiological Logging

• Describe changes to a specified page, logically
within that page

• Goes with common page layout, with records
indexed from a page header

• Allows movement within the page (important for
records whose length varies over time)

• E.g., on page 298, replace record at index 17 from
old state to new state

• E.g., on page 35, insert new record at index 20

2/8/2016 41Cs262a-S16 Lecture-06

ARIES logging

• ARIES allows different log approaches; common
choice is:

• Physiological REDO logging
– Independence of REDO (e.g. indexes & tables)

• Can have concurrent commutative logical operations like
increment/decrement (“escrow transactions”)

• Logical UNDO
– To allow for simple management of physical

structures that are invisible to users
• CLR may act on different page than original action

– To allow for escrow
2/8/2016 42Cs262a-S16 Lecture-06

Interactions

• Recovery is designed with deep awareness of
access methods (eg B-trees) and concurrency
control

• And vice versa
• Need to handle failure during page split,

reobtaining locks for prepared transactions
during recovery, etc

2/8/2016 43Cs262a-S16 Lecture-06

Nested Top Actions
• Trick to support physical operations you do not want to

ever be undone
– Example?

• Basic idea
– At end of the nested actions, write a dummy CLR

• Nothing to REDO in this CLR

– Its UndoNextLSN points to the step before the nested
action

2/8/2016 44Cs262a-S16 Lecture-06

Summary of Logging/Recovery

• Recovery Manager guarantees Atomicity &
Durability.

• Use WAL to allow STEAL/NO-FORCE w/o sacrificing
correctness.

• LSNs identify log records; linked into backwards
chains per transaction (via prevLSN).

• pageLSN allows comparison of data page and log
records.

2/8/2016 45Cs262a-S16 Lecture-06

Summary, Cont.

• Checkpointing: A quick way to limit the amount
of log to scan on recovery.

• Recovery works in 3 phases:
– Analysis: Forward from checkpoint.
– Redo: Forward from oldest recLSN.
– Undo: Backward from end to first LSN of oldest

Xact alive at crash.
• Upon Undo, write CLRs.
• Redo “repeats history”: Simplifies the logic!

2/8/2016 46Cs262a-S16 Lecture-06

Further Readings

• Repeating History Beyond ARIES,
– C. Mohan, Proc VLDB’99
– Reflections on the work 10 years later

• Model and Verification of a Data Manager Based
on ARIES
– D. Kuo, ACM TODS 21(4):427-479
– Proof of a substantial subset

• A Survey of B-Tree Logging and Recovery
Techniques
– G. Graefe, ACM TODS 37(1), article 1

2/8/2016 47Cs262a-S16 Lecture-06

Is this a good paper?

• What were the authors’ goals?
• What about the performance metrics?
• Did they convince you that this was a good system?
• Were there any red-flags?
• What mistakes did they make?
• Does the system meet the “Test of Time” challenge?
• How would you review this paper today?

