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Today’s Papers
• Experience with Processes and Monitors in Mesa

Butler Lampson and David Redell, Appears in 
Communications of the ACM 23, 2 (Feb. 1980), pp
105-117.

• Principles of Transaction-Oriented Database 
Recovery, Theo Haerder and Andreas Reuter. 
Appears in Journal of the ACM Computing Surveys
(CSUR), Vol 15, No 4 (Dec. 1983), pp287-317

• Thoughts?
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Mesa Motivation

• Putting theory to practice – building Pilot OS

• Focus of this paper: lightweight processes 
(threads in today’s terminology) and how they 
synchronize with each other
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Mesa History
• 2nd system Xerox Star – followed 

the Alto

• Planned to build a large system using 
many programmers

– Some thoughts about commercializing

• Advent of things like server machines
and networking introduced 
applications that are heavy users of 
concurrency
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Mesa History (cont’d)
• Chose to build a single address space system:

– Single user system, so protection not an issue
– Safety was to come from the language
– Wanted global resource sharing

• Large system, many programmers, many 
applications:

– Module-based programming with information hiding

• Clean sheet design:
– Can integrate the hardware, the runtime software, and the 

language with each other

• Java language considers Mesa to be a predecessor
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Programming Models for IPC

• Two Inter-Process Communication models:
– Shared memory (monitors) vs.
– Message passing

• Needham & Lauer claimed the two models 
are duals of each other

• Mesa developers chose shared memory 
model because they thought they could more 
naturally fit it into Mesa as a language 
construct
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How to Synchronize Processes?
• Non-preemptive scheduler: results in very delicate 

systems – Why?
– Have to know whether or not a yield might be called for every 

procedure you call – this violates information hiding
– Prohibits multiprocessor systems
– Need a separate preemptive mechanism for I/O anyway
– Can’t do multiprogramming across page faults

• Simple locking (e.g., semaphores): 
– Too little structuring discipline, e.g., no guarantee that locks will be 

released on every code path
– Wanted something that could be integrated into a Mesa language 

construct

• Chose preemptive scheduling of lightweight 
processes and monitors
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Lightweight Processes (LWPs)
• Easy forking and synchronization

• Shared address space

• Fast performance for creation, switching, and 
synchronization; low storage overhead

• Today we call LWPs, “threads”
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Recap: Synchronization Goals

• Mutual exclusion: 
– Arbitrate access to critical section (e.g., shared data)
– Only a single LWP in critical section at a given time

» If one LWP in critical section  all other LWPs that want to 
enter the critical section need to wait

• Scheduling constraint:
– A LWP waiting for an event to happen in another thread

• Wait instruction:
– Don’t want busy-waiting, so sleep()
– Waiting LWPs are woken up when the condition they are waiting on 

becomes FALSE

LWP 1

LWP 2

wait

signal
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Recap: Synchronization Primitives

• Locks: Implement mutual exclusion
– Lock.Acquire(): acquire lock before entering critical section; wait if lock 

not free
– Lock.Release(): release lock after leaving critical section; wake up 

threads waiting for lock

• Semaphores: Like integers with restricted interface
– P(): Wait if zero; decrement when becomes non-zero
– V(): Increment and wake a sleeping task (if exists)
– Use a semaphore for each scheduling constraint and mutex

• Monitors: A lock plus one or more condition variables
– Condition variable: a queue of LWPs waiting inside critical section for an 

event to happen
– Use condition variables to implement sched. constraints
– Three Operations: Wait(), Signal(), and Broadcast()
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Recap: Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of LWPs waiting for something 
inside a critical section

– Key idea: make it possible to go to sleep inside critical section by atomically 
releasing lock at time we go to sleep

2/3/2016 12Cs262a-S16 Lecture-05

Recap: Monitors

• Monitors represent the logic of the program
– Wait if necessary
– Signal when change something so any waiting LWPs can proceed

• Basic structure of monitor-based program:
lock.Acquire()
while (need to wait) {

condvar.wait(&lock);
}
lock.Release()
do something so no need to wait
lock.Acquire()

condvar.signal();

lock.Release()

Check and/or update
state variables

Wait if necessary 

(release lock when waiting)

Check and/or update

state variables
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Mesa Monitors
• Monitor lock (for synchronization)
• Tied to module structure of the language – makes it 

clear what’s being monitored
• Language automatically acquires and releases the 

lock
• Tied to a particular invariant, which helps users think 

about the program
– Invariant holds on entry and must be maintained before exit or wait

• Condition variable (for scheduling) – when to wait
• Dangling references problem similar to pointers

– There are also language-based solutions that would prohibit these 
kinds of errors, such as do-across, which is just a parallel control 
structure

– Do-across eliminates dangling processes because the syntax 
defines the point of the fork and the join
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Design Choices and Implementation Issues
• 3 types of procedures in a monitor module:

– Entry (acquires and releases lock)
– Internal (no locking done): can’t be called from outside the module.
– External (no locking done): externally callable. Why is this useful?

» Allows grouping of related things into a module
» Allows doing some of the work outside the monitor lock
» Allows controlled release and reacquisition of monitor lock

• Choices for notify semantics:
– (Hoare monitors) Immediately cede CPU and lock to waking process

» Causes many context switches but why would this approach be 
desirable? 
(Waiting process knows the condition it was waiting on is 
guaranteed to hold)

» Also, doesn’t work in the presence of priorities
– (Mesa monitors) Notifier keeps lock, wakes process with no guarantees 

=> waking process must recheck its condition
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Mesa Monitor: Why “while()”?
• Why do we use “while()” instead of “if() with Mesa 

monitors?
– Example illustrating what happens if we use “if()”, e.g.,

if (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}

• Synchronized (infinite) queue example
AddToQueue(item) {

lock.Acquire();queue.enqueue(item);dataready.signal();lock.Release();
}

RemoveFromQueue() {lock.Acquire();if (queue.isEmpty()) {dataready.wait(&lock); }item = queue.dequeue(); lock.Release(); return(item);
}

Mesa: Replace “while” 
with  “if”

Hoare
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Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W
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Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()Wait until no writersAccess data baseCheck out – wake up a waiting writer
– Writer()Wait until no active readers or writersAccess databaseCheck out – wake up waiting readers or writer
– State variables (Protected by a lock called “lock”):

» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Conditioin okToWrite = NIL
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Code for a Reader
Reader() {
// First check self into system
lock.Acquire();
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
lock.release();
// Perform actual read-only access
AccessDatabase(ReadOnly);
// Now, check out of system
lock.Acquire();
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
lock.Release();

}
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Writer() {// First check self into systemlock.Acquire();
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existokToWrite.wait(&lock); // Sleep on cond varWW--; // No longer waiting}
AW++; // Now we are active!lock.release();
// Perform actual read/write accessAccessDatabase(ReadWrite);
// Now, check out of systemlock.Acquire();AW--; // No longer activeif (WW > 0){ // Give priority to writersokToWrite.signal(); // Wake up one writer} else if (WR > 0) { // Otherwise, wake readerokToRead.broadcast(); // Wake all readers}lock.Release();

}

Code for a Writer
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Other Kinds of Notifications
• Timeouts

• Broadcasts

• Aborts

• Deadlocks: 
– Wait only releases the lock of the current monitor, not any nested 

calling monitors
– General problem with modular systems and synchronization: 

» Synchronization requires global knowledge about locks, which 
violates information hiding paradigm of modular programming
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Four Requirements for Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to acquire additional 

resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the resource, 

after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1
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Deadlock
• Why is monitor deadlock less onerous than the yield 

problem for non-preemptive schedulers?
– Want to generally insert as many yields as possible to provide 

increased concurrency; only use locks when you want to 
synchronize

– Yield bugs are difficult to find (symptoms may appear far after the 
bogus yield)

• Basic deadlock rule: no recursion, direct or mutual
– Alternatives? Impose ordering on acquisition
– “It is unreasonable to blame the tool when poorly chosen 

constraints lead to deadlock”

• Lock granularity for concurrent access to objects
– Introduced monitored records so that the same monitor code could 

handle multiple instances of something in parallel
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Interrupts 
• Interrupt handler can’t afford to wait to acquire a 

monitor lock

• Introduced naked notifies: notifies done without 
holding the monitor lock

• Had to worry about a timing race:
– The notify could occur between a monitor’s condition check and its 

call on Wait
– Added a wakeup-waiting flag to condition variables

• What happens with active messages that need to 
acquire a lock? (move handler to its own thread)
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Priority Inversion
• High-priority processes may block on lower-priority 

processes

• A solution:
– Temporarily increase the priority of the holder of the monitor to that 

of the highest priority blocked process 
– Somewhat tricky – what happens when that high-priority process 

finishes with the monitor? 
» You have to know the priority of the next highest one – keep 

them sorted or scan the list on exit



BREAK
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The Mars Pathfinder Mission
• Widely proclaimed as “flawless” in the early days after 

its July 4th, 1997 landing on the Martian surface
• Successes included:

– Its unconventional “landing” – bouncing onto the Martian surface 
surrounded by airbags

– Deploying the Sojourner rover
– Gathering and transmitting voluminous data back to Earth, including 

the panoramic pictures that were such a hit on the Web
– 20Mhz PowerPC processor and 128MB of DRAM

• A few days later, just after Pathfinder started gathering 
meteorological data…

– The spacecraft began experiencing total system resets, 
each resulting in losses of data

– The press reported these failures in terms such as 
“software glitches” and “the computer was trying to do 
too many things at once.”
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Three Mars Pathfinder Tasks
• Bus management task

– Ran frequently with high priority to move certain kinds of data in and out of 
the VME information bus

– Access to bus synchronized with mutual exclusion locks (mutexes)

• Meteorological data gathering task (ASI/MET)
– Infrequent, low priority thread that used info bus to publish its data
– When publishing its data, it would acquire a mutex, do writes to the bus, 

and release the mutex
– If an interrupt caused bus thread to be scheduled while this mutex was 

held, and if the bus thread then attempted to acquire this same mutex in 
order to retrieve published data, this would cause it to block on the mutex, 
waiting until the meteo. thread released the mutex before it could continue

• Communications task that ran with medium priority

• Most of the time this combination worked fine… 
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Priority Inversion
• Very infrequently an interrupt would occur that caused the 

(medium priority) communications task to be scheduled 
during the short interval while the (high priority) information 
bus thread was blocked waiting for the (low priority) 
meteorological data thread

– In this case, the long-running communications task, having higher priority 
than the meteorological task, would prevent it from running, consequently 
preventing the blocked information bus task from running

• After some time had passed, a watchdog timer would go 
off, notice that the data bus task had not been executed for 
some time, conclude that something had gone drastically 
wrong, and initiate a total system reset

• This scenario is a classic case of priority inversion
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Really Remote Debugging!
• Pathfinder used VxWorks

– VxWorks can be run in a tracing mode
– Records a total trace of all interesting system events, including 

context switches, uses of synchronization objects, and interrupts

• Reproducing bug locally
– After the failure, JPL engineers spent hours and hours running the 

system on the exact spacecraft replica in their lab with tracing 
turned on, attempting to replicate the precise conditions under 
which they believed that the reset occurred

– Early in the morning, after all but one engineer had gone home, the 
engineer finally reproduced a system reset on the replica

• Analysis of the trace revealed the priority inversion
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Remote Bug Fixing
• When created, a VxWorks mutex object accepts a 

boolean parameter that indicates whether priority 
inheritance should be performed by the mutex

– The mutex in question had been initialized with the parameter off; 
had it been on, the low-priority meteorological thread would have 
inherited the priority of the high-priority data bus thread blocked on 
it while it held the mutex, causing it be scheduled with higher 
priority than the medium-priority communications task, thus 
preventing the priority inversion

– Once diagnosed, it was clear to the JPL engineers that using 
priority inheritance would prevent the resets they were seeing

– By coding convention, the initialization parameter for the mutex in 
question (and those for two others which could have caused the 
same problem) were stored in global variables

• How to fix remotely?
– VxWorks debugging mode!
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VxWorks Debugging Mode
• VxWorks debugging mode

– Has a C language interpreter intended to allow developers to type in C 
expressions and functions to be executed on the fly during system 
debugging

• JPL engineers fortuitously decided to launch the 
spacecraft with this feature still enabled

– Addresses of initialization parameters for mutexes stored in symbol 
tables included in the launch software, and available to the C interpreter

• A short C program was uploaded to the spacecraft, 
which when interpreted, changed the values of these 
variables from FALSE to TRUE

• No more system resets occurred!
– One month planned mission lasted for three months instead!
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Temporal Logic Assertions for the 
Detection of Priority Inversion

• Temporal logic – system of rules and symbolism for 
representing, and reasoning about, propositions qualified in 
terms of time

– Can express requirements – e.g., whenever a request is made, access to a 
resource is eventually granted, but it is never granted to two requestors 
simultaneously

• TLA assertions were written as comments in the Pathfinder 
code

• Temporal-Rover software generated code that announces 
success and/or failure of any assertion during testing

– T-R compared the actual program's behavior with the formal specification
– T-R captured all possible “golden” executions of the program

• Interestingly enough, the JPL engineers actually created a 
priority inversion situation during testing

– 1-2 system resets during months of pre-flight testing 
– Not reproducible or explainable, so “was probably caused by a hardware glitch”
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TLA (cont’d)

• TLA captures time and order, so let: 
– HIGHPriorityTaskBlocked() represent a situation where the info bus thread is 

blocked by the low priority meteorological data gathering task
– HIGHPriorityTaskInMutex() represent a situation where the information bus 

thread is in Mutex
– LOWPriorityTaskInMutex() represent a situation where the meteorological 

thread is in Mutex
– MEDPriorityTaskRunning() represent a situation where the communications 

task is running

• Assertions:
– Not Eventually ({HIGHPriorityTaskBlocked()} AND 

{MEDPriorityTaskRunning()}) 
– This formula specifies that never should it be that HIGHPriorityTaskBlocked()

And MEDPriorityTaskRunning(). 
– Always({LOWPriorityTaskInMutex()} Implies Not 

{MEDPriorityTaskRunning()} Until {HIGHPriorityTaskInMutex()} ) 
– This formula specifies that always, if LOWPriorityTaskInMutex() then 
MEDPriorityTaskRunning() does not occur until a later time when 
HIGHPriorityTaskInMutex(). 
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TLA (cont’d)
• Engineers did not manage to analyze their recorded data 

well enough to conclude that priority inversion is indeed a 
bug in their system

– In other words, their test runs were sufficient, but their analysis tools were not

• Part of it was the engineers’ focus – extremely focused on 
ensuring the quality and flawless operation of the landing 
software

– Should it have failed, the mission would have been lost
– Also, first “low-cost” NASA mission

• Entirely understandable for the engineers to discount 
occasional glitches in the less-critical land-mission SW

– A spacecraft reset was a viable recovery strategy at that phase of the mission
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Exceptions 
• Must restore monitor invariant as you unwind the 

stack 
– But, requires explicit UNWIND handlers (RETURN WITH 

ERROR[args]), otherwise lock is not released

• Failure to handle exceptions results in debugger 
invocation

– “not much comfort, however, when a system is in operational use”

• What does Java do?
– Release lock, no UNWIND primitive
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Hints vs. Guarantees
• Notify is only a hint

– Don’t have to wake up the right process
– Don’t have to change the notifier if we slightly change the wait 

condition (the two are decoupled)
– Easier to implement, because it’s always OK to wake up too many 

processes. If we get lost, we could even wake up everybody 
(broadcast)

» Can we use broadcast everywhere there is a notify? Yes
» Can we use notify everywhere there is a broadcast? No, might 

not have satisfied OK to proceed for A, have satisfied it for B

• Enables timeouts and aborts
• General Principle: use hints for performance that 

have little or better yet no effect on the correctness
– Many commercial systems use hints for fault tolerance: if the hint is 

wrong, things timeout and use a backup strategy
» Performance hit for incorrect hint, but no errors
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Performance
• Assumes simple machine architecture

– Single execution, non-pipelined – what about multi-processors?

• Context switch is very fast: 2 procedure calls (60 ticks)
• Ended up not mattering much for performance:

– Ran only on uniprocessor systems
– Concurrency mostly used for clean structuring purposes

• Procedure calls are slow: 30 instructions (RISC proc. 
calls are 10x faster); Why?

– Due to heap allocated procedure frames. Why did they do this?
» Didn’t want to worry about colliding process stacks

– Mental model was “any procedure call might be a fork”: transfer was 
basic control transfer primitive

• Process creation: ~ 1100 instructions
– Good enough most of the time
– Fast-fork package implemented later that keeps around a pool or 

“available” processes
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3 Key Features about the Paper
• Describes the experiences designers had with 

designing, building and using a large system that 
aggressively relies on lightweight processes and 
monitor facilities for all its software concurrency 
needs

• Describes various subtle issues of implementing a 
threads-with-monitors design in real life for a large 
system

• Discusses the performance and overheads of various 
primitives and presents three representative 
applications, but doesn’t give a big picture of how 
important various decisions and features turned out 
to be
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Some Flaws
• Gloss over how hard it is to program with locks and 

exceptions sometimes – not clear if there are better ways

• Performance discussion doesn’t give the big picture
– Tries to be machine-independent (ticks), but assumes particular model

• A takeaway lesson: The lightweight threads-with-
monitors programming paradigm can be used to 
successfully build large systems, but there are subtle 
points that have to be correct in the design and 
implementation in order to do so
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation / metrics?
• Did they convince you that this was a good system 

/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?
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Transactions (Brief intro before ARES)
• Second paper really a summary paper

– Ideas behind transactions were stabilizing at this time (1983)
– Gray, Berstein, Goodman, Codd, …

• Point of reading this paper: Getting transaction concept 
into your brain

– Transactions are Atomic actions that are all-or-nothing
– They either complete entirely or they do not even start

Begin_Transaction()
Do a bunch of things – read and write data
End_Transaction()

– Until End_Transaction() completes, transaction may be aborted and 
effects will be nullified

– After End_Transaction() completes, transaction will be durable and results 
should survive even system crashes

– Transaction said to “Commit” after End_Transaction()
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ACID Semantics
• Full Transactional support includes:

– Atomicity: It must be an all-or-nothing commitment
– Consistency: After commit, a transaction will preserve the 

consistency of the data base
» Example: for banking app, net amount of money constant, 

even after moving money from account to account
– Isolation: Events within a transaction hidden from other 

transactions
» Writes from uncommitted transactions invisible to other 

transactions
– Durability: Once a transaction has been completed and committed 

its results, results will survive even system crashes

• Much of focus is around techniques for achieving 
these properties

– Use of Log to permit transactions to abort/be durable
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Recovery actions: The Log
• Log entries:

– REDO: (forward) enough information to perform update to the data
– UNDO: (backward) enough information to move backward\
– BEGIN: Start of transaction
– COMMIT: End of transaction
– ABORT: Transaction was aborted

• Once transaction committed in log, transaction durable
– Updates may not be reflected in permanent state
– If crash happens before COMMIT is placed into log, should be as if 

nothing ever happened: may need to undo state
• Checkpoints:

– Flush log out to well defined point/discard old log entries
– Good point to recover from

• Ways of updating permanent state
– Update in place: use log to undo state if necessary
– Shadow pages: keep old state around and update to new pages
– Other ideas: keep different views of DB, “Old and new” copies, etc
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Other things in paper
• Lots of discussion of implementation techniques

– ATOMIC, STEAL, FORCE, …

• ARIES paper for next time will show “BEST IN 
CLASS” combination of features
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation / metrics?
• Did they convince you that this was a good system 

/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?


